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ABSTRACT

The aim of this work is to introduce a computational costs system associated to
a semantic framework for orthogonal data and control parallelism handling. In such a
framework a parallel application is described by a semantic expression involving in an
orthogonal manner both data access and control parallelism abstractions. The evaluation
of such an expression is driven by a set of rewriting rules each of which is combined with
a computational cost. We present how to proceed in the evaluation of the final cost of
the application as well as how such information together with the semantic framework
capabilities can be exploited to increase the overall performance.

1. Introduction

In the latest years, the literature has widely recognized all the advantages pro-
vided by the structured parallel programming paradigm [1] in which an application
is given as a composition of (a set of) recurrent patterns whose control behavior
is well known and predictable, while the functional behavior depends on the func-
tional parameters provided by the user who is instantiating the patterns. Stating
in advance the control behavior of an application allows, in principle, to statically
make some kind of prediction on its computational costs and thus, to intervene on
the application graph in order to increase the overall performance (for example,
by augmenting the parallelism degree). On the other hand, a parallel application
have also to deal with data access concerns that can heavily influence both the pro-
gramming phase and the final computational costs. Unfortunately, the most works
regarding structured parallel programming environments, define a two-tier archi-
tecture model in which data accesses have to be heavily detailed on top of control
abstractions [2,3] or vice versa [4,5,6,7]. As a consequence, the model of parallelism
is a mixture of strictly coupled data and control concerns difficult to formalize and,
hence, to statically and/or dynamically analyze for optimization purpose.

In [8] we have sketched a programming model in which parallel applications
are built by keeping orthogonal data and task parallel concerns through a set of
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abstract mechanisms. In [9] we have given a preliminary formalization of the model,
pointing out that the evaluation of a parallel application is described by a sequence
of transformations (i.e. inference rules) on the application graph involving abstract
mechanisms for both expressing control concerns and data access concerns. The
contribution given by this work is a more clear specification of the semantics and
the introduction of a computational costs system provided by the semantics. In
fact, the former formalizes both mechanisms for describing control concerns and
data access concerns, thus reaching three goals:

e giving a formal description of the abstract mechanisms that handle data and
task parallel concerns leads to a clear, unambiguous description of the pro-
gramming model, regardless any further implementation choice

e the semantics can assign some kind of evaluation costs about the use of our
abstract mechanisms use in order to statically estimate the computational
cost of the whole application.

e the semantics is enriched with a set of rewriting rules about graph structures
that assess if two graphs are functionally equivalent and each graph has as-
sociated an estimation of its computational cost. Rewriting rules and static
estimations can drive static and dynamic improvements of the overall per-
formance. For example, it can be proved that a certain control structure is
equivalent and more efficient than the one declared by the user, thus driving a
transparent rewriting process of the graph application at running or compile
time.

This work is structured as follows: Section gives an overall introduction to the pro-
gramming model we are assessing. Section presents the basic of both our semantics
and our costs system, in particular which operators are involved as well as how they
can be used to describe and computationally evaluate parallel applications. Section
shows a simple case study as well as how our cost system can lead to the estimation
of the final computational costs. Section concludes the presentation by giving an
overview of related and future work.

2. The programming model

Our programming model is fully described by the tuple M =< A, V,Z,C >
where A stands for a set of abstract data types; V stands for the set of views on
abstract data types; Z stands for a set of iterators for accessing views; C stands
for the set of collectives (or control primitives) which allow to describe structured
functional graphs (i.e. graphs built composing the available collectives).

The first three mechanisms fully describe the data parallel concerns of the ap-
plication. An instance of a given abstract data type is a representation of the raw
input data abstracting from their actual implementation and/or distribution. Dif-
ferent kind of typed views can be declared on top of such instance, thus providing
a logical organization of the raw input data and a set of operators to manipulate
them. Since the view is independent from the actual implementation of data, such
separation gives many hooks to optimize the implementation of both the view’s
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operators and the data itself.

Each view provides a set of typed iterators on its items. An iterator is an object
exposing a set of operators to get items from the view, coherently with the view
type and with a given pattern of access. Moreover, each type of iterator can be
specialized in order to get the items in a whole or sequentially. For example, an
array view provides iterators to get singletons or block of items, while a tree view
provides iterators to get subtrees, children or siblings of a given node and so on.
Such items can be returned by the iterator one-by-one or as a whole, depending on
the specialized behavior of the iterator.

The task parallel behavior of the application is described by using the set of

primitives C, a collection of composable patterns of control plus sequential functions
types. The basic idea is that the user application can be formalized as a graph in
which the nodes are sequential or parallel modules and the arcs are functional (i.e.
data) dependencies among modules. Such an application graph is constructed by
selecting and composing the patterns provided by the set of primitives C. Pipe
(pipelines of stages), Apply-to-all (application of a function to all the elements
of an input data set in parallel), Comp (sequential composition), Reduce (function
reduction) etc. populate C.
For example, let us suppose we have an application that applies the function
S2(S1(pz)) to each pixel pzr of the images belonging to an input stream of im-
ages. Such application can be written as a pipeline of two stages: the first stage
applies S1(px) to all the pixels of the current image; the second stage applies Sy to
all the pixels updated by the first one. Hence, the global application results in a
Pipe of two stages, each of which is an Apply-to-all computing a given sequential
function.

Summarizing, our programming model allows to exploit data parallelism by se-
lecting appropriate abstract data types, views and iterators and without keeping
in mind how to evaluate the functions that will use them. On the other hand, the
application can be completely described by composing its computational graph re-
gardless details about accesses and/or distribution of input data.

Nevertheless, since each module in the graph accesses only the piece of data that
flows from its parent, its input can be easily provided by an iterator handling such
portion, thus coupling in a very high level manner control and access behavior. In
fact, in our programming model the harmonization between data and task paral-
lelism is given by coupling each selected primitive with one or more iterators. The
internal behavior of each primitive depends on the specific pair control pattern-
iterator by which it is composed. For example, let us consider an application that
can be evaluated applying in parallel the same function to all the items belonging
to an array view. As mentioned before, such simple pattern is represented in C by
the Apply-to-all primitive. However, more pragmatically, the application can be
written instantiating a set of processing elements each of which applies the function
to an independent task of the input data set, thus exploiting a plain task parallel
behavior. Otherwise, the same application can be written as a plain data parallel
computation, thus applying the function to all the items of the data set in paral-
lel. The former specialized pattern is called farm in the skeleton community while
the latter is called map. In our model, a farm computation can be described by
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combining the Apply-to-all primitive with a sequential iterator (thus, applying a
function to all the elements accessed one-by-one). Instead, a map computation can
be obtained by coupling the same primitive with a parallel iterator: in this case all
the elements are accessed as a whole and the function is applied in parallel on each
of them.

3. Semantics

The formal semantics of our programming model is given by populating the tuple
< A, V,Z,C >. Each type of the tuple is represented as a set plus some operators
to manipulate its elements.

Since A is the type representing the raw input data, it can be modeled as a set
of objects of a generic type O provided with canonical operators for creating a
set, querying its content, inserting, deleting, updating elements, and so on. Tab.1
summarize the formalization of type A. The view abstraction is provided by the

A={o1,...,0n | 0; : O}
create: () = A | add: Ax O — A
size : A — Nat

Table 1. A type definitions

V= {Array, Matrix, Graph, Tree, List }
create : A —V | getlterator:V — T

Table 2. V type definitions

Z:V — (VxNat)
curr: T — O skip: T —1T
hasNext:Z — Bool | set : T x O — 1

Table 3. Z type definitions

set V of view types that map a given A object to a V object. At the moment, the
provided view types are Array, Matrix, Graph, Tree and List. For example, given
5 ={51,.-+,5size(s)} €A, and given g € Nat as a grain value divisor of size(s), the
Array(s,g) type is constructed by the mapping function

AXN — Array(s,g) =<< 81,...,8g >,..., < Ssize(s)—g» - - - » Ssize(s) >>

Each view v €V is a factory for a set of iterators on its structure, thus it provides
kind of getIterator operators (see Tab.2). Generally speaking, an iterator is a
pair (v,p) where v C V is the (sub)view on which it is defined and p €Nat is a
pointer to the next accessible item of its range.
Tab. 3 shows some operations to handle an iterator object. The curr operator
returns the current item pointed by p. If the iterator has a parallel behavior, p
“points” in parallel to all the items so that they are taken as a whole; otherwise p
points also to the current item and the operator returns it as a singleton.

The set of collectives C, as mentioned before, includes well known patterns of
control as for example Pipe, Apply-to-all, Comp etc. Generally speaking, each
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collective can be viewed as a function
C : I x (CU Function) — V

that gets a sequential function (let us call Function its type) or a nested control

primitive and a set of values (i.e. the ones given by one (or more) iterator(s)) and
returns the view obtained by applying the second argument to the set of values.
As explained in Section , the parallel access behavior by which such values will be
accessed is encapsulated by the input iterator instance.

In our semantic model, collectives, iterators and related operators are defined
in terms of semantics expressions whose evaluation is given by means of inference
rules stating functional equivalences between expressions. Tj is a general example
of a rule of ours: .

E,y
L
The expression F; is transformed by rule T; into the equivalent expression Eo, if
some condition C on F; holds. Each transformation is provided with a cost ¢ and
the semantics supplies a cost function £ : C — Nat that associates a costs to each

primitive C in the following way. Let C —., Ei —¢, ... —¢, v be the chain of
transformations for evaluating C up to the final result v. Then,
k
EC)=) a (1)
=1

that is, the computational cost for evaluating C is the sum of the costs of all the
partial transformations applied to transform C into v.
Let us give some example of how this relation works and on which operators.

As mentioned before, the iterator is represented as a pair (Z,p) where T =<
Z1,...,%, >. The curr operator is in charge of returning (thus is functionally
equivalent to) the current element of its range. If the iterator it is an instance of
Seqlterator, then curr will only return the p-th element of the range; if the it is of
type Parlterator, then the whole range is returned. The curr operator is evaluated
by the following rules:

it= (< x1,...,xn >,p) : Seqlterator it = (x,p) : Parlterator

(2)

curr(it) —coprr Tp curr(it) —rcpprr

In the formulae given above c... represent the cost for evaluating the curr
operator. Thus, quantitatively speaking, such cost includes costs for retrieving and
accessing data.

Another operator that will often occur in the following is skip. Its role is simply
to skip the pointer to the next position in the iterator state (or returns L if any),
without returning values.

it = (z,p) Nit' = (z,p+ 1) it = (x, size(x))
skip(it) —eopip it skip(it) —eapipl

3)

In this case csksp represents just the cost for updating the internal state of it.
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The operator that describes the parallel evaluation of two functions f and g is
given by f || g (par operator). For example, two of the rules leading the transfor-
mation of such an operator are the ones assessing the evaluation order:

g(I) e y, A f(I) —co ' Ne= max{cl, 02} g(y e y,
h(g(@)IP'(f(x)) —e h(y)[|W (z') 2lg(y) —e <y >

The evaluation of par is strict i.e. before evaluating it, all its arguments have to be
completely evaluated (rule 4-a). Moreover, the evaluation of par produces a new
view by appending all the partial results in a new data set (rule 4-b).

The semantics includes the operator chain (@) that, given a set of functions
fi,..., fm represented by the sequential iterator ity = (< f1,..., fm >,p) and an
object x € O, evaluates f,,(..(f1(x))..). Such operator is transformed as follows:

a.

(4)

hasNext(ity) —., true hasNext(ity) —., false (5)
ity & x —cy skip(ity) ® curr(ity)(x) it;p) BT —ep

The chain operator is called recursively on the updated state of ity and on the last
evaluated object, till there are functions in ity to apply.

The composition of par and chain allows to define the Pipe collective, e.g. a
pattern of control that applies the composition of the functions represented by the
iterator it s, to the stream of input values represented by the sequential iterator it,.

hasNext(itq) —, true A cn, = Cpipe
ity @ curr(itq) || Pipe(ity, skip(itq))

6
Pipe(ity,itq) —c,,,. Y

hasNext(itq) —, false A ch = Cpipe
<>

Pipe(itf, itg) — (7)

Cpipe
As it can be seen, for each transformation call of Pipe, the evaluation proceeds in
two parallel steps ¥ the chain operator is applied to the functions provided by it
and the value currently pointed by ity through the curr operator. In the meanwhile,
a recursive call of the operator Pipe is evaluated together with the updated state
of ity (rule 6). If there are no more elements to evaluate pointed by itq, then an
empty view is returned (rule 7).

4. Computational costs analysis

Just to show the effectiveness of our rules, we will give a simple evaluation
example. Let ity = (< f1, fo >, 1), itq = (< 21, 22,23 >, 1) and it(®) be the notation
for iterators stressing that the current state of it points to the p-th element. Tab.4
shows the evaluation process of Pipe(its,itq) labelling each transformation with its
cost load.

The example demonstrates that evaluating a collective through our rules, not
only drives through a formal description of the transformational process from one
expression to a functionally equivalent one; it also allows to model how the computa-
tion evolves in time and to define the final computational cost. In fact, in a pipeline

*Since the evaluation of || is strict, all its arguments have to be evaluated, first
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1 Pipe(ity.ity)  —epipe it @ curr() (it ) || Pipe(ity, skip® (itq))
(1 . . (2
“maz{courmesnip) ity @1 Il Pivelitg, itG))

“maz{eg cpipe} skip( (it p) @ (currMitp)(wq) || (ite @ curr® (itg) ||

| Pipe(ity, skip(® (ity)))
,itgf) @ f1(@1) || Gte @ @) || Pipelitg, it(D)

“maz{ceurr-cspip}
- . (2) ) o (3)
5 cgy it @ y1 1| (ite ® wg) || Pipe(ity. it]))
“maz{eg cpipe} skip®) (it 1) @ curr® (y1) 1| skip® (itp) ® curr( (it p)(z2) 1|
| ity ® curr®) (itg) || Pipe(ity, skip® (itg))
—mas{courmespip) ity ® F21) 11t @ f1(w2) I ity @ wal|Pipeity, it(D)
~max{or, or } il @l 11t @y 11 ity @ egliPiveitg,ief?)

9 “maz{cg cpipe} ! Iskin® (it ) @ curr(® (y2) [1skip™ (it ) ® currM it ¢ (23) 1]

10 “maz{ccurmespipt Y1l it @ fa(w2) 11it$P @ £1(23) 11 1
.. (3 (2
1 —max{eg, gy } Vit e v 11t @us 1l 0
12 —ecq yi 11 wh 11 skin® (it p) @ curr(? (yg)
.. (3
13 “maz{ceurrespipt Vi 115 I il @ f2(u3)
14 ety vi 1w 11t @ g
15 —eg < vy ub ug >

Table 4. Evaluation process of Pipe(ity,ity)

computation, the first step consists in evaluating fi(x1); the second step consists in
evaluating in parallel fo(f1(z1)) and fi(x2) and so on. Once the full regimen has
been reached, all the stages evaluate in parallel. This behavior is perfectly described
in our semantics. In fact, in Tab.4 we have traced in bold font, the transformational
steps describing the parallelism among stages: after some preliminary evaluations
(rows 1-4), the first stage is evaluated, costing cy, (row 5). Transformations 6-7 lead
to the second and the third time-step of the pipeline (rows 8-11), in which f; and
fo are evaluated in parallel. Moreover, the cost of these two steps is the maximum
between the cost ¢y, of evaluating f; and the cost cy, of evaluating fo.

The final computational cost of the Pipe operator is given by adding all the inter-
mediate transformational costs, so that

E(Pipelity,itq)) = 6¢cn + Sceurr + ¢, + 2max{cy,,cp, } + Cfy (8)
Thus, the generalized formula

E(Pipe(ity,ity)) = (m+n+1)cy + (M +n)ceurr+
m—1
Z%:1 maXiE[l,t]{cfi}+ (9)
Zt:er Erllaxie[l,m—l] {cf'i }+
Et:nJrl maxie[tfnJrl,m]{cfi}

is the one evaluating the computational cost of a pipeline given an input stream of
size n > 1 represented by the iterator ity = (< z1,...,2, >,1) and m > 1 stages,
globally represented by the iterator ity = (< fi,..., fm >,1). The inner sums
measure at each time step ¢ € [1,m 4+ n — 1], the maximum paid cost and they add
it to the cost accumulated in the preceding steps.
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It has to be pointed out that in the previous example we have shown how our
semantics allow to derive a computational cost as soon as a primitive has been
defined. Each time such primitive recurs as part of a more complex graph or as
a graph by its own, the formula statically estimated by our semantics framework
can be taken into account to automatically estimate its computational cost of the
(sub)graph.

Provided that the cost evaluation of each collective in C can be easily es-
timated by the semantics, we are able to quantify the computational costs of
two functionally equivalent graphs and to choose the more efficient one for our
execution. In fact, we can prove, for example that a(Pipe(ity,ity,,),itpar) =
Pipe(itq,itseq) (a Map of Pipe is functionally equivalent to a Pipe of Map) but also
that (a(Pipe(itys,itl,.,),itpar)) < E(Pipe(ita,itseq)). Hence, each time a user in-

seq
stantiates a pipelines of maps, the rewriting rule can be adopt to improve the perfor-
mance. In other cases, as for example a(Pipe(its, ity,,), itpar) = ((f1;- -5 fm), itp)

(equivalence between a Map of Pipe versus a Map of the same stages composed se-
quentially), we know that the first Map costs more with respect to the second one:
in fact, they exploit O(m+n) and O(m), respectively. Thus the actual convenience
of instantiating one graph respect to the other depends on the input size.

5. Related work and conclusions

We have presented a semantic framework for the description of a programming

model in which data access and control patterns (the ones composing the application
graph) are described through independent abstract mechanisms. The model exposes
a set of semantics expressions that define our mechanisms and a set transformations
stating how a given expression evolves at running time. Such transformation, given
as an inference rule, allows to statically define a functional equivalence between the
left and the right member of the transformation. Moreover, the semantics provides
a cost model assigning a cost to each transformation. As a consequence, such an
inference rules system provides the basis for the definition of an evaluation function
for assigning a cost to each pattern of control involved in our application, thus to
the whole application itself.
Hence, our framework is able to statically (or even dynamically) evaluate the user
application graph, to estimate the costs of its execution and, if it is the case, to
apply smart rewriting rules to transform the user graph in a functionally equivalent
graph but exposing a better performance.

The idea of formally evaluating in some way the computational cost of an appli-
cation graph is not new, especially in the field of structured parallel programming.
Several works has already presented in the past aiming at defining in some sense the
behavior of a parallel structure [10,11] and, at possibly associating a cost value to
its execution [12]. The novelty introduced with our approach is given by a seman-
tic model able to both reproduce the evolution of an application graph execution
and, in the same time, to estimate and/or rewrite such evolution in an easy and
comprehensible way.

We are planning to provide our programming model with a suitable set of well known
transformations that can be eventually applied to the user defined application in a
transparent manner. In fact, the final goal is to have a programming framework in
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which performance optimizations are automatically done on the basis of the static
(and dynamic) analysis of the user application graph. On the semantic side, we are
working on enriching the framework with new primitives and abstract data types
as well as in describing more complex case studies evidencing the power of our
approach.
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