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Abstract
Bandwidth-starved multicore chips have become ubiquitous. It is well known

that the performance of stencil codes can be improved by temporal blocking, less-
ening the pressure on the memory interface. We introduce a new pipelined ap-
proach that makes explicit use of shared caches in multicore environments and
minimizes synchronization and boundary overhead. Benchmark results are pre-
sented for three current x86-based microprocessors, showing clearly that our op-
timization works best on designs with high-speed shared caches and low memory
bandwidth per core. We furthermore demonstrate that simple bandwidth-based
performance models are inaccurate for this kind of algorithm and employ a more
elaborate, synthetic modeling procedure. Finally we show that temporal blocking
can be employed successfully in a hybrid shared/distributed-memory environment,
albeit with limited benefit at strong scaling.

1 Introduction

1.1 The Jacobi stencil
Stencil computations are central to many scientific and technical applications, espe-
cially when solving partial differential equations on regular lattices. Even large-scale
multigrid solvers employ smoothing steps comprising stencil updates following the
Gauss-Seidel or Jacobi schemes [1]. Standard optimization techniques like spatial
blocking are usually applied to ensure optimal spatial locality of data accesses. The
advent of multicore chips and advanced architectures like GPUs and the Cell processor
has recently initiated a new interest in stencil optimizations [2, 3].

The Jacobi algorithm is a simple method for solving boundary value problems. Al-
though it is not too useful as a numerical algorithm by itself, it is the central component
of many multigrid solvers. Moreover it can serve as a prototype for more advanced
stencil-based methods like the lattice-Boltzmann algorithm (LBM). In three dimen-
sions, one stencil (“cell”) update is described by

Bi, j,k =
1
6
(
Ai−1, j,k +Ai+1, j,k +Ai, j−1,k +Ai, j+1,k +Ai, j,k−1 +Ai, j,k+1

)
. (1)
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Figure 1: Temporal blocking by pipelining, shown here for three threads in two dimen-
sions and separate grids A and B. All threads in a team update the most part of a block
consecutively. Shifting the block by one cell in each direction after an update avoids
extra boundary copies. To avert race conditions, a global barrier is required after each
block update. This scheme can be easily generalized to support multiple updates per
thread. Possible optimizations include the use of a “compressed grid” update scheme,
and relaxed synchronization (see text).

Successive sweeps over the computational domain are performed to reach convergence,
writing to grids A and B in turn. Counting the usually required cache line allocate on
a write miss, the kernel has a naive code balance of Bc = 8/6W/F (double precision
words per flop). However, the actual number of words transferred over the slowest
data path (the memory bus) can be reduced to three per stencil update with a suit-
able spatial blocking scheme. Furthermore, the write allocate can be circumvented on
current x86-based processors by employing non-temporal store instructions, which by-
pass the cache hierarchy. These and other well-known standard optimizations like data
alignment and SIMD vectorization have been applied for our baseline version of the
algorithm and are described in the literature [2, 3, 4]. We use OpenMP-parallel C/C++
code whenever possible, and revert to compiler intrinsics or assembly language only if
necessary, e.g., if the compiler refuses SIMD vectorization because a loop runs back-
ward (as is the case with the compressed grid version of pipelined temporal blocking,
which will be described in Sect. 2).

1.2 Baseline and test bed
The memory-bound performance of the baseline code on a given architecture can be
easily estimated by assuming that memory bandwidth is the sole limiting factor, and
that all other contributions can be hidden behind it. This assumption is valid for current
multicore processors if all cores sharing a memory interface are used in a parallel cal-
culation, but may be false for single-threaded code [12]. See Sect. 2.3 for a discussion
of this problem.

If the achievable STREAM COPY bandwidth (using non-temporal stores) is Ms, a
“perfect” baseline Jacobi code (Bc = 0.33W/F) should show a performance of

P0 =
Ms

16bytes
[LUP/s] . (2)

We use the “lattice site updates per second” (LUP/s) metric here. Benchmark tests were
performed on a variety of systems, which are briefly described in Table 1 together with
measurements for different low-level benchmarks, first and foremost the STREAM
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Table 1: Overview on cache group structure, STREAM COPY (array size of
20,000,000 elements), and update performance for the systems in the test bed. Non-
temporal stores were used for the STREAM COPY, so all bandwidth numbers denote
actual bus traffic.

Name Nehalem
EP

Nehalem
EX Istanbul

Type
Xeon

X5550
@2.66 GHz

Xeon
X7560

@2.27 GHz

Opteron
2435

@2.6 GHz
Cores 4 8 6

L1 size [kB] 32 32 64
L2 size [kB] 256 256 512

L3 size [MB] 8 24 5
L3 cache group [cores] 4 8 6

Sockets 2 4 2
Ms [GB/s] 19.0 7.9 10.5

Mum,1 [GB/s] 16.2 7.0 6.9
Muc,1 [GB/s] 28.3 25.0 15.7

Muc,max [GB/s] 51.2 176.2 74.8

COPY, A(:)=B(:) The remaining benchmark numbers were obtained using a special
array update loop, which is described in Sect. 2.3.

All systems are of ccNUMA type, so the usual precautions regarding page place-
ment apply. The Nehalem EX node is an early access (EA) system provided by Intel,
with half the memory boards removed. Consequently, it has only half the main mem-
ory bandwidth of a fully equipped system. It is worth noting that Nehalem EX features
a redesigned L3 cache with a “banked” structure, which leads to a very high cache
bandwidth. The consequences of this peculiarity will be investigated in Sections 2.3
and 2.4.

For benchmarking the distributed-memory algorithm described in Sect. 3 we use
a Nehalem EP cluster (node parameters as above) with a fully nonblocking fat-tree
QDR-InfiniBand network.

The idea behind temporal blocking is to perform multiple in-cache updates on each
grid cell before the result is evicted to memory, thereby reducing effective code balance.
Section 2 will introduce a pipelined temporal blocking scheme in a shared-memory
parallel context, while Sect. 3 describes how and under what conditions these opti-
mizations can be put to use in a hybrid (shared/distributed-memory) code.

1.3 Related work
Improving the performance of stencil codes by temporal blocking is not a new idea, and
many publications have studied different methods in depth [6, 7, 8, 9, 10]. Conventional
temporal blocking performs multiple updates on a small block of the computational do-
main before proceeding to the next block [8]. This strategy has the important drawback
that in-cache stencil updates are not naturally overlapped with loads and stores to main
memory, leading to under-utilization of the memory interface. Cache-oblivious algo-
rithms as proposed by Frigo et al. [9] have the attractive property of being independent
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of cache sizes, but they come at the cost of irregular block access patterns, which cause
many data TLB misses. This was shown for a 3D lattice Boltzmann (LB) application
kernel in Ref. [11].

However, the explicit use of shared caches provided by modern multicore CPUs
has not yet been investigated to great detail. Ref. [4] describes a “wavefront” method
similar to the one introduced here. However, that work was motivated mainly by the
architectural peculiarities of multi-core CPUs, and does not elaborate on specific opti-
mizations like avoiding boundary copies and optimizing thread synchronization. Our
investigation is more general and explores a much larger parameter space. Finally
there is, to our knowledge, as yet no systematic analysis of the prospects of temporal
blocking on hybrid architectures, notably clusters of shared-memory compute nodes.

2 Shared-memory pipelined temporal blocking on shared
caches

2.1 Algorithm and in-cache optimizations
In contrast to previous approaches to cache reuse with stencil algorithms, pipelined
temporal blocking makes explicit use of the cache topology on modern processors,
where certain cache levels are shared by groups of cores, which we call cache groups.
On all test systems used here (see Sect. 1.2), the outer cache level (L3) is shared by all
cores on a socket.

Pipelined blocking splits the set of all available threads into teams of size t, where
a team runs on cores sharing a cache. It is possible that the size of a team is smaller
than the whole cache group, but this option will not be explored here. Each team has
one “front” thread, which performs the first T updates on a certain grid block (see
Fig. 1 for a visualization with three threads and T = 1). Of course the block is loaded
to cache in this process, and if it is small enough, the remaining threads can perform
further updates (T each) on it in turn before it gets evicted to memory. All threads in
the team can be kept busy by keeping this pipeline running, with different blocks in
different stages until each block of the whole computational domain has been updated
t · T times, which completes a team sweep. To avoid race conditions, the minimum
distance between neighboring threads is one block, but it may be larger. An estimate
for the maximum distance is given by the cache size divided by t times the size of
one block. Due to the one-layer shift after each block update, the actual amount of
cache needed is actually larger, depending on the blocksize and the overall number
of updates, t · T . In the simplest case, the distance is kept constant by imposing a
global barrier across all threads after each block update. See below for ways to reduce
synchronization overhead.

Pipelined blocking can potentially overlap data transfer and calculation, because
the front thread continuously operates on new blocks, which have to be fetched from
memory. Compared to the wavefront technique [4], it does not incur extra work or
boundary copies. In order to achieve optimum in-cache performance, the kernel must
be fully SIMD-vectorized, i.e., packed arithmetic (addpd/mulpd) and packed loads and
stores are essential. Although the performance penalty for unaligned moves from or to
L1 cache is small on the most current x86 architectures, we have also made sure that
all loads and stores are aligned to 16-byte address boundaries, and the corresponding
instructions are of the “aligned” type (movapd).
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The standard Jacobi algorithm iterates between two versions of the computational
grid, one holding the current state while the other is used to store the next time step (i.e.,
the updated values). If the temporally blocked algorithm performs an even number of
time steps on each block, the second grid becomes obsolete and can be reduced to a
collection of t−1 small temporary arrays, which must only be large enough to hold all
intermediate blocks handed down the pipeline [4]. Although this optimization reduces
the required data traffic from and to main memory by a factor of two, it does not
significantly cut down on in-cache transfers. However, the well-known “compressed
grid” optimization can be applied here: During the first team sweep, each result is
written to a location shifted by the vector (-1,-1,-1) relative to its original position.
In order to avoid complex address calculations, alternate team sweeps shift by (-1,-
1,-1) and (+1,+1,+1), respectively, requiring reverse loops (running from large to small
indices) on all even sweeps. Since the compiler refuses to properly SIMD-vectorize the
inner loop in this case, SSE intrinsics were used to get optimal code. The use of non-
temporal stores is unnecessary and even counterproductive; after the t ·T updates in a
team sweep, a block gets evicted to memory automatically by the usual replacement
mechanisms. The benefit of using “compressed grid” is that the second grid can be
dropped altogether (even including the small temporary arrays), saving nearly half the
memory. It also reduces in-cache traffic if at least two successive layers of a block fit
into the L1 cache.

In typical shared-memory systems there is usually more than one outer-level cache
group, the simplest case being a multi-socket node. Hence, more than one team must
be kept running. We choose to use those additional threads to perform further updates
on the blocks already handled by the “front” team. This enlarges the whole update
pipeline to n · t ·T stages, where n is the number of teams. Since different teams do
not share any cache, blocks updated by one team must be transferred to another cache
when the next team takes over. As will be shown in the results section, it makes sense to
enforce a larger distance between successive teams than between neighboring threads
inside a team. We call this extra distance the team delay, dt.

A problem with our method of consecutive thread teams is that every thread up-
dates every block, rendering explicit (i.e., first touch) ccNUMA placement optimiza-
tions mostly useless. However, since the pressure on the memory interfaces is greatly
reduced by the temporal blocking, a round-robin page placement strategy is adequate
to achieve parallelism in memory access. Additionally, the distributed-memory paral-
lelization described in Sect. 3 can be used to run one MPI process per socket, which
alleviates the placement problem. The baseline Jacobi code does employ standard first-
touch page placement.

2.2 Relaxed synchronization
It is well known that synchronizing a large group of threads running on different cores
can incur significant overhead. Depending on the system topology (shared caches,
sockets, ccNUMA locality domains) and on the implementation used by the OpenMP
compiler, a barrier may cost hundreds if not thousands of cycles [12]. With the number
of cores per shared-memory node increasing steadily over time, alternatives should be
used where appropriate. In our pipelined temporal blocking scheme, the barrier can be
removed completely if the minimum and maximum thread distance and team delays
are still observed. To this end, each thread ti maintains a counter variable ci, which
carries the volatile attribute and is initialized to zero at the start of each team sweep.
It gets incremented whenever ti has updated its current block. Each ci is located in a
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dl ≤ c3 - c2 ≤ du dl ≤ c2 - c1 ≤ du

dl - 1

du - 1

t3 t2 t1

c3 c2 c1 

c3 - c2 - 1

Figure 2: Relaxed thread synchronization. A global barrier is avoided by observing
“soft” lower and upper limits for the distance between consecutive threads.

cache line of its own to prevent false sharing. The conditions to allow thread ti to start
updating the next block are then

ci−1− ci ≥ dl ∧ ci− ci+1 ≤ du . (3)

The first condition averts data races, whereas the second maintains a maximum distance
between consecutive threads. The team delay is trivially implemented by adding dt to
dl on a team’s front thread and to du on its “rear” thread. Overall front and rear threads
(i.e., the front thread of the first and the rear thread of the last team) ignore the first and
the second condition, respectively.

In this scheme, only thread ti updates its own counter ci; all others read its updated
value by means of the standard cache coherence mechanisms. Making the variables
volatile prevents register optimizations. The naive choice of dl = du = 1 imposes a
rigid lock-step between threads. As will be shown in the results section, it is better to
choose a different value at least for du, allowing for some “looseness” in the pipeline.

In pseudo-code the complete algorithm for one team sweep, including the com-
pressed grid and relaxed synchronization optimizations, looks as follows (for a team
delay of zero):

/* 1 */ int direction = 1; // or -1, if backward sweep

/* */ int shiftVector[] = {-1,-1,-1};

/* 3 */

/* */ #pragma omp parallel

/* 5 */ {

/* */ int blockCounter = 0;

/* 7 */ int tIdx = omp_get_thread_num();

/* */

/* 9 */ while(block = blocks.NextBlock(direction,blockCounter))

/* */ {

/* 11 */ ++blockCounter;

/* */ while(c[tIdx]+d_l>=c[tIdx-1]); // spin

/* 13 */ focusVector[] = {tIdx*T, tIdx*T, tIdx*T};

/* */

/* 15 */ for (i = 0; i < T; ++i) {

/* */ update_block(

/* 17 */ source = block.Coords()+direction*focusVector[],

/* */ dest = block.Coords()+direction* // compressed

/* 19 */ (focusVector[]+shiftVector[]) // grid

/* */ );

/* 21 */ focusVector[]+=direction*shiftVector[];
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/* */ }

/* 23 */

/* */ if (blockCounter == totalBlocks)

/* 25 */ c[tIdx] += d_u + 1; // pipeline wind-down

/* */ else {

/* 27 */ ++c[tIdx];

/* */ while(c[tIdx]>c[tIdx+1]+d_u); // spin

/* 29 */ }

/* */ }

/* 31 */ } // end parallel

The update_block() function (lines 16–20) performs the actual Jacobi update on
a block; the coordinates to use for reading and writing are given in the source and
dest parameters, respectively. Lines 12 and 28 contain the spin-waiting loops that
implement the correctness and cache size conditions (3), respectively. focusVector[]
stores the coordinates of the current block to be updated, and is updated in line 21 to
reflect the shift shown in Fig. 1. For a backward sweep, direction is set to -1;
everything else stays the same.

2.3 Performance predictions
In order to get an estimate on the expected performance gain from pipelined temporal
blocking, it is essential to identify the bottlenecks that limit scalability on a shared
cache. A viable assumption would be that a modified version of (2) is valid even if t
updates are performed in cache per stencil (we set T = 1):

P0(t) =
t ·Mum,1

16bytes
[LUP/s] . (4)

Here, Mum,1 is the single-thread bandwidth for a single-stream update benchmark:

for(int i=0; i<N; ++i) // N large

a[i] += 1.0;

This loop models the data transfer behavior of a compressed grid (and probably tem-
porally blocked) Jacobi solver if we can assume that at least two successive layers of a
block fit into a cache level further up in the hierarchy. Then, t updates cause 16 bytes
of memory data traffic per stencil. Figure 3 shows performance and scalability for the
T = 1 case within an L3 cache group. The one-socket baseline for the “best” standard
Jacobi code is indicated and shows how many cores are required at T = 1 to match
its performance with pipelined temporal blocking. Filled symbols show the prediction
based on the bandwidth model (4), using the single-threaded update bandwidth (Mum,1
in Table 1). The measurements clearly fall short of this prediction, especially on the
Nehalem EP. Our assumption that raw memory bandwidth is always the limiting fac-
tor must thus be false. A more careful analysis is in order that takes into account the
actual in-cache runtime of the kernel. We shall see that, contrary to popular wisdom,
the cache hierarchy and the code execution from L1 cache are not infinitely fast even
though the code balance of a particular kernel seems to support this assumption.

The given seven-point Jacobi stencil performs six flops (one multiplication and five
additions), six loads (five loads if assuming that variables on the central line can be
kept in register) and one store. The Intel Nehalem EP can execute one SIMD multiply,
one SIMD add, one 16-byte load and one 16-byte store instruction per cycle. Under
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Figure 3: Performance and scalability of the pipelined Jacobi solver, using relaxed syn-
chronization with T = 1 within an L3 cache group on all three benchmark architectures.
Dashed lines indicate the performance of the best standard Jacobi implementation us-
ing all threads on a socket. Filled symbols denote the t = 1, T = 1 prediction from a
single-threaded update benchmark.
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Figure 4: In-cache performance analysis of the compressed grid Jacobi kernel on
Intel Nehalem EP (left) and AMD Istanbul (right). Each arrow represents one 64-byte
cacheline transfer. The number of cycles required for all transfers between each pair
of cache levels is indicated on the right. Those contributions may partially overlap; see
text for details.
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the assumption of optimal scheduling and pipelining this results in a minimal runtime
of five cycles per vector update (20 cycles for a cacheline update) on data in the L1
cache. The performance is limited by the arithmetic instruction throughput as well as
by the load/store capabilities. The “lightspeed” performance on our benchmark system
is thus 6.4 GF/s (1.1 GLUP/s), so the absolute limit for any kind of optimized Jacobi
solver is 4.4 GLUP/s per socket, or a speedup of four compared to the standard Jacobi
baseline (see Fig. 3). If the data set does not fit in the L1 cache, additional cacheline
transfers are necessary. On Intel processors the caches are inclusive, which means that
a valid cacheline is duplicated in all “lower” cache levels. Figure 4 (left) illustrates how
the necessary data transfers inside the cache hierarchy contribute to the total runtime if
one can assume that at least two successive layers of a block fit into the L1 cache, and
blocks are handed down the pipeline through L3. For a detailed introduction to this
kind of intra-cache model cf. [12]. The estimated runtime for the L3 cache domain is
28 cycles per cacheline update. Measurements show that the Intel Nehalem processor
is able to partially overlap the reloads from L3 to L2 cache with the cycles spent on
executing the instructions on data in the L1 cache (however, refills from L2 to L1
can not overlap with L1-register traffic). Hence, the prediction for the duration of
one cacheline update (eight successive stencils) in L3 is 24–28 cycles, or, in terms of
L3 bandwidth, Bj = 12.2–14.2 GB/s. Note that the array update benchmark described
above runs in 4.7 cycles in L1 (with a theoretical minimum of 4.0) and 12 cycles in L3
per cacheline update. The latter number can be derived from the single-threaded in-L3
bandwidth of the update benchmark shown in Table 1 (Muc,1). The Nehalem EP and
EX CPUs show very similar in-cache behavior for single-threaded execution.

The same scheme can be applied for the AMD Istanbul processor, where our Jacobi
stencil is limited by arithmetic instruction throughput (also one SIMD multiply and one
SIMD add per cycle). In contrast to the Intel processors, AMD uses an exclusive cache
design: L2 and L3 are victim caches and all data loads go directly to the L1 cache. The
resulting transfer paths and volumes are illustrated in Fig. 4. The estimated minimum
runtime for the compressed grid Jacobi stencil in L3 is 26 cycles, which is equivalent
to a bandwidth of Bj = 12.8 GB/s on our test machine. Our array update benchmark
requires only 18 cycles in L3. Note that the cycle predictions of the in-cache model are
lower limits, and even more time is needed per cacheline update in practice. However,
they yield a much better prediction than pure bandwidth considerations (L2 and L3
caches often have the same nominal bandwidths as L1).

Hence, the conclusion for the single-threaded case is that the in-cache operations
are a major contribution to overall runtime, and cannot be ignored. Since each L1
and L2 cache is assigned to a single core on all architectures in the test bed, the next
bottleneck to consider is the shared L3 cache. We assume that it can deliver a max-
imum aggregate bandwidth to all agents (main memory and cores), and becomes a
performance constriction if the sum of all bandwidths hits the maximum. We consider
Muc,max, the aggregate bandwidth for the update benchmark using all cores in the L3
group, to be the upper limit for L3. See Table 1 for performance data.

If t threads are used for pipelined temporal blocking via L3, all of them exert pres-
sure on this cache according to their execution timings as described above. The re-
quired memory transfers for bringing a block into cache and for its final eviction add
another read and write stream, so that the required bandwidth to reach full scalability
is (t + 1)Bj. For Nehalem EP, if we assume Bj ≈ 10GB/s, we expect from the rela-
tively small ratio of Muc,max/Bj that pipelined blocking will only just scale up to t = 4
threads. On the other hand, Nehalem EX should scale well up to eight threads and
beyond. Indeed, we see parallel efficiencies around 80% on both chips up to t = 4
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Figure 5: Single-socket and single-node performance results for different variants of
pipelined temporal blocking versus the standard version (6003 grid). T = 1 and best
T > 1 performance, and the gain from relaxed synchronization are indicated. Optimal
values for T were determined empirically.

and t = 8, respectively (see Fig. 3). In contrast, the AMD Istanbul processor shows
mediocre scalability but no typical saturation behavior. As will be shown in the next
section, T = 1 is not an optimal choice here; more updates per block are needed to
reach adequate performance. The reason for this is unclear and also unexpected from
the low-level performance data we have collected.

2.4 Socket and node results
We must stress that the parameter space for temporal blocking schemes, and especially
for pipelined blocking, is huge. The optimal choices reported here have been obtained
experimentally by parameter sweeps, with some guidance from experience with older
codes.

Figure 5 shows single-socket (one team) and node results (two teams) on our test
systems for a fixed problem size of 6003 and different algorithmic variants: the stan-
dard Jacobi solver baseline, pipelined temporal blocking with T = 1 and t being equal
to the number of cores in a socket (or system), and pipelined temporal blocking with
T chosen optimally. For all versions, the difference between a global barrier and our
relaxed synchronization scheme is also indicated. The standard Jacobi data was ob-
tained with a blocksize of roughly 600× 20× 20 (bx× by× bz); it is well known that
due to the hardware prefetching mechanisms on current x86 designs, a long inner loop
(comparable to the page size) is favorable [2]. While the results are rather insensitive to
the blocksizes in y and z directions as long as the cache size restrictions are observed,
the inner loop length is also decisive for good performance on the temporally blocked
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(filled symbols). The case du−dl = 0 represents a rigid “lockstep”, which is obviously
hazardous. Data was taken on Nehalem EP, but the general characteristic is very similar
on all architectures.

versions, and depends on T . Best performance is achieved around bx ≈ 120 if T > 1,
in contrast to the T = 1 case where bx should be chosen as large as possible.

The possible gain from pipelined temporal blocking varies strongly across the
benchmark architectures. As expected, a large speedup is achieved if the gap between
a socket’s memory bandwidth and its L3 saturation bandwidth is large. Nehalem EP
is exceptional in the sense that this discrepancy is relatively small; also, using more
cores with the same L3 design (as implemented in the Intel “Westmere” chip) would
not make sense at all. This makes temporal blocking schemes of any kind less bene-
ficial than on other, more bandwidth-starved architectures. With a speedup of 5–6 on
the socket and of 3 on the full node, Nehalem EX clearly dominates due to its scalable
L3 cache design, large number of cores, and (in our EA system) low memory band-
width. Both Intel processors get most of the speedup already at T = 1, whereas the
AMD Istanbul requires more time steps per block. A possible reason could be ineffi-
cient hardware prefetching within the cache hierarchy [12]; latencies have less impact
if more work is done before fetching the next block.

The benefit of relaxed synchronization naturally goes up with the number of cores
and sockets in the team, and gets as large as 15% on Nehalem EX. Hence, we expect
efficient synchronization schemes to become more and more important in the future as
the core count per socket increases. It is certainly possible to achieve even larger gains
by choosing a smaller (and then non-optimal) block size.

The optimal range of values for du, the upper limit for the distance of neighboring
threads, was determined to be 2–4 with the block sizes chosen, largely independent
of architecture (see Fig. 6). This allows for sufficient looseness in the pipeline without
running the danger of blocks falling out of cache before the team’s rear thread has done
its updates on them. Compared to the “lockstep” case dl = du = 1, a performance gain
of about 80% can be observed for Nehalem EP. Of course, du and the blocksize are
strongly coupled, and larger blocks would require smaller du, but we could not find
better combinations than the ones reported here. A finite team delay dt only has a very
slight impact on this architecture (about 3% improvement for dt = 8), and its influence
will not be studied further.

Scalability of the pipelined code is not perfect across sockets, since proper NUMA
placement cannot be enforced, as described above. However, distributed-memory par-
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2

1

Figure 7: Multi-layer halo communication. Each halo is transmitted consecutively
along the three coordinate directions, avoiding direct communication across edges and
corners [13].

allelization (see next section) can employ one process per socket, eliminating the need
for first-touch parallel placement.

3 Distributed-memory parallelization

3.1 Multi-halo exchange
The parallel temporal blocking schemes described above work on multicore-based
shared-memory architectures. Stencil algorithms are usually straightforward to par-
allelize on distributed-memory systems using domain decomposition and halo layer
exchange, and the temporally blocked Jacobi code is no exception: The computational
domain is decomposed as usual, but instead of a single halo, h layers must be ex-
changed after h = n · t ·T updates have been performed per subdomain. Subdomains
overlap by h− 1 grid layers, and extra work is involved on the boundaries because
update number s covers a domain that is h− s layers larger in each direction. The
amount of data communication per stencil update is roughly the same as for no tem-
poral blocking, except for edge and corner contributions, which only become impor-
tant on very small subdomains (see below). An important side effect of multi-layer
halo exchange is that communication takes place across subdomain edges and corners.
Latency-dominated small messages can be avoided by transmitting halos consecutively
along the three coordinate directions [13] (see Fig. 7).

The question arises whether the use of multi-layer halo exchange has any signifi-
cant impact on performance. Two factors lead to opposite effects here: If the subdo-
main surface area is very small, aggregating multiple messages into one may be bene-
ficial; effective bandwidth rises dramatically with growing message size in the latency-
dominated regime. On the other hand, the surface to volume ratio is large in this limit,
leading to a significant overhead from communication and extra halo work. The dif-
ferent contributions to execution time (“bulk” and additional “face” stencil updates,
and halo exchange) can be calculated, assuming a simple latency/bandwidth model for
network communication and no overlap between calculation and data transfer.

While only simple algebra is involved, the resulting expressions are very complex,
so we restrict ourselves to a graphical analysis. The main panel of Fig. 8 shows the pre-
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Figure 8: Theoretical multi-layer halo advantage versus linear subdomain size L for
different halo widths h. Parameters are set for a vector-mode hybrid Jacobi solver on
a QDR-IB network and a per-node performance of 2000 MLUP/s (see text for details).
Inset: Ratio of computation versus overall time (“computational efficiency”) for the
corner cases h = 2 and h = 32.

dicted ratio of execution times between a standard one-layer halo version and h-layer
exchange for cubic subdomains of size L3 and different h. We have set the parameters
for a QDR-InfiniBand network here, with an asymptotic (large-message) unidirectional
bandwidth of 3.2 GB/s and a latency of 1.8 µs. The single-node performance was as-
sumed to be 2000 MLUP/s, independent of L (which only roughly holds in practice).
As expected, multi-layer halos have no influence at large subdomain sizes. As the do-
main gets smaller (20 . L . 100), extra halo work starts to degrade performance, but
a relevant impact can only be expected at h & 16. At even smaller L . 20, the positive
effect of message aggregation over-compensates the halo overhead, leading to substan-
tial performance gains. Although this looks like a good result, the ratio of computation
time versus overall execution time as shown in the inset of Fig. 8 proves that the algo-
rithm is strongly communication-limited below L ≈ 100, such that parallel efficiency
is very low. Any gain obtained by sophisticated temporal blocking is squandered by
communication overhead in this limit.

Note that this simple model disregards some important effects like switching of
message protocols, overhead for copying to and from message buffers, load imbalance,
etc. Its purpose is to get a rough idea about where to expect benefits from distributed-
memory parallelization of pipelined blocking with multi-layer halos.

3.2 Distributed-memory results
Implementation of the hybrid MPI/OpenMP pipelined Jacobi code was straightforward,
with no explicit or implicit overlapping of communication and computation. The MPI
library used (Intel MPI 3.2.2.006) does not support asynchronous non-blocking trans-
fers. Profiling has shown that copying halo data from boundary cells to and from
intermediate message buffers causes about the same overhead as the actual data trans-
fer over the QDR-InfinBand interconnect. We have investigated the performance of
our distributed-memory multi-halo pipelined Jacobi solver in strong and weak scaling
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Figure 9: Distributed-memory parallel performance (strong scaling) of the standard
and the multi-halo pipelined Jacobi solvers with relaxed synchronization, at a problem
size of 6003.
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Figure 10: Distributed-memory parallel performance (weak scaling) of the standard
and the multi-halo pipelined Jacobi solvers with relaxed synchronization, at a problem
size of 6003 per process.
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scenarios, respectively, and compared to the standard solver.
Figure 9 shows performance data for strong scaling at a constant overall problem

size of 6003 on 1 to 64 nodes. The standard Jacobi code (triangles and squares) was run
with one MPI process per core (8PPN) and in “hybrid vector” mode (1PPN), the latter
being clearly inferior. The “2PPN” multi-halo pipelined version, which uses one MPI
process per socket, outperforms the “1PPN” version considerably because of improved
NUMA placement. However, it is just a slight progress compared to the standard Jacobi
code, and most of the performance gain achieved by pipelined blocking on the node
level is lost due to the dominating communication overhead. This is exactly in line
with the results from the multi-halo performance model in the previous section.

The situation changes with weak scaling. Figure 10 shows weak scaling data at
a problem size of 6003 per node. Again, although communication is now less impor-
tant, the hybrid vector version of the standard solver performs worse than the pure MPI
version. The multi-halo code with one MPI process per socket, however (2PPN), can
now maintain about 80% of the single-node speedup also in the distributed-memory
parallel case. Note that this results depends on the problem size and the communi-
cation network; on a slow network, or with a much smaller problem size per node,
communication may still play a dominant role and cancel out the gain from temporal
blocking.

4 Summary and outlook
We have demonstrated that multicore-aware pipelined temporal blocking can lead to
a substantial performance improvement for the Jacobi algorithm on current multicore
architectures (Intel Nehalem EP/EX, AMD Istanbul). Substitution of a global barrier
by relaxed synchronization between neighboring threads adds to the benefits. A simple
bandwidth-based performance model was shown to be insufficient to predict the ex-
pected speedup at low thread counts. Instead, a cycle-by-cycle analysis of inter-cache
traffic for the Jacobi algorithm revealed that instruction execution and cache bandwidth
rather than memory bandwidth are the limiting factors in those cases.

In comparison to earlier, more bandwidth-starved processors, the potential gain
on Nehalem EP is limited due to its high memory bandwidth and relatively slow L3
cache. However, future multicore processors can be expected to be less balanced, and
thus profit more from temporal blocking, especially if the shared outer-level cache is
scalable. Our Nehalem EX test system could serve as a “blueprint” of such a design;
its low memory bandwidth and very fast L3 cache make temporal blocking extremely
beneficial. The performance characteristics of the AMD Istanbul processor, although
it is on par with Nehalem EP by raw numbers, are poorly understood and worth inves-
tigating further.

We have also shown, theoretically and in practice, under which circumstances it is
possible to port the temporal blocking speedup to a distributed-memory parallel (hy-
brid) code. A hybrid, temporally blocked lattice Boltzmann flow solver based on the
principles presented in this work is under development.

Further optimizations are possible: One main drawback of our method is that all
cores in a node form a single large pipeline, inhibiting optimal ccNUMA placement.
This could be corrected by a domain decomposition strategy similar to the one demon-
strated in Ref. [4], but experience shows that in practice (e.g., if a pipelined stencil code
should be used as a smoother component in a Multigrid algorithm) it is usually best to
use one MPI process per ccNUMA domain anyway.
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allel cache oblivious blocking approach for the lattice Boltzmann method. Progress in
CFD, vol. 8, No. 1–4, pp. 179–188, 2008.

[12] J. Treibig, G. Hager and G. Wellein: Multi-core architectures: Complexities of perfor-
mance prediction and the impact of cache topology. Under review. http://arxiv.
org/abs/0910.4865

[13] C. Ding and Y. He: A ghost cell expansion method for reducing communications in solv-
ing PDE problems. Proc. SC2001. DOI:10.1145/582034.582084

[14] M. Wittmann: Potentials of temporal blocking for stencil-based computations on multi-
core systems. Master’s Thesis, University of Applied Sciences Nuremberg, March 2009.
http://www.hpc.rrze.uni-erlangen.de/Projekte/stencil.shtml

16

http://arxiv.org/abs/0905.0792
http://www10.informatik.uni-erlangen.de/Publications/Dissertations/Diss_Kowarschik_2004.pdf
http://www10.informatik.uni-erlangen.de/Publications/Dissertations/Diss_Kowarschik_2004.pdf
http://arxiv.org/abs/0910.4865
http://arxiv.org/abs/0910.4865
http://www.hpc.rrze.uni-erlangen.de/Projekte/stencil.shtml

	1 Introduction
	1.1 The Jacobi stencil
	1.2 Baseline and test bed
	1.3 Related work

	2 Shared-memory pipelined temporal blocking on shared caches
	2.1 Algorithm and in-cache optimizations
	2.2 Relaxed synchronization
	2.3 Performance predictions
	2.4 Socket and node results

	3 Distributed-memory parallelization
	3.1 Multi-halo exchange
	3.2 Distributed-memory results

	4 Summary and outlook

