
April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

Parallel Processing Letters
c© World Scientific Publishing Company

ON THE INPUT ACCEPTANCE OF TRANSACTIONAL MEMORY∗

Vincent Gramoli†

EPFL LPD, Station 14, CH-1015 Lausanne, Switzerland.
Université de Neuchâtel, rue Emile-Argand 11, CH-2007 Neuchâtel, Switzerland.

Derin Harmanci

Pascal Felber

Université de Neuchâtel, rue Emile-Argand 11, CH-2007 Neuchâtel, Switzerland.

Received October 2008

Revised May 2009
Communicated by A. Apostolico

ABSTRACT

We present the Input Acceptance of Transactional Memory (TM). Despite the large

interest for performance of TMs, no existing research work has investigated the impact
of solving a conflict that does not need to be solved. Traditional solutions for a TM

to be correct is to delay or abort a transaction as soon as it presents a risk to violate

consistency. Both alternatives are costly and should be avoided if consistency is actually
preserved. To address this problem, we introduce the input acceptance of a TM as its

ability to commit transactions, we upper-bound the input acceptance of existing TMs

and propose a new TM with higher input acceptance.

Keywords: SSTM, Commit-abort ratio, Real-time relaxation

1. Introduction

Transactional Memory (TM) has recently been proposed as a parallel programming

paradigm to take benefit of upcoming multicore architectures. In contrast with the

lock-based paradigm, TM uses speculative execution of transactions for simplic-

ity reasons: semantics is preserved under transaction composition. In TM systems,

transactions are scheduled in parallel on distinct threads as sequences of trans-

actional operations. Due to this parallelism, operations of concurrent transactions

accessing a common shared object can naturally be interleaved. Some TMs require

conflict resolution if at least one of these operations is a write [8], others, however,

∗Part of this work already appeared in the 12th International Conference On Principles Of DIs-

tributed Systems [6]. This work is partially supported by the Velox Project ICT-216852 and the
Swiss National Foundation Grant 200021-118043.
†Contact author. EPFL LPD, Station 14, CH-1015 Lausanne, Switzerland. Email: vin-

cent.gramoli@epfl.ch

1

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

2 Parallel Processing Letters

require conflict resolution only if the first occurring operation is a write [1]. Roughly

speaking, a conflict represents a risk that the TM consistency be violated. Common

conflict resolution consists either in forcing one of the two conflicting threads to

sleep until the other terminates executing its transaction, or in forcing one of the

two transactions to abort for later restart.

Clearly, forcing a thread to sleep may imply that the core executing this thread

remains idle. Moreover, this might not successfully resolve the conflict. Multicore

architectures are inherently parallel and all cycles during which a core remains idle

are wasted. As a result, resuming one transaction after the other, would possi-

bly resolve conflicts but it would not exploit mutlicore resources efficiently. Unlike

database transactional systems where transactions are buffered on the server-side

and could preferably be executed sequentially [5], multicore architectures greatly

benefit from concurrent executions of transactions. Here, we focus on transactional

memory systems that fully exploit multicore architecture. In other words, we aim at

minimizing the idle time of each core, that is, we focus on non-delaying contention

managers.

Nevertheless, if all operations are executed without being postponed, then solv-

ing a conflict requires to abort one of the two conflicting transactions. Aborting a

transaction implies to roll-back the operations executed in this transaction and to

restart it later, hence, aborting may be considered as a waste of efforts as well.

p1 p2
w(x)

r(x)
c

c

input−→ SXM / DSTM / WSTM / TL2 / TinySTM
output−→

p1 p2
W (x, v1)

A
C

Fig. 1. An input pattern for which numerous STMs try unnecessarily to resolve a conflict. In this
example, we chose a contention manager that aborts the transaction detecting the conflict.

In the example of Figure 1, two transactions execute concurrently so that their

operations are interleaved. The read operation at thread p2 could return indiffer-

ently the new value of x or the overwritten value without violating consistency.

Aborting or delaying this transaction is thus unnecessary since committing it would

not violate serializability [14], opacity [9], or even linearizability [12]. Interestingly,

many Software Transactional Memories (STMs) unnecessarily try to resolve a con-

flict for the sake of simplicity [3, 4, 8, 10, 11]. In this paper, the goal is to minimize

the number of unnecessary aborts while fully exploiting cores.

Contributions. This paper introduces the input acceptance of transactional mem-

ories as a measurement of their ability to commit transactions. We identified five

designs shared by seven TMs and compared their input acceptance upper-bound.

Upper-bound stands here for the limited amount of input the design accepts: the

more input it accepts, the higher the upper-bound. The resulting design classifica-

tion is confirmed experimentally on realistic workloads. Here are our designs:

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

On the Input Acceptance of Transaction Memory 3

(i) Visible read (VWVR): this design used for instance by SXM [8] let the other

threads know of a read operation immediately after the corresponding read

request is received (visibility is ensured by setting a flag or locking a variable);

(ii) Visible write (VWIR): this design used for instance by DSTM [11] and

TinySTM [4] makes the effect of a write operation visible to other threads

immediately after the corresponding write request is received;

(iii) Invisible write (IWIR): this design used by WSTM [10] and by TL2 [3] delays

the effect of a write operation until reception of the commit request of the same

transaction (neither reads nor writes are made visible before commit-time);

(iv) Commit-time relaxation (CTR): this design used in TSTM [1] allows to order

transactions independently from the time a commit request is received;

(v) Real-time relaxation (RTR): this design relaxes the constraint that if a trans-

action t1 ends before another transaction t2 starts, then all the operations of t1
must precede operations of t2.

We propose a Serializable Software Transactional Memory, namely SSTM, that

implements the last design. SSTM presents a higher input acceptance than other

STMs and does not suffer from congestion since it uses shared object metadata

instead of global parameters to detect conflicts.

Related work. The question whether a set of input transactions can be accepted

without being rescheduled has already been studied by Yannakakis [17]. Similarly

to our work, this paper considers that the scheduler receives the workload and

reschedules it into a sequentially-equivalent output. More precisely however, this

paper focuses on the expressiveness of concurrency, and does not take into account

TM constraints. In contrast here, we especially concentrate on TMs where some

operation requests must be treated immediately for efficiency reasons.

The recent permissiveness property [7] measures the variety of comitted outputs.

Unfortunately, permissiveness does not capture the amount of workloads TMs ac-

cept: even if a single workload is accepted the TM can be considered as highly

permissive if it produces a large variety of safe histories. That is, a TM can have a

very high permissiveness with a very low input acceptance. Similarly to the commit-

abort ratio, [15] introduces the abort-rate but not to compare STMs.

Some STMs present desirable features that we also target in this paper. All these

STMs relax a requirement common to opacity and linearizability to accept a wider

set of workloads: the real-time order. As far as we know SSTM is, however, the first

of these STMs that is fully decentralized and ensures serializability. CS-STM [16]

is decentralized but is not serializable. Existing serializable STMs require either

centralized parameters [13] or a global reader table [1] to minimize the number of

aborting transactions.

The rest of the paper is organized as follows. Section 2 presents the model and

some preliminary definitions. Section 3 introduces TM designs and input classes, and

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

4 Parallel Processing Letters

upper-bounds the input acceptance of TM designs. Section 4 shows the correctness

of SSTM, our high input acceptance STM. Section 5 compares the input classes and

Section 6 validates this generalization experimentally. Finally, Section 7 concludes

the paper.

2. Model and Definitions

A TM execution takes as input a workload and produces an associated history that

satisfies consistency. This section formalizes the notions of workload and history

as TM input and TM output, respectively. In our model, we assume that all input

events are part of a transaction and that no transactions are nested. We also assume

that when a transaction aborts it must be retried later—the retried transaction is

then considered as a distinct one.

TM input. First, we introduce TM input as a formalization of the notion of work-

load. An input event is either a start request, an operation call on a shared variable,

or a commit request. Here, we only admit read and write operations and all opera-

tions are part of a transaction. We denote a start request, a read call on x, a write

call on x, and a commit request as part of the same transaction t by st , r(x)t (or

rx
t for short), w(x)t (or wx

t for short), and ct . The values read and written are of

no interest in the input definition and they are omitted from the notations of input

events. We use πt to refer indifferently to a read or a write operation: either rt or

wt .

An input pattern P of a TM is a (totally ordered) sequence of input events. The

associated order corresponds intuitively to the real-time order in the sense that one

event is ordered before another if and only if its execution precedes the other in

time, and for the sake of simplicity we assume that no two distinct events occur

at the same time. Observe that this assumption is reasonable since two operations

on the same shared variable will be ordered by the TM (e.g., using a compare-and-

swap) and non-conflicting concurrent events can be arbitrarily ordered. An input

pattern is well-formed if each event π(x)t of this pattern is preceded by a unique

st and followed by a unique ct . An input class C can be a set of input patterns

(potentially infinite). An input transaction executed by thread (or processor) p

refers to a sub-pattern of the input composed of all events between a start request

and the first following commit request c applied to thread p (both start and commit

are included).

TM output. Second, we define TM output as the classical notion of history. This

history is produced by the TM as a result of a given input. An output event is a

read or write operation that has returned, a commit, or an abort. We refer to the

read operation of transaction t that accesses shared variable x and returns value

v0, as R(x)t : v0. Similarly, we refer to a write operation of t writing value v1 on

variable x as W (x, v1)t . In the output definition, written values are necessary to

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

On the Input Acceptance of Transaction Memory 5

decide upon the output correctness. We refer indifferently to Πt as either a read

operation or a write operation executed by t , and to C and A as a commit and

abort, respectively. A history H of a transactional memory is a pair 〈O,≺〉 where

O is a set of output events and ≺ is a total order defined over O. A projection of

a history H on a thread p is a sub-history Hp = 〈Op ,≺〉 where Op is the set of

all events of O executed by thread p. We omit the operation subscript t and the

history subscript p when the associated thread and transaction are clear from the

context.

As mentioned earlier, the ordering ≺ corresponds simply to the real-time prece-

dence of the instants at which the events occur. For short, we say that an operation

Π1 “precedes” another operation Π2 if and only if Π1 ≺ Π2 and we assume that any

two distinct events occur at distinct time instants. Observe that the order given by

single-threaded execution is included in the real-time order: the former implies the

latter. An output transaction executed by thread p is a sub-history of Hp composed

of all events between a commit/abort (excluded) or the first event of H (included)

and the first following commit/abort event (included). For each input transaction

t, there exists exactly one associated output transaction t′ whose sequence of op-

erations results from a subsequence of operation requests of t and that commits

or aborts. More precisely, an execution is well-formed if (i) the input pattern is

well-formed, (ii) there is a one-to-one mapping from the input transactions to the

output transactions, (iii) each output transaction is either the sequence of events

resulting from its mapped input transaction, or the sequence of events resulting

from a prefix of its mapped transaction plus an abort event.

By abuse of notation, we refer indifferently to a transaction as an input trans-

action or its associated output transaction.

Consistency. Two operations π1 and π2 conflict if and only if (i) they are part

of different transactions, (ii) they access the same variable x, and (iii) at least one

of them is a write operation. We denote a conflict by π1 −→ π2 if π1 precedes π2
with respect to the sequential specification of variable x, i.e., π2 reads the value of

x written by π1, π2 overwrites the value of x read by π1, or π2 overwrites the value

of x written by π1. (Otherwise, if π2 precedes π1 with respect to the sequential

specification of x, then the conflict is denoted by π2 −→ π1.) A transaction t1
precedes a transaction t2 if and only if π1 and π2 are operations of t1 and t2,

respectively, and there is a conflict π1 −→ π2.

A complete history is a history where all events are part of a committed transac-

tion, i.e., a transaction whose last event is C. Hence, no transactions are unfinished

or aborted in a complete history. The complete history C(H) of H is the history H

where all events that are not part of a committed transaction has been removed.

A transaction t1 precedes a transaction t2 if and only if π1 and π2 are operations

of t1 and t2, respectively, and there is a conflict π1 −→ π2. We denote this prece-

dence relation by t1
W−→ t2 if π1 is a write operation and by t1

R−→ t2 if π1 is a read

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

6 Parallel Processing Letters

operation, or indifferently by t1 −→ t2. We refer to a path p as an ordered sequence

of precedences between transactions: p = t1 −→ t2 −→ ... −→ tk. A serializability

graph of a history H is the graph SG(H) whose nodes are the committed transac-

tions of H and where an edge exists between transactions t1 and t2 if and only if

t1 −→ t2. A history H is conflict-serializable if and only if its serializability graph

of its complete history C(H) is acyclic. By extension, a TM is conflict-serializable

if and only if it outputs only conflict-serializable histories.

Classification. An input is composed of a set of events that are totally ordered.

Therefore, we can consider an input pattern as a word whose alphabet contains

events and an input class as a language defined over the alphabet of possible events.

We use regular expressions to represent the possible input patterns of a class. In

our regular expressions, parentheses, ‘(’ and ‘)’, are used to group a set of events.

The star notation, ‘∗’, indicates the Kleene closure and applies to the preceding set

of events. The complement operator, ‘¬’, indicates any event except the following

set. Finally, the choice notation, ‘|’, denotes the occurrence of either the preceding

or the following set of events. Operators are ordered by priority as ¬, ∗, |.

Commit-abort ratio. The commit-abort ratio, denoted by τ , is the ratio of the

number of committing transactions over the total number of complete transactions

(committed or aborted). This metric captures the notion of success of a TM by giv-

ing the percentage of transactions that the TM committed versus the total number

of transactions the TM attempted to commit. That is, the commit-abort ratio is

an important measure of “achievable concurrency” for TM performance, especially

from a theoretical point-of-view.

Throughput is a metric of performance traditionally used in TM to measure the

number of transactions a TM commits per time unit. Throughput is, however, not

sufficient to identify the cause of TM efficiency: one TM may be efficient either be-

cause it aborts very few transactions or because it retries transactions very rapidly.

The commit-abort ratio is complementary to the throughput since it determines

whether a TM is simply fast or whether it has a high input acceptance. Evaluating

how likely a TM aborts transactions is a crucial issue since aborting can be very

costly. First, this cost depends on the efforts wasted in executing the transaction

before aborting it: typically, a long transaction will be generally costly to retry.

Second, abort side-effects might be dramatic for performance: take, as an example,

an aborting transaction that has previously forced several other transactions to also

abort, this transaction may create further conflicts upon retry.

In the remaining of the paper, we say that a TM accepts an input pattern if it

commits all of its transactions, i.e., τ = 1. More generally, we say that a TM does

not accept an input class if it accepts no pattern of this class. In other words, the

TM does not accept a class if for each of its patterns, the TM aborts at least one

transaction, i.e., τ < 1.

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

On the Input Acceptance of Transaction Memory 7

3. The Input Acceptance of TM Designs

This section identifies several TM designs and upper-bounds their input acceptance.

As said earlier, upper-bound stands here for the limited amount of input the design

accepts: the more inputs it accepts, the higher the upper-bound. All the designs

considered here are non-blocking (no transactions wait for a conflict to possibly

disappear) and there is at most one version for each shared variable.

The TM designs that we consider always provide a consistent view of the memory

to the application and guarantee sequentially consistent executions (serializability).

They may or may not be linearizable: this is typically not important from an applica-

tion programmer’s perspective (although it has some impact on the implementation

of the TM).

For each of these designs, we define one input class capturing a set of patterns

that are not accepted (although these patterns are accepted by subsequent designs),

hence giving an upper-bound of the input acceptance of each design. For the sake of

clarity of the design presentations, we assume in the pseudocode of the algorithms

that each function is atomic and we do not specify how shared variables are updated.

Typical solutions include compare-and-swap [11] or in-order lock acquisition [10].

We refer to T as the set of transaction identifiers, to X as the set of all variable

identifiers, and to V as the set of possible variable values.

3.1. VWVR Design

This section introduces a TM design with visible writes and visible reads, called

VWVR, and shows its acceptance limitation by defining a class of input patterns

that this design never accepts. The pseudocode is given in Algorithm 1 and is similar

to SXM [8]. For simplicity of presentation, we assume that variables are versioned.

Algorithm 1 VWVR Design

1: State of transaction t:
2: read-set ⊂ X, initially ∅
3: write-set ⊂ X × V , initially ∅

4: State of shared variable x:
5: val ∈ V , initially default value
6: writer ∈ T , initially ⊥
7: readers ⊂ T , initially ∅

8: read(x)t:

9: if 〈x, v′〉 ∈ write-set then v ← v′
10: else
11: if x.writer 6= ⊥ then abort()

12: v ← last committed value of x
13: read-set ← read-set ∪ {x}
14: x.readers ← x.readers ∪ {t}
15: return v

16: write(x, v)t:
17: if x.readers \ {t} 6= ∅ then abort()

18: if x.writer = t then
19: write-set ← (write-set \ {〈x, ∗〉}) ∪ {〈x, v〉}
20: else
21: if x.writer 6= ⊥ then abort()

22: write-set ← write-set ∪ {〈x, v〉}
23: x.writer ← t

24: commit()t:
25: for each 〈x, v〉 ∈ write-set do
26: x.val ← v
27: x.writer ← ⊥
28: for each x ∈ read-set do
29: x.readers ← x.readers \ {t}

30: abort()t:
31: for each 〈x, v〉 ∈ write-set do
32: x.writer ← ⊥
33: for each x ∈ read-set do
34: x.readers ← x.readers \ {t}

If a read request is input, the TM records the transaction in x .readers (Line 14),

thus, the set of variables read is visible to all threads. Similarly, the write operations

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

8 Parallel Processing Letters

are made visible in that when a write request is input the updating transaction

registers itself in x .writer (Line 23).

p1 p2
r(x)

w(x)
c

c

input−→ SXM
output−→

p1 p2
R(x) : v0

A
C

Fig. 2. An input pattern for which SXM produces a commit-abort ratio of τ = 0.5 (transaction

of p2 aborts upon writing).

It turns out that common input patterns are not accepted by this design. For

a classical example of write-after-read pattern by two transactions, consider the

example proposed in Figure 2. If a transaction t2 writes a variable that has already

been read by another transaction t1 that is still active, then a conflict is detected

by t2 while writing. This leads to resolving the conflict. As stated in the following

theorem, an input class including this pattern is not accepted by this design.

Theorem 1. There is no TM implementing VWVR design that accepts any input

pattern of the following class:

C1 = π∗(πx
i ¬c∗i w

x
j | wx

j¬c∗j π
x
i)π∗, for any i 6= j.

Proof. The proof of this impossibility relies on the existence of two sub-patterns,

of which at least one is common to any pattern of class C1 and that is not accepted

by any VWVR STM. Consider the input pattern P1 = π(x)1w(x)2 and P1′ =

w(x)1π(x)2.

First, since a write operation on variable x verifies that neither a write operation

nor a read operation is accessing x and aborts a transaction if this verification fails,

C1 does not accept P1. Second, since both read and write operations on variable

x verify that x is not currently written and abort a transaction if the verification

fails, C1 does not accept P1′. That is, neither P1 nor P1′ are accepted by C1.

Finally, observe that adding any event to P1 or P1′ produces a pattern of C1
that is not accepted by VWVR STMs for the same reason as above. As a result,

class C1 is not accepted by VWVR STMs.

3.2. VWIR Design

Next, we introduce a TM design with visible writes and invisible reads, called VWIR,

that is similar to DSTM [11] and TinySTM [4] with a contention manager that

aborts the transaction detecting a conflict. The limitations of this design are shown

by giving a class of inputs that it never accepts. The pseudocode is given in Al-

gorithm 2 and presents functions similar to the previous algorithm except that we

specify additionally the function validate. If a read request is input, the TM records

locally the opened read variable, thus, the set of variables read is visible only to the

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

On the Input Acceptance of Transaction Memory 9

current thread. Conversely, the write operations are made visible in that when a

write request is input the updating transaction registers itself in x .writer (Line 21).

Algorithm 2 VWIR Design

1: State of transaction t:
2: read-set ⊂ X, initially ∅
3: write-set ⊂ X × V , initially ∅

4: State of shared variable x:
5: val ∈ V , initially default value
6: writer ∈ T , initially ⊥

7: read(x)t:

8: if 〈x, v′〉 ∈ write-set then v ← v′
9: else

10: if x.writer 6= ⊥ then abort()

11: validate()
12: v ← last committed value of x
13: read-set ← read-set ∪ {x}
14: return v

15: write(x, v)t:
16: if x.writer = t then
17: write-set ← (write-set \ {〈x, ∗〉}) ∪ {〈x, v〉}
18: else
19: if x.writer 6= ⊥ then abort()

20: write-set ← write-set ∪ {〈x, v〉}
21: x.writer ← t

22: commit()t:
23: validate()
24: for all 〈x, v〉 ∈ write-set do
25: x.val ← v
26: x.writer ← ⊥

27: abort()t:
28: for all 〈x, v〉 ∈ write-set do
29: x.writer ← ⊥

30: validate()t:
31: for all x ∈ read-set do
32: x′ ← last committed version of x
33: if x 6= x′ then abort()

p1 p2
w(x)

r(x)
c

c

input−→ DSTM
output−→

p1 p2
W (x, v1)

R(x)
A

C

Fig. 3. A simple input pattern for which DSTM produces a commit-abort ratio of τ = 0.5
(transaction of p2 aborts).

Common input patterns are not accepted by this design. Consider the input

pattern depicted in Figure 3 that may arise for instance when concurrent operations

(searches, insertions) are executed on a linked list.

This is a classical example of read-after-write pattern by two transactions, with

the written value being visible and uncommitted. If a transaction t2 reads a variable

previously modified by another transaction t1 that is still active, then a conflict is

detected by t2 while reading. In any case, this leads to resolving the conflict: while in

this design the transaction t2 aborts due to this conflict, any alternative contention

manager aborts one of the current transactions.a As stated in the following theorem,

an input class including this pattern is not accepted by this design.

Theorem 2. There is no TM implementing VWIR design that accepts any input

pattern of the following class:

aObserve that the algorithm could be extended to detect read-only transactions, allowing the
transaction of thread p2 to commit in this specific scenario. In the general case, however, one of

the transactions will abort.

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

10 Parallel Processing Letters

C2 = π∗(rx
i ¬c∗i wx

j ¬c∗i cj | wx
j ¬c∗j rx

i)π∗, for any i 6= j.

Proof. The proof is similar to the proof of Theorem 1 but with the following

patterns: P2 = r(x)1w(x)2c2 and P2′ = w(x)1r(x)2.

Since in P2, t2 writes and commits the value of x after the time at which t1
reads x and before the time at which t1 commits, t1 fails in validating right before

commit-time and aborts. As a result, P2 is not accepted by C2. Since in P2′, t2
reads the value of x after the time at which t1 writes x and before the time at which

t1 commits, the read operation fails because t2 knows that t1 is still the writer of

the object. As a result, P2′ is not accepted by C2.

Next, observe that adding events to P2 or P2′ results in a pattern of C2 that is

not accepted by VWIR STMs for the same reason as above.

As mentioned earlier, this input class captures realistic workloads composed of

common read and update transactions.

3.3. IWIR Design

Here, we propose a third design that accepts patterns of the preceding classes, i.e.,

for which the previous impossibility results do not hold. Nevertheless, we do not

claim that all patterns of C1 or C2 are accepted by this design. This design, inspired

by WSTM [10] and TL2 [3], uses invisible writes and invisible reads with a lazy

acquire technique that postpones effects until commit-time, thus it is called IWIR.

While a main constraint of TMs is that a read must return without being postponed,

TMs allow us to postpone a write operation, thus delaying its visibility. The idea

differs from the previous designs due to the invisibility of writes: while modifications

are recorded at write-time in the write-set , these modifications are made visible not

earlier than commit-time. The corresponding functions and states are presented in

Algorithm 3.

Algorithm 3 IWIR Design

1: State of transaction t:
2: read-set ⊂ X, initially ∅
3: write-set ⊂ X × V , initially ∅

4: State of shared variable x:
5: val ∈ V , initially default value

6: read(x)t:

7: if 〈x, v′〉 ∈ write-set then v ← v′
8: else
9: validate()

10: v ← last committed value of x
11: read-set ← read-set ∪ {x}
12: return v

13: write(x, v)t:
14: write-set ← (write-set \ {〈x, ∗〉}) ∪ {〈x, v〉}

15: commit()t:
16: validate()
17: for all 〈x, ∗〉 ∈ write-set do

18: x′ ← last committed version of x
19: if x 6= x′ then abort()

20: for all 〈x, v〉 ∈ write-set do
21: x.val ← v

22: abort()t: —

23: validate()t:
24: for all x ∈ read-set do
25: x′ ← last committed version of x
26: if x 6= x′ then abort()

Even the IWIR design does not accept some very common input patterns, as

mentioned in the introduction and as depicted in Figure 1. This is a classical example

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

On the Input Acceptance of Transaction Memory 11

of transaction writing a value that is later read. Such a pattern arises, for example,

when performing concurrent operations on a linked list. The following theorem gives

a set of input patterns that are not accepted by TMs of the IWIR design.

Theorem 3. There is no TM implementing IWIR design that accepts any input

pattern of the following class:

C3 = π∗(rx
i ¬c∗i wx

j | wx
j ¬c∗j rx

i)¬c∗i cjπ∗, for any i 6= j.

Proof. In this proof we consider the following two patterns P3 = r(x)iw(x)jcj and

P3′ = w(x)jr(x)icj of C3. We show that each of these patterns is not accepted.

First, consider the input pattern P3, and assume by contradiction that its two

transactions commit. Upon invocation of r(x)i, transaction i records the variable in

its read-set for later validation. At the time tj commits, the variable x is updated

with the new value written by tj . Since ti has not committed yet when the write

becomes visible, upon committing, ti fails in validating its read-set leading to an

abort.

Second, consider the input pattern P3′, and assume by contradiction that the

two transactions commit. Since writes are invisible and r(x)i occurs before cj , the

value written by tj is not read by ti. That is, P3′ and P3 becomes indistinguishable

from ti standpoint. As above, upon committing, ti fails in validating leading to an

abort.

Clearly, adding any sequence of operations between the three events of P3 and

P3′ would lead also to non-accepted patterns. Since all possible patterns of C3
contain one of these two sub-patterns, input class C3 is not accepted by IWIR

STMs.

Note that this impossibility result also holds for the VWVR and VWIR designs,

since C3 is a subset of C1 and C2 as we indicate in Section 5.

3.4. CTR Design

The following design has, at its core, a technique that makes as if the commit

occurred earlier than the time the commit request was received. In this sense, this

design relaxes the commit time and we call it Commit-Time Relaxation (CTR).

To this end, the TM uses scalar clocks that determine the serialization order of

transactions. The pseudocode appears in Algorithm 4 and is inspired by the recently

proposed TSTM [1] in its single-version mode. The first particularity is that a

read(x) request forces the clock of the transaction to be at least as large as the clock

of the last transaction that committed x (which also corresponds to the version of

x). The second particularity is that committing a transaction t1 that writes x forces

active readers of x to have a clock lower than t1’s. Due to the second particularity,

even though a transaction t2 is not completed yet, an already committed transaction

t1 may force t2 to be serialized before.

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

12 Parallel Processing Letters

Algorithm 4 CTR Design

1: State of transaction t:
2: status ∈ {active, inactive}, initially active
3: read-set ⊂ X, initially ∅
4: write-set ⊂ X × V , initially ∅
5: clock-int, a record with fields:
6: lb ∈ N, initially 0 // clock range lower bound
7: ub ∈ N, initially ∞ // clock range upper bound
8: clock ∈ N ∪ {⊥}, initially ⊥
9: n ∈ N, the number of threads

10: State of shared variable x:
11: val ∈ V
12: clock ∈ N, initially 0
13: active-readers ⊂ T , initially ∅

14: read(x)t:
15: x.active-readers ← x.active-readers ∪ {t}
16: clock-int.lb ← max(x.clock, clock-int.lb)
17: if clock-int.ub < clock-int.lb then abort()

18: read-set ← read-set ∪ {x}
19: return x

20: write(x, v)t:
21: write-set ← (write-set \ {〈x, ∗〉}) ∪ {〈x, v〉}

22: commit()t:
23: for all 〈x, ∗〉 ∈ write-set do
24: clock-int.lb ← max(x.clock, clock-int.lb)
25: if clock-int.ub 6= ∞ then
26: clock ← clock-int.ub
27: if clock < clock-int.lb then abort()

28: else
29: clock ← clock-int.lb + n
30: if clock > clock-int.ub then abort()

31: for all r ∈ x.active-readers do
32: if r.status 6= active then
33: x.active-readers ← x.active-readers \ {r}
34: else
35: r.clock-int.ub ← clock − 1

36: for all 〈x, v〉 ∈ write-set do
37: x.clock ← clock
38: x.val ← v
39: status ← inactive

40: abort()t:
41: status ← inactive

TSTM is claimed to achieve conflict-serializability, however, it does not accept

all possible conflict-serializations. Figure 4 (center and left-hand side) presents an

input pattern that TSTM does not accept since transactions choose their clock de-

pending on the last committed version of the object they access: in this example,

transactions of p2 and p3 choose the same clock and force p1 transaction to abort.

This pattern typically happens when a long transaction t runs concurrently with

short transactions that update the variables read by t. The following theorem gener-

alizes this result by showing that STMs implementing CTR design does not accept

a new input class.

p1 p2 p3
R(x) : v0

W (x, v1)
C

W (y, v2)
C

R(y) : v2
A

TSTM←−

p1 p2 p3
r(x)

w(x)
c

s
w(y)
c

r(y)
c

SSTM−→

p1 p2 p3
R(x) : v0

W (x, v1)
C

W (y, v2)
C

R(y) : v2
C

Fig. 4. An input pattern (in the center) that TSTM does not accept as described on the left-hand

side. The commit-abort ratio obtained for TSTM is τ = 2
3

(transactions of p2 and p3 commit but
transaction of p1 aborts). In contrast, the Serializable Software Transactional Memory (SSTM)
presented in Subsection 3.5 accepts it (the output of SSTM, on the right-hand side, shows a
commit-abort ratio of 1).

Theorem 4. There is no TM implementing CTR design that accepts any input

pattern of the following class:

C4 = (¬wx)∗rx
i ¬c∗i wx

j ¬c∗i cj¬c∗i sk¬(ci |ck | rx
k)∗wy

k¬(ci |ck | rx
k)∗ck¬c∗i ry

i π
∗, for

any disctinct i, j, and k.

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

On the Input Acceptance of Transaction Memory 13

Proof. The proof relies on the existence of a sub-pattern P4 common to

any pattern of C4 that is not accepted by the CTR design. Let P4 be

r(x)iw(x)jcjskw(y)kr(y)i. First, observe that when tj commits, it chooses clock

n, where n is the number of threads and it upper-bounds the clock of ti to n − 1.

Second, when tk commits it sets its clock to n so that ti sets its lower-bound to n too,

when reading y. Consequently, ti has a larger lower-bound n than its upper-bound

n− 1, that is, ti aborts upon reading y.

Next, we show that for any other pattern of C4, ti aborts for the same reason.

By the definition of C4, variable x cannot be written before P4 in any pattern of

C4. As a result, the upper-bound of ti cannot be larger than n − 1. Since tk does

not read, while committing, tk cannot choose a lower clock than n. Hence, when

ti commits, it sets its lower-bound to n or to a larger value than n, and ti aborts

similarly as above.

Observe that we use the notation sk in this class definition to prevent transac-

tions tj and tk from being concurrent.

3.5. RTR Design

This design, called Real-Time Relaxation (RTR), presents a technique that relaxes

the real-time order requirement. The real-time order requires that given two trans-

actions t1 and t2, if t1 ends before t2 starts, then t1 must be ordered before t2.

The design presented here outputs only serializable histories but does not preserve

real-time order. More precisely, it outputs non real-time ordered histories as we can

see in Figure 4 (center and right-hand side). These outputs result from inputs that

cannot be accepted by any TM ensuring real-time order (including all TMs that are

opaque [9] or linearizable [12]). We illustrate this design by the following STM.

SSTM, standing for Serializable STM, is an STM with a high commit-abort ratio:

SSTM accepts all patterns presented so far (including the ones of Figures 1, 2, 3,

and 4). Moreover, SSTM is conflict-serializable but neither opaque nor linearizable

as shown below, and it avoids cascading abort, since whenever a transaction t1
reads a value from another transaction t2, t2 has already committed [2]. Finally,

SSTM is also fully decentralized, i.e., it does not use global parameters as opposed

to other serializable STMs [1, 13] that may experience congestion when scaling to

large numbers of cores. Figure 5 presents the pseudocode of SSTM. As mentioned

earlier and like previous designs, functions are assumed to execute atomically for

the sake of simplicity in the presentation.

During the execution of SSTM, a transaction records the accessed variables lo-

cally and registers itself as a potentially future conflicting transaction in the accessed

variables. These records help SSTM keeping track of all potential conflicts. More

precisely, a transaction t accessing variable x keeps track of all transactions that

may both precede it and follow it. Only transactions that read and that are concur-

rent with t (namely, the active readers of t) can both precede and follow t. This is

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

14 Parallel Processing Letters

Algorithm 5 SSTM – Serializable Software Transactional Memory

1: State of transaction t:
2: status ∈ {active, inactive}, initially active
3: write-set ⊂ X × V , initially ∅
4: read-set ⊂ X, initially ∅
5: past-tx ⊂ T , initially ∅ // the previous tx in the conflict graph
6: future-tx ⊂ T , initially ∅ // the next tx in the conflict graph

7: State of shared variable x:
8: write-fc ⊂ T , initially ∅ // the write future conflicts
9: active-readers ⊂ T , initially ∅ // the active reader tx

10: val ∈ V , initially the default value

11: write(x, v)t:
12: write-set ← (write-set \ {〈x, ∗〉}) ∪ {〈x, v〉}

13: read(x)t:
14: read-set ← read-set ∪ {x}
15: if 〈x, v′〉 ∈ write-set then

16: v ← v′
17: else
18: x.active-readers ← x.active-readers ∪ {t}
19: for all t′ in x.write-fc do
20: for all t′′ ∈ t′.past-tx do
21: if t = t′′ then abort()

22: past-tx ← past-tx ∪ {t′′}
23: past-tx ← past-tx ∪ {t′}
24: for all t′ in past-tx do
25: for all t′′ ∈ future-tx do
26: if t′ = t′′ then abort()

27: t′.future-tx ← t′.future-tx ∪ {t′′}
28: t′.future-tx ← t′.future-tx ∪ {t}
29: v ← x.val
30: return v

31: commit()t:
32: for all 〈x, v〉 ∈ write-set do
33: x.write-fc ← x.write-fc ∪ {t}
34: for all t′ ∈ x.active-readers ∪ x.write-fc do
35: for all t′′ ∈ t′.past-tx do
36: if t = t′′ then abort()

37: past-tx ← past-tx ∪ {t′′}
38: if t 6= t′ then past-tx ← past-tx ∪ {t′}
39: for all t′ in past-tx do
40: for all t′′ ∈ future-tx do
41: if t′ = t′′ then abort()

42: t′.future-tx ← t′.future-tx ∪ {t′′}
43: t′.future-tx ← t′.future-tx ∪ {t}
44: for all 〈x, v〉 ∈ write-set do
45: x.val ← v
46: status ← inactive
47: c-clean()

48: abort()t:
49: status ← inactive
50: a-clean()

51: a-clean()t:
52: for all x such that 〈x, ∗〉 ∈ write-set or x ∈ read-set do
53: x.write-fc ← x.write-fc \ {t}
54: x.active-readers ← x.active-readers \ {t}
55: for all t′ ∈ past-tx do
56: t′.future-tx ← t′.future-tx \ {t}
57: for all t′ ∈ future-tx do
58: t′.past-tx ← t′.past-tx \ {t}
59: free(t)

60: c-clean()t:
61: for all x such that 〈x, ∗〉 ∈ read-set do
62: x.active-readers ← x.active-readers \ {t}
63: for all t′ ∈ T do
64: if t′.status = inactive and t′.past-tx = ∅ then
65: past-tx ← past-tx \ {t′}
66: for all t′′ ∈ t′.future-tx do
67: t′′.past-tx ← t′′.past-tx \ {t′}
68: for all x such that 〈x, ∗〉 ∈ t′.write-set do

69: x.write-fc ← x.write-fc \ {t′}
70: free(t′)

due to invisible writes that can only be observed by other transactions after commit.

When detected, the preceding transactions are recorded in t .past-tx . Transaction t

detects those transactions either because they are in x .active-readers (Line 38) or

precede one of these (Line 37), or because they are in x .write-fc (Lines 23 and 38)

or precede one of these (Lines 22 and 37). Transaction t also keeps track of its suc-

ceeding transactions in t .future-tx so that it can inform them as soon as it discovers

a new preceding transaction. Hence, each transaction t′ keeps up-to-date records of

t ′.past-tx and t ′.future-tx . Transaction t may abort for two reasons. First, if it ap-

pears to precede itself in the conflict graph (Lines 21 and 36). Second, if there exists

a transaction that t precedes but that also precedes t (Lines 26 and 41). Finally,

the a-clean function aims at garbage collecting all metadata associated with the

current transaction if it aborts whereas the c-clean functions garbage collect only

the metadata corresponding to the past committed transactions that have nothing

in their past, as it is sure these transactions will not create a cycle in the conflict

graph later.

Tracking all conflicts is known to be a difficult task [9] while it is easy to check

linearizability in a composed manner [12], and SSTM may suffer from the induced

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

On the Input Acceptance of Transaction Memory 15

memory overhead. TSTM presented, however, encouragingly low overhead when

tracking a subpart of the conflicts [1] SSTM track. Even though SSTM is not ex-

pected to be the fastest STM on today’s architectures, we believe that hardware

support may help tracking these predominant conflicts in a near future, and its de-

sign would benefit from this, as it presents already a higher input acceptance than

other designs. As an example, Figure 4 (center and right-hand side) presents an

input pattern that SSTM accepts while other STMs that ensure real-time order do

not accept. This is illustrated by the non-acceptance of the same pattern by TSTM,

in Figure 4 (center and left-hand side).

4. Correctness Proof of SSTM

In this section, we show that SSTM, presented in Subsection 3.5, is conflict-

serializable, but neither opaque nor linearizable.

Lemma 4.1. If there exists a conflict p = t0 −→ t1, t0 and t1 are both committed

and t0 .past-tx 6= ∅ then t1 ∈ t0 .future-tx .

Proof. Observe by definition that t0 −→ t1 holds only if there is a conflict between

t0 and t1, and note that t0 .past-tx 6= ∅ prevents t0 from being cleaned. There are

two cases to consider whether the conflicting operations of t0 is a write. Without

loss of generality let x be the common location on which both transactions conflict.

First if t0 writes x and commits, then t0 adds itself to x.write-fc at Line 33.

Hence, if t1 reads x afterwards, then it inserts t0 in its t1.past-tx set at Line 23

and symmetrically inserts itself in t0.future-tx at Line 28. Otherwise, if t1 writes x

afterwards, it inserts t0 in its t1.past-tx set at Line 38 and symmetrically adds itself

in t0.future-tx at Line 43.

Second if t0 does not write but reads x before t1 writes x, then t0 adds itself

to x .active-reader at Line 18 so that t1 adds it to t1.past-tx at Line 38. Again

symmetrically, t1 inserts itself into t0.future-tx at Line 43. The result follows.

The next lemma shows that the relation, defined by set t.future-tx , between t

and the transactions it contains is transitive. Transitivity is necessary to show that

a cycle in the conflict graph exists only if a transaction t is in its own t.future-tx .

Lemma 4.2. Let t0, t1, t2 be three committed transactions. If t2 ∈ t1.future-tx and

t1 ∈ t0.future-tx then t2 ∈ t0.future-tx .

Proof. Let τ and τ ′ be the times at which the second operation of the conflict

between t0 and t1 and the second operations of the conflict between t1 and t2 start,

respectively. By the assumption of function atomicity, we know that τ 6= τ ′, hence

we focus on the two following cases.

In case τ ′ < τ , t2 ∈ t1.future-tx and t1 ∈ t2.past-tx at time τ . Hence, when the

conflict between t0 and t1 happens by a read (resp. a write) of t1, t1 adds not only

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

16 Parallel Processing Letters

t0 in its past-tx at Line 23 (resp. at Line 38) and itself to t0.future-txat Line 28

(resp. at Line 43) but also t2 at Line 27 (resp. at Line 42), which belongs to its

t1.future-tx , to t0.future-tx .

In case τ < τ ′, t0 ∈ t1.past-tx at time τ ′. Assume t2 conflicting operation is a

read (resp. a write). Transactions t0, which belongs to t1.past-tx , and t1 are inserted

in t2.past-tx at Line 23 (resp. at Line 38), at time τ ′. As a result, t2 inserts itself to

the future-tx of both t0 and t1 at Line 28 (resp. at Line 43).

Lemma 4.3. t /∈ t.future-tx .

Proof. Assume that t ∈ t.future-tx holds, we proceed by contradiction. Transaction

t can only be inserted in t.future-tx at Line 28 or at Line 43 because neither reaching

Line 27 nor Line 42 with t = t′ is possible as transaction t would abort prior to

that (Lines 26 and 41). As a result, t was already in t.past-tx when Line 28 or 43

has been reached.

Now we show that t cannot be inserted in t.past-tx leading to the contradiction.

If t already belongs t ∈ x .write-fc, then this means that t is executing its commit

and all its read operations are past, hence, there is no chance that t can be added to

t.past-tx during its read operation. Finally, during the execution of a write operation

past-tx remains unchanged, and during the execution of the commit t cannot be

inserted into t.past-tx because t = t′ (Line 38).

The following corollary shows that for any history H of SSTM there is no cycle

in the serialization graph SG(H) of committing transactions.

Corollary 4.1. In all histories H of SSTM, there is no path p = t1 −→ ... −→
tk −→ t1 such that all ti commit (0 < i ≤ k).

Proof. By absurd, assume that this is possible. We show that this leads to a

contradiction. First, by Lemma 4.1 we know that p = t1 −→ ... −→ tk −→ t1
implies that ti+1 ∈ ti.future-tx for all i such that 0 < i ≤ k−1 and t1 ∈ tk.future-tx .

Second, by the transitivity property of Lemma 4.2 we obtain that ti ∈ ti.future-tx

(0 < i ≤ k) which contradicts Lemma 4.3.

Theorem 5. SSTM is conflict-serializable.

Proof. The proof follows from the conjunction of Corollary 4.1 and Theorem 2.1

of [2].

SSTM is conflict-serializable, however, we have not shown yet that SSTM is

neither opaque [9] nor linearizable [12].

A simple counter-example is presented in Figure 4 (center and right-hand side).

Clearly, the input (center) is accepted by SSTM resulting in the output on the

right-hand side. This output is neither opaque nor linearizable. More precisely, let

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

On the Input Acceptance of Transaction Memory 17

t1, t2, and t3 be the transactions of p1, p2, and p3, respectively. It is clear that

t3
W−→ t1 and t1

R−→ t2 implying by transitivity that t3 −→ t2, however, because of

the real-time precedence requirement common to both opacity and linearizability,

t3 6−→ t2 is necessary for the output to be opaque or linearizable. In contrast,

this output is equivalent to the sequential execution t3 −→ t1 −→ t2, thus it is

conflict-serializable.

Interestingly, an opaque STM would have to handle multiple versions by memory

location to accept the same input, which requires additional work compared to

SSTM. As it requires t3 6−→ t2, t1 could not return v2 when reading y but would have

to return an older version. This raises the question of the importance of transactions

real-time precedence as it may hamper operations real-time precedence.

5. Class Comparison

Section 3 gives some impossibility results on the input acceptance by identifying

input classes. Here, we use this classification to compare input acceptance of TM

designs: if all patterns of a class C belong also to another class C′, then designs that

do not accept C′ neither accept C.

¬C4
¬C2¬C1

VWIR Design
(e.g. DSTM)

IWIR Design
(e.g. WSTM)

CTR Design
(e.g. TSTM)

¬C3
¬C5

RTR Design
(e.g. SSTM)

VWVR Design
(e.g. SXM)

Fig. 5. Hierarchization of classes. The VWVR design accepts no input patterns of the presented

classes, the VWIR design accepts inputs that are not in classes ranging from C2 to C4, the IWIR
design accepts inputs that are neither in C3 nor in C4, the CTR design accepts input patterns

only outside C4. Finally, we have not yet identified serializable patterns not accepted by the RTR

design.

Looking at the class definitions, we identify interesting dependencies. Let C0 =

π∗ be a special class that represents all possible patterns, and let C5 = ∅ be the

empty class. Observe that any pattern of class C4 is also a pattern of classes C0, C1,

C2, and C3, and any pattern of class C3 is also a pattern of classes C0, C1, and C2.

For instance, as stated in Theorem 2, STMs implementing the VWIR design (like

DSTM) do not accept C2 but C5 ⊆ C4 ⊆ C3 ⊆ C2, hence DSTM accepts none of

classes C2 to C5. To represent that a TM accepts only patterns that are outside a

class, we draw the sets ¬C1, ¬C2, ¬C3, ¬C4, and ¬C5 that represent C0\C1, C0\C2,

C0\C3, C0\C4, and C0\C5, respectively. We omit to represent ¬C0 since according

to our definition it would be ∅.
Given this hierarchy, we are able to draw the input acceptance of VWVR, VWIR,

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

18 Parallel Processing Letters

IWIR, CTR, and RTR designs restricted to patterns that are in ¬C1, ¬C2, ¬C3,

¬C4, and ¬C5, respectively. Observe that we do not propose patterns that are not

accepted by SSTM since our first goal is to differentiate designs among each other,

however, we could think of a non-serializable pattern that would not be accepted

by SSTM. The hierarchy shown in Figure 5 compares the input acceptance of the

TM designs.

6. Experimental Validation

To validate experimentally the tightness of our bounds on the input acceptance of

our TM designs, we have implemented all these designs: VWVR, VWIR, IWIR,

CTR and RTR. The design comparison presented in Section 5 relies on upper-

bounds of input acceptance. Since we ignore how tight these upper-bounds are,

some design lower-bounds may not reflect the obtained comparison. To make sure

that we did not omit important classes of input patterns, we validate experimentally

our theoretical comparison of TM designs.

We have run an integer set linked-list benchmark widely used to evaluate TMs [1,

4, 11, 15] on an 8-core Intel Xeon machine. Initially, the benchmark inserts 256

elements in the linked-list. Then, each thread starts and executes a series of search

and update transactions. An update transaction is alternatively an insert or a delete

so that the list size remains roughly constant. All search, insert, and delete of value

v parses the list in ascendant order while met values are lower than v. Next, the

search returns whether the next value is v, the delete removes the next value if it

is v, and the insert adds value v if v is not already the next value.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80

C
om

m
it-

ab
or

t r
at

io

Update probability

RTR
CTR
IWIR

VWIR
VWVR

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

C
om

m
it-

ab
or

t r
at

io

Number of threads

RTR
CTR
IWIR

VWIR
VWVR

Fig. 6. Comparison of average commit-abort ratio of the various designs on a 256 element linked
list: (left) with 8 threads as a function of the update probability; (right) with a 20% update

probability as a function of the number of threads.

The first series of experiments, presented in Figure 6 (left), compare the input

acceptance under high contention on 8 threads. At first glance, the commit-abort

ratio decreases as the update probability increases. As one can expect, a larger up-

date probability increases the probability that two transactions conflict, thus the

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

On the Input Acceptance of Transaction Memory 19

number of aborts in all designs. Second, we can see that the higher a design in the

hierarchy of Figure 5, the higher its commit-abort ratio (thus the higher its input

acceptance). This clearly confirms our theoretical results. The commit-abort ratio of

design VWVR is close to zero because VWVR aborts preferably small transactions

each time a write-after-read pattern occurs. More surprisingly, the update proba-

bility affects much less the acceptance of the RTR design than any other design.

That is, additional contention produces essentially conflicts unnecessary to resolve.

We have performed a second series of experiments to analyze the scalability of

each design. These experiments are similar to the first ones with a fixed update

probability of 20% and a variable number of threads. The results are depicted in

Figure 6 (right). This figure clearly illustrates that the acceptance of RTR design

scales well with the number of threads, while the other designs have a decreasing

acceptance as the number of threads increases. This result indicates how well RTR

design copes with conflicts that span transactions of multiple threads.

7. Conclusion

We upper-bounded the input acceptance of well-known TM designs and we pro-

posed a new TM design with a higher acceptance. Preliminary experiments of our

SSTM implementation shows that it accepts much more workload. Our study has

only focused on single-version and another direction would be to investigate multi-

versions. As an example, this technique, well-known in the database community [2],

can extend VWIR design to accept class C3. Our conclusion is that accepting vari-

ous workloads requires complex TM mechanisms to test the input and to possibly

reschedule it before outputting a consistent history. As an example, SSTM presents

a high input acceptance at the cost of using more memory. We expect these results

to encourage further research on the best tradeoff between design simplicity and

high commit-abort ratio.

References

[1] Utku Aydonat and Tarek S. Abdelrahman. Serializability of transactions in software
transactional memory. In TRANSACT ’08: 3rd ACM SIGPLAN Workshop on Trans-
actional Computing, 2008.

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[3] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC ’06: Pro-
ceedings of the 20th International Symposium on Distributed Computing, volume 4167
of LNCS, pages 194–208. Springer, 2006.

[4] Pascal Felber, Torvald Riegel, and Christof Fetzer. Dynamic performance tuning of
word-based software transactional memory. In PPoPP ’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 237–246. ACM, 2008.

[5] H. Garcia-Molina and K. Salem. Main memory database systems: An overview. IEEE
Trans. on Knowl. and Data Eng., 4(6):509–516, 1992.

April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010

20 Parallel Processing Letters

[6] Vincent Gramoli, Derin Harmanci, and Pascal Felber. Toward a theory of input ac-
ceptance for transactional memories. In OPODIS ’08: Proceedings of the 12th In-
ternational Conference on Principles of Distributed Systems, volume 5401 of LNCS,
pages 527–533, 2008.

[7] Rachid Guerraoui, Thomas Henzinger, and Vasu Singh. Permissiveness in transac-
tional memories. In DISC ’08: Proceedings of the 22nd International Symposium on
Distributed Computing, volume 5218 of LNCS, pages 305–319, 2008.

[8] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic contention
management. In DISC ’05: Proceedings of the 19th International Symposium on Dis-
tributed Computing, volume 3724 of LNCS, pages 303–323. Springer, 2005.

[9] Rachid Guerraoui and Micha l Kapa lka. On the correctness of transactional memory.
In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 175–184. ACM, 2008.

[10] Tim Harris and Keir Fraser. Language support for lightweight transactions. SIGPLAN
Not., 38(11):388–402, 2003.

[11] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software
transactional memory for dynamic-sized data structures. In PODC ’03: Proceedings
of the 22nd ACM Symposium on Principles of Distributed Computing, pages 92–101,
2003.

[12] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[13] Jeff Napper and Lorenzo Alvisi. Lock-free serializable transactions. Technical Report
TR-05-04, Department of Computer Sciences, University of Texas at Austin, 2005.

[14] Christos H. Papadimitriou. The serializability of concurrent database updates. J.
ACM, 26(4):631–653, 1979.

[15] Cristian Perfumo, Nehir Sonmez, Osman Unsal, Adrian Cristal, Mateo Valero, and
Tim Harris. Dissecting transactional executions in haskell. In TRANSACT ’07: 2nd
ACM SIGPLAN Workshop on Transactional Computing, 2007.

[16] Torval Riegel, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. From causal to
z-linearizable transactional memory. In PODC ’07: Proceedings of the 26th ACM
Symposium on Principles of Distributed Computing, pages 340–341, New York, NY,
USA, 2007. ACM.

[17] Mihalis Yannakakis. Serializability by locking. J. ACM, 31(2):227–244, 1984.

