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Abstract

In this paper, we focus on the problem of scheduling a collection of similar task graphs on a hetero-
geneous platform, when the task graph is an intree. We rely on steady-state scheduling techniques,
and aim at optimizing the throughput of the system. Contrarily to previous studies, we concentrate on
practical aspects of steady-state scheduling, when dealing with a collection (or batch) of limited size.
We focus here on two optimizations. The first one consists in reducing the processing time of each
task graph, thus making steady-state scheduling applicable to smaller batches. The second one con-
sists in degrading a little the optimal-throughput solution to get a simpler solution, more efficient on
small batches. We present our optimizations in details, and show that they both help to overcome the
limitation of steady-state scheduling: our simulations show that we are able to reach a better efficiency
on small batches, to reduce the size of the buffers, and to significantly decrease the processing time of
a single task graph (latency).
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1. Introduction

Computing Grids gather large-scale distributed and heterogeneous resources, and make
them available to large communities of users [8]. Such platforms enable large applications
from various scientific fields to be deployed on large numbers of resources. These appli-
cations come from domains such as high-energy physics [4], bioinformatics [13], medical
image processing [10], etc. Distributing an application on such a platform is a complex
duty. As far as performance is concerned, we have to take into account the computing re-
quirements of each task, the communication volume of each data transfer, as well as the
platform heterogeneity: the processing resources are intrinsically heterogeneous, and run
different systems and middlewares; the communication links are heterogeneous as well,
due to their various bandwidths and congestion status.

Applications are usually described by a (directed) graph of tasks. The nodes of this
graph represent the computing tasks, while the edges between nodes stand for the depen-
dencies between these tasks. These dependencies are usually materialized by files: a task
produces a file which is necessary for the processing of some other tasks. In this paper we
consider Grid workflows made of a collection of input data sets that must all be processed
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by the same application. We thus have several instances of the same task graph to sched-
ule. Such a situation arises when the same computation must be performed on independent
data [11] or independent parameter sets [15]. Moreover, the targeted applications that we
plan to schedule do not include any replication phases in the process. Hence, DAGs consid-
ered in this paper have no fork nodes, and consists of chains or in-trees. This corresponds
to application like medical [12] or media [14] image processing workflows.

The problem consists in finding a schedule for these task trees which minimizes the
overall processing time, or makespan, on a dedicated heterogeneous computational envi-
ronment. This problem is NP-hard as it is a generalization of the P||C,,. problem which
is NP-hard [9]. To overcome this issue, the work presented in [1] proposed to use steady-
state scheduling. In this relaxation of the problem, the instances to be performed are as-
sumed to be so numerous that after some initialization phase, the flow of computation will
become steady in the platform. By characterizing resource activities in this steady state,
it is possible to derive a periodic schedule that maximizes the throughput of the system,
that is the number of task graphs completed within one time unit. As for makespan mini-
mization, this schedule is asymptotically optimal. This means that for a very large number
of instances to process, the initialization and clean-up phases that wrap the steady-state
phase become negligible, and the makespan of the steady-state schedule becomes close to
the optimal one. However, when the number of instances is important but bounded, exist-
ing steady-state approaches do not give optimal performance — initialization and clean-up
phases cannot be neglected when scheduling a finite number of instances — and lead to a
huge number of ongoing instances. In the present paper, we propose an adaptation of the
steady-state scheduling that makes it suitable to batches of task graphs of medium size, that
is consisting of a few hundreds of task graphs.

The rest of the paper is organized as follows. In Section 2 we give a short reminder on
the steady-state techniques and their drawbacks. Sections 3 and 4 present our optimizations
for practical settings, and Section 5 reports the simulations which have been performed to
establish the relevance of our optimizations.

2. Steady-state scheduling for task graphs
2.1. Platform and application model

In this section, we detail the model used in the following study. First, we denote by Gp =
(Vp, Ep) the undirected graph representing the platform, where Vp = {Py, ..., P,} is the
set of all processors. The edges of E'p represent the communication links between these
processors. The time needed to send a unit-size message between processors I; and P;
is denoted by c; ;. We use a bidirectional one-port model: if processor F; starts sending a
message of size S to processor P; at time ¢, then F; cannot send any other message, and
P; cannot receive any other message, until time ¢ + 5 X ¢; ;.

The application is represented by a directed acyclic graph (DAG) G4 = (Va, Ea),
where V4 = {T1,...,T,} is the set of tasks, and F 4 represents the dependencies between
these tasks. A dependency T}, — 1; € E'4 means that there is a file F}, ; produced by task
T}, and consumed by task 7;. We use an unrelated computation model: computation of task
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T}, needs a time w; j, to be entirely processed by processor P;. The tasks of V4 are typed
and every processor is only able to compute a subset of the task types.

We assume that we have a large number of similar task graphs to compute. Each in-
stance is described by the same task graph G 4, but has a different input file from the
others. This is the case when the same computation has to be performed on different input
data sets.

2.2. Principle

The present study is based on a steady-state approach for scheduling collections of identi-
cal task graphs proposed in [1]. In this section, we briefly recall steady-state techniques and
their use for task graph scheduling. The steady-state approach has been pioneered by Bert-
simas and Gamarnik [2]. The main interest of this approach is to optimize the throughput of
the system instead of the classical makespan. It is based on a linear programming approach
that computes a schedule period to provide an optimal solution to the problem. Some steps
of the schedule construction are however complex, especially for handling communica-
tions, and we refer the interested reader to this article for a more detailed description.

The steady state is characterized using activities variables: ¥ represents the average
number of tasks T} processed by processor P; within one time unit in steady state. We
similarly define activities for data transfers: ﬁfjl represents the average number of files
F}, 1 sent by P; to P; within one time unit in steady state. Then, we write constraints which
express the limited capacity of the processors and links, on these activity variables. We
also write “conservation laws” to state that files I}, ; have to be produced by tasks T}, and
are necessary to the processing of tasks 7;. We obtain a set of constraints which depicts
a valid steady-state schedule, described using « and g variables. We add the objective of
maximizing the throughput, that is the overall number of task graphs processed per time
unit, which can be computed as miny ), a¥, and we get a linear program. Solving this
linear program over the rational numbers allows us to compute the optimal steady-state
throughput, and the description of an optimal solution.

The optimal solution obtained with this linear program describes a schedule through
activity variables. This description is not very handy, and we need to precisely state where
and when is done each task for each task graph of the series. We construct a periodic sched-
ule that achieves an optimal throughput. This is done in two steps. First, we construct a set
of allocations: an allocation is a mapping of all tasks of the task graph on the processors.
For example, Figure 1 shows two possible allocations of a simple task graph on a platform
with three processors. Allocation A; maps task T} on processor P; and task 75 on proces-
sor P53, while allocation As maps task 7 on processor P, and task 75 on processor Ps. In
general, an optimal steady-state schedule consists of a weighted sum of allocations: each
allocation is provided with a throughput, and several allocations are used simultaneously.
For example, in Figure 1, both allocations have a throughput of one task graph per period,
thus resulting in a total throughput of two task graphs processed per period.

Then, we have to state when each transfer and each computation is scheduled in a period
of the periodic schedule. In the solution of the linear program, the average number of tasks
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(or files) processed (or transfered) in a time unit may be rational. However, we cannot split
the processing of a task, or the transfer of a file, into several pieces. Thus, we compute the
lowest common multiple LC'M of all denominators of these quantities. We then multiply
all quantities by LC' M, to get a period where every quantity of tasks or files is integer. So,
although bounded, the length L of the period may be large. A period describes the activity
of each processor (how many tasks of each type is performed) and of each link: communi-
cations are assembled into groups that can be scheduled simultaneously without violating
the one-port model constraints. In the following, we consider these communication groups
as one special task, assigned to a fictitious processor P, 1; a dependency between a task
T and a file F' is naturally transformed into a dependency between 7' and the special task
representing the group of communication which contains the file transfer F'.

processor Py i len 722 T2+
n P T Q O T, processor P, T T12n+1 | 3+ o5

Fip processor P3| T, | Ty - Tj”%’ ;Tj"’l ‘ TﬁrTgn LTZZ”*
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Figure 1. Example of steady-state allocations, period, and schedule.

The steady-state schedule is made of a pipelined succession of periods, as described
in Figure 1. Dependencies between files are taken into account when reconstructing the
schedule: a file F}, ; produced by T}, during period 1 will be transferred to another processor
during period 2 and then used by task 7; during period 3. Figure 1 describes a steady-state
schedule obtained for a simple task graph: in a period both processors P; and P» process
a task T, while Ps processes two tasks 75, achieving a throughput of 2 instances every L
time units. In the periodic schedule, each task or file transfer is provided with its instance
number in superscript, and dependencies are materialized with arrows for instances 2n and
2n + 1.

Once the periodic schedule is built, it can be used to process any number of tasks. A
final schedule consists of three phases:

(1) an initialization phase, where the preliminary results needed to process the first
period are pre-computed;

(2) the steady-state phase, composed of several periods;

(3) aclean-up phase, where all remaining tasks are processed so that all instances are
completed.

Note that the problem of constructing a steady-state schedule that maximize the
throughput has a polynomial complexity when restricting to DAGs with bounded depen-
dency depth (which covers many important cases, such as trees), and that the problem for
general DAGs is NP-complete [1]. Since the current study is limited to in-trees, it is possi-
ble to use this method to build a optimal steady-state schedule.
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2.3. Shortcomings

‘We have seen that the length L of the period of the steady-state schedule may be quite large,
and that a large number of periods may be needed to process a single task graph in steady
state. This induces a number of drawbacks:

Long latency. For a given task graph, the time between the processing of the first task and
the last task, also called latency, may be large since several periods are necessary to
process the whole instance. This may be a drawbacks for interactive applications.

Large buffers. Since the processing time of each instance is large, a large number of in-
stances must be started before the first one is completely processed. Thus, at every
time step, a large number of ongoing jobs have to be stored in the system, and the
platform must provide large buffers to handle all temporary data.

Long initialization and clean-up phases. Since the length of the period is large and con-
tains many task graph instances, the number of tasks that must be processed be-
fore entering steady state is large: for each dependency of the initial period the
sub-graph that creates the corresponding file it must be processed. Thus, the ini-
tialization phase will be long. Similarly, after the steady-state phase, many tasks
remain to be processed to complete the schedule, leading to a long clean-up phase.
As these phases are done using an heuristic scheduling algorithms, their execution
time might be far from the optimal, leading to poor performance of the overall
schedule.

In spite of these drawbacks, we have shown in [6] that steady-state scheduling is of
practical interest as soon as the number of task graph instances is a few thousands. In
the present study, we aim at overcoming the aforementioned shortcomings of steady-state
scheduling, in order to get efficient schedules for batches of medium size, that is, batches
containing a few hundreds of task graphs. The overall metric is the time needed to process
all the DAGs (total makespan). However, by using steady-state scheduling, we also focus
on throughput maximization.

In this paper, we focus on both reasons of these drawbacks. First, in Section 3, we
propose a solution to reduce the number of periods necessary to process one instance, by
simplifying the dependency scheme of a period. Then, in Section 4, we aim at shortening
the period, at the cost of a small reduction in the system throughput.

3. Minimizing the number of inter-period dependencies
3.1. Motivation

We aim at scheduling identical DAGs (in-trees) on a heterogeneous platform with unrelated
machines. Our typical workload consists of a few hundreds of DAGs. When the period of
the steady-state is small compared to the length of the steady-state phase, initialization
and clean-up phases are short, and steady-state scheduling is a very good option. When the
period obtained is large compared to the steady-state phase, it is questionable to use steady-
state as initialization and clean-up may render its advantage unprofitable. Thus, the length
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of the period is a key parameter for our objective. In this section, since we want to keep an

optimal throughput, we do not reduce this length. However, we prohibit any increase in the
period length, which would go against our final objective.
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Figure 2. A periodic schedule with inter-period and intra-period dependencies

We have seen that a large number of periods may be needed to completely process one
instance. More precisely, after building the steady-state period, each dependency in the task
graph can be satisfied within a period, or between two consecutive periods, as illustrated
in Figure 2. In the figure, we have taken the period of Figure 1, and we have modified its
utilization of the schedule, so that one dependency can be satisfied within a period: in the
new schedule, the results of file transfer F » can be used by task 7> immediately, in the
same period, instead of waiting for the next period. This is done by reorganizing the period:
the “first” transfer I o of a period is now used to compute the “second” task T5. We say
that Iy o — T% is an intra-period dependency, contrarily to other dependencies that are
inter-period. Of course, this single modification has little impact on the total makespan,
but if we could transform all inter-period dependencies into intra-period dependencies (or
a large number), our objective would be greatly improved.

The number of inter-period dependencies, that is the dependencies which originate in
one period and terminate in the following one, is an important factor. The number of periods
needed to completely process an instance (and thus the latency) strongly depends on the
number of such dependencies. As for the makespan, the number of instances that have
to be started in the initialization phase, and finished in the clean-up phases is exactly the
number of inter-period dependencies. So when an inter-period dependency is transformed
to an inter-period dependency, the length of the sub-optimal initialization and clean-up
phases are reduced in favor of the optimal steady-state phase. Thus, reducing the number
of inter-period dependencies is an important goal in order to overcome the drawbacks of
the original steady-state implementation. Note that in the original version of the steady-
state schedule, the number of these dependencies is huge: all dependencies are inter-period
dependencies.
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3.2. Formalization of the problem

We start from the description of the period obtained with the steady-state algorithm. A
period consists of ¢ instances of the task graph G 4. The u*" instance of task T}, is denoted
T, We call o(P;) the set of instances of tasks processed by processor P;. For sake of
simplicity, we denote by wj} the duration of T}, that is w} = w; g, with T} € o (F;).

Dependencies between task instances naturally follow the edges of the task graph: for
eachedge T}, — 1) € E5,forallu =1,...,q, we have a dependency T}' — T}".

The period is provided with a length L, which must not be smaller than the occupation
time of any processor: ZT]? co(P) wy < L for all P;.

The solution to our problem consists in starting times ¢ (T}') for each instance of task
T}'. We must ensure that two tasks scheduled on the same processor do not overlap:

VP, VT, TP € o(P;), with ¢t (T1) # t (T7),

HTE) < H(TP) = ¢ (TF) +wl < £ (TP) %

The number of inter-period dependencies for a given solution can be easily computed.
A dependency T} — T} is an intra-period dependency if and only if T}* finishes before
the beginning of T}, that is if

H(TY) + wl < ¢ (TY) with TV € o(P;). 2)

Thus, inter-period dependencies are all dependencies that do not satisfy this criterion.

3.3. Complexity of the problem

In this section, we assess the complexity of the problem presented in the previous section,
namely the ordering of the tasks on each processor, with the objective of minimizing the
number of inter-period dependencies.

We first define the decision problem associated to the minimization of the number of
inter-period dependencies.

Definition 3.1 (INTER-PERIOD-DEP) Given a period described by its schedule o and
its length L, consisting of q instances of a task graph G 4 (which is a tree), on p proces-
sors, with computation times given by w, and an integer bound B, is it possible to find
starting times t (T}') for each task instance such that the resultant number of inter-period
dependencies is not larger than B?

It turns out that this problem is NP-complete. The proof of this result, based on a reduc-
tion from the 3-PARTITION problem, is available in the companion research report [7].

We now present two solutions for the problem presented in Section 3.2. The first solu-
tion uses a linear program approach that makes use of both integer and rational variables
to compute an optimal solution, hence it is a Mixed Integer Program. Solving a MIP is NP-
complete, however efficient solvers exist for this problem [5], which makes it possible to
solve small instances. In the second solution, we first construct a period schedule without
taking dependencies into account, and then use a greedy algorithm to find the maximum
number of intra-period dependencies. Since the period schedule is constructed beforehand
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and the algorithm is not allowed to move tasks when looking for dependencies, this ap-
proach is only heuristic.

3.4. Optimal algorithm with MIP formulation

In the following, we assume that we have only one instance of the task graph in the pe-
riod, for sake of readability. Furthermore, we denote by w; the processing time of 7); on
the processor which executes it. Our approach can be extended to an arbitrary number of
instances, at the cost of using more indices.

For any pair of tasks (7}, T} ) executed on the same processor (that is such that 7}, T}, €
o(P;) for some P;), we define a binary variable y; ». We will ensure that y; , = 1 if and
only if T} is processed before T}.

We also add one binary variable ¢; ; for each dependency 1; — T}. This binary vari-
able expresses if the dependency is an intra-period dependency (e; 5, = 1) or an inter-period
dependency (e; 1 = 0).

Finally, we use the starting time ¢; of each task T as a variable. We now write con-
straints so that these variables describe a valid period.

e We ensure that the y variables correctly define the ordering of the ¢;’s:

VPZ',VT]',Tk- S O'(Pi), tj — 1 > —Yjk X L 3)
Yjke T Yy =1 “)
e We check that all tasks are processed within the period:

VTj, ti +w; < L ®))

e We also check that if e; ;, = 1, the corresponding dependency is intra-period:
VTJ — Tk, tr— (tj + U)j) > (1 — ej’k) x L (6)

e Finally, we make sure that no task is processed during the processing of task 77,
that is during [t;, t; + w;]:

VPi,VTj,Tk EO’(PZ*),TJ*#T]C, tk—(tj—&—wj) > (ije—l) X L @)

Together with the objective of minimizing the number of inter-period dependencies
(i.e., maximizing the number of intra-period dependencies), we get the following MIP:

{ Maximize D = Y€ (8)

under the constraints (3), (4), (6), (7) and (5)

We can prove that the previous linear program computes a valid schedule with a
minimal number of inter-period dependencies (see the companion research report for de-
tails [7]).
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3.5. Greedy approach

The major difference between the previous MIP approach and the greedy approach that we
describe here is the management of the instance indices. In the MIP approach, all instances
are distinguished, and the previous linear program is in fact written with 77" variables, u
being the index of the instance. In the above study, we have discarded this  index simply
to get lighter notations, but the MIP clearly separates tasks of different instances.

In the greedy approach, we contrarily merge all tasks of the same type coming from
different instances: all tasks 7’; are mixed whatever the real instance 77;*. In order to get a
real schedule, with correct instances, we will reconstruct the complete task graph for each
instance later, at the end of this phase.

After merging all instances of the same task, we get several occurrences of the same
task on each processor. We first decide the processing order of every occurrence on each
processing element for one period. This is done with the help of a simple one-dimensional
load-balancing algorithm. As a result, all tasks will be optimally distributed in the period.
For example, if a processor has to execute three occurrences of task A and three occurrences
of task B, we will produce a schedule ABABAB, or BABABA, instead of AAABBB.

Once these local schedules have been constructed, we decide not to move tasks any-
more, contrary to what the MIP approach does. We then intent to maximize the number of
intra-period dependencies. To this goal, consider any dependency Ty — 7. Occurrences of
T}, might be allocated (and now scheduled) on several processors, and the same holds for
occurrences of 77, but there are as many occurrences of T} as 7;. All results of tasks 7}, are
needed for the processing of tasks 7;. A given occurrence of 7; can only use the results of
an occurrence of T}, that was processed earlier. We thus use a greedy algorithm to connect
a maximal number of tasks 7; to a predecessor T}, using an intra-period dependency: for
the first occurrence of task 7}, we denote by ¢ its completion time, we select the first occur-
rence of T; that starts after time ¢, if it exists, and we allocate the intra-period dependency
between these two occurrences. We suppress these occurrences from our list and continue
until there is no more possible intra-period dependency. All remaining dependencies are
allocated as inter-period dependencies.

4. Using non-conservative steady-state solutions to improve efficiency
4.1. Motivation

As we have seen that many of the steady-state scheduling drawbacks come from an exces-
sive period length, we aim in this section at reducing the length of the period. However, we
face a major issue: the length of the period, as well as its composition, is dictated by the
solution of a linear program, as explained in [1]. Thus, we have very little hope to find a
schedule with shorter period reaching the optimal throughput. Here, we choose to modify
the solution, and to potentially decrease the system throughput, in order to gain flexibility
on the period length. Our claim is that we can significantly shorten the period at the cost
of a slight reduction of the throughput, which will result in a speed-up for medium-size
batches, as well as in more practical schedules, with shorter latencies and smaller buffers.
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4.2. Principle and algorithm

As described above in Section 2.2, a steady-state schedule consists of a superposition of
allocations Aq, ..., A,,. Allocation A has throughput py, such that the whole schedule
reaches throughput p = >, pi. Each pj, is a rational number, which is written oy, /Sy,
where ay; and [, are relatively prime integers. In order to process (and transfer) an integer
number of tasks (and files) during a period, the least common multiple of all denominators
(T = lcmyBy) is chosen as the length of the period. In one period, allocation Ay, processed
T X «y /P tasks, which is integer. However, some (; may be large, leading to a large
period length 7. It may even happen that the corresponding throughput «v, / 8%, is small, that
is, allocation Ay, contributes to a small amount to the total throughput, but is responsible
for the long period. Such allocations are needed to reach the optimal throughput, but they
are a pitfall for medium-size batches. Thus, we choose to suppress them and we claim that
the loss in the throughput will be compensated by the shorter period, which reduces the
initialization and clean-up phases, and make the steady-state scheduling more efficient.
Indeed, given an allocation Ay with a large 85, we do not necessary want to suppress
it (that is, to subtract its throughput p; from the total throughput). We simply suppress S
from the computation of the new period length 7", and we scale down its throughput to

[(aw X Tt)/Br].

Algorithm 1: Shorten the period of a steady-state schedule.

Data: Total number of instances Ny, and a solution described by m allocations,
allocation 4 has throughput «; /3;.
Parameters: K (maximum relative weight of initialization phase) and L (maximum
throughput degradation).
Sort allocation by non-increasing S, so that 51 > B2 > -+ > (B,
Ninit < estimateInitTermJobCount(p1, . . ., pm)
141
pom'!] — ZZ/L:I ak/ﬂk .
while i < m — 1 and (Nynit/Ntotar > K) and (p > L x p°™9) do
T« lem{f;,...,Bm}
foreach allocation Ay, in {Ay,... Ay} do
L piollback — pr
pr 4 [(ax x T) /B
p ZZL:1 Pk
Ninit < estimateInitTermJobCount(p1, . . ., pm)
Li+1+1
if (Ninit/Niotar < K) or (p < L x p°79) then
L foreach allocation Ay in {A,... Ay} do py piollback

return (p1,...,pm)

Our approach is summarized in Algorithm 1. This algorithm relies on the estimatelnit-



January 28,2011 12:1 WSPC/INSTRUCTION FILE journal-version-ppl

Instructions for Typesetting Camera-Ready Manuscripts 11

TermJobCount function to estimate the number of partial task graphs which have to be
started during the initialization (and must be finished during the termination phase) for a
given allocation. This allows us to estimate the relative duration of the initialization and ter-
mination phases compared to the steady-state phase. Our objective is that the steady-state
phase becomes dominant. More specifically, we introduce a parameter K to upper bound
the ratio of the number of task graphs started in the initialization to the total number of
task graphs. We also bound the degradation of the throughput using another parameter L.
In the simulations, we tested a large range of values for these parameters, but we report the
results only for the best choice, namely K = 0.25 (at least three fourth of the task graphs
should be processed in steady state), and L = 0.85 (we tolerate a maximum decrease of
the throughput of 15%).

5. Experimental results

In this section, we present experimental results that show how minimizing the inter-period
dependencies and/or how using the non-conservative period reduction improves the original
steady-state algorithm. We compare six algorithms that schedule batches of task graphs on
a heterogeneous platform:

e The original steady-state implementation proposed in [1];

o The steady-state approach improved with the reduction of inter-period dependen-
cies through Mixed Integer Programming (see Section 3.4), denoted by steady-
state+MIP;

e The steady-state approach improved with the reduction of inter-period de-
pendencies using the greedy heuristic (see Section 3.5), denoted by steady-
state+heuristic;

e The steady-state approach improved using the non-conservative period reduction
(see Section 4), denoted by steady-state+suboptimal;

e The steady-state improved with both the reduction of inter-period dependencies
using the greedy heuristic and the non-conservative period reduction, denoted by
steady-state+heuristic+suboptimal;

e A classical list scheduling algorithm based on HEFT (Heterogeneous Earliest Fin-
ish Time, see [16]): as soon as a task or a communication is freed of its dependen-
cies, the algorithm schedules it on the resource that guarantees the earliest finish
time. Its evaluation depends on the load of the platform and takes both the compu-
tation time and the communication time into account. Note that in all steady-state
strategies, the initialization and clean-up phases are implemented using this list-
scheduling technique.

5.1. Simulation settings

The experiments were performed with a simulator implemented above SimGrid, using its
MSG API [3]. The simulations consist of 200 platform/application scenarios for batches
counting from 1 to 10000 task graphs. Platforms are randomly generated, and comprise
between 4 to 10 nodes. Tasks are gathered into 10 types, and each processor is able to
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process a subset of the 10 types. The computation times range between 1 and 11 time units.
Network links form a homogeneous graph connecting all computing nodes. Applications
are randomly-generated in-trees of 5 to 12 tasks selected among the different types. The
size of the files associated to dependencies are slightly heterogeneous (either one or two
units of size).

For some scenarios, large periods and large numbers of dependencies may arise, so that
solving the Mixed Integer Program is not possible, even though we use an efficient MIP
solver (CPLEX [5]). In the following, we thus distinguish two cases: SIMPLE scenarios
are the ones when we are able to solve the MIP (142 scenarios), and GENERAL scenarios
gathers all cases (200 scenarios).

5.2. Impact of the reduction of the inter-period dependencies

In order to estimate the efficiency of the first optimization, we compute the number of inter-
period dependencies that the different strategies (MIP or heuristic) are able to transform
into intra-period dependencies. When we are able to solve the MIP, it suppresses 32% of
the inter-period dependencies, whereas the heuristic is able to suppress 25% of them (26%
in SIMPLE cases). This shows that both the MIP and the heuristic strategies achieve a
good performance for this metric. As we have outlined before, this does not necessarily
result into an improvement for the global behavior of the schedule. Thus, we compare the
performance of these strategies on practical metrics, namely the obtained efficiency and the
number of running instances.

5.3. Scheduling efficiency

Figure 3(a) shows the efficiency obtained by each algorithm on a given scenario and for
different batch sizes. The efficiency is the ratio of the obtained makespan over a lower
bound computed with the steady-state algorithm (considering there is no initialization and
clean-up phases) [6]. Note that we choose to present a complex example where the MIP
strategy is unable to compute the optimal dependency scheme, since it is more represen-
tative of what happens in the general case. We point out that the list-scheduling heuristic
has a constant behavior, as soon as the size of the batch exceeds a few tens, whereas the
performance of the steady-state strategies evolves with this size: the more task graphs to
schedule, the more efficient these strategies. With a very large size of batch, these strate-
gies would all reach an efficiency of 100%, i.e., they would reach the optimal steady-state
performance. In this study, we focus on batches of medium size, with a few hundreds of
task graphs. We see that as soon as the batch size is larger than 200, our optimizations are
able to improve the efficiency of the steady-state schedule.

We now consider the comprehensive results of all simulations. Figures 4(a) and 4(b)
display the proportion of scenarios where the algorithms reach an efficiency of 90% de-
pending on the size of the batch, both in the SIMPLE and GENERAL cases. We notice
that the list-scheduling algorithm behavior does not depend on the batch size, and reaches
a good performance (efficiency of 90%) only for 55% of the cases (in general). On the
contrary, steady-state strategies give much better performance, reaching a good efficiency



January 28,2011 12:1 WSPC/INSTRUCTION FILE journal-version-ppl

Instructions for Typesetting Camera-Ready Manuscripts 13

0.9 500

Ed 2
= 3
£ 08+ 8 400
= &
E : 2
) 0.7 o e S 300
S T - 2
£ 06 o ich
g /- 5 200
= 05 4 s o steady-state 5
i / «+ steady-state+heuristic 2
] / i 5 100
8 / steady-state+suboptimal 2
2 044 g ———— steady-state+heuristic+suboptimal
) / = o= list-scheduling heuristic
04
T Y Y ' T 1 T 1
1 10 100 1000 10000 0 20000 40000 60000 80000 100000 120000
Number of jobs Simulation time (in minutes)
(a) Efficiency of all algorithms on a given scenario (b) Evolution of the number of running jobs.

with different batch sizes.

Figure 3. Examples of results for efficiency and number of running instances. (The legend is the same for both
graphs.)

in 70% of the cases for batches with more than 300 task graphs. When comparing the per-
formance of the different steady-state strategies, we notice that both optimizations help to
improve the efficiency, and that their combination (with steady-state+heuristic+suboptimal)
reaches the best efficiency most of the time. The gap between the optimized version of the
steady-state scheduling and the original implementation is noticeable, but is not large: usu-
ally between 5% and 10% of the optimal efficiency. In the SIMPLE cases, (Figure 4(a)),
we are able to compare steady-state+MIP with steady-state+heuristic: although the MIP
strategy always gives better results, the heuristic performs very well, and the gap between
all strategies is not always noticeable. We can also note that in these SIMPLE cases, the
non-conservative period reduction is unable to improve the efficiency. Actually, SIMPLE
cases correspond to scenarios where the period computed by the original steady-state ap-
proach is already short: this is why the MIP strategy is able to optimize the dependencies
(the shorter the period, the smallest the optimization problem), and also why there is not
much slack for period reduction. On the contrary, in GENERAL cases, the period reduction
optimization really improves the efficiency.

5.4. Buffer sizes and latency

We have seen that our optimizations allow to slightly improve the efficiency of the steady-
state approach. We now compare the schedules obtained through all variants on other met-
rics outlined to be important for practical use of steady-state scheduling, namely the num-
ber of task graphs (or jobs) being processed (which dictates the size of the buffers) and
the latency (processing time of a single job). Note that both metrics are linked, since in
steady-state, the total size of buffers is roughly equal to the latency times the throughput.
Thus, decreasing the latency naturally helps to reduce the size of the buffers.

Figures 3(b) presents the evolution of the number of running jobs on a given plat-
form/application scenario. At a given time ¢, we plot the number of jobs which have been
started (some tasks have been processed), but are not terminated. Thus, temporary data
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for these jobs have to be stored in some buffers of the platform. This figure illustrates the
typical behavior of the steady-state algorithms. During the initialization phase, the number
of running jobs grows: jobs are started to prepare the next phase. During the steady-state
phase, the number of running jobs is roughly constant. Finally, in the termination phase,
jobs which remains in the system are terminated and the number of running jobs drops
to zero. One of the drawbacks of steady-state scheduling presented in Section 2.3 is illus-
trated here: compared to another approach like list-scheduling, it induces a large number
of running jobs (on this example, 548 instead of 3 for the list-scheduling). This example
also shows that our optimizations and their combination are able to reduce the maximum
number of running jobs (down to 126 jobs for the combination of our optimizations).

SIMPLE scenarios GENERAL scenarios
. average maximum max. num. of | average maximum max. num. of
Algorithm . .
latency latency running jobs | latency latency running jobs
MIP 94% 67% 70% N/A N/A N/A
heuristic 95% 74% 76% 90% 90% 93%
suboptimal | 100% 100% 100% 53% 93% 88%
heuristict | g5, 4% 5% 33% 67% 63%
suboptimal

Table 1 presents comprehensive results on the average latency, the maximum latency,
and the maximum number of running jobs of all our optimizations compared to the original
steady-state algorithm. In the SIMPLE cases, the latency optimization is not very signifi-
cant (there is even no improvement for the non-conservative period reduction), because the
period is already short in these cases. On the contrary, for all cases, our optimization al-
lows to significantly reduce the latency. For example, combining our optimizations reduces
the average latency by a factor 3 (33% of the original latency), and reduces the maximum
number of running jobs to 63% of the original value. Note that GENERAL cases include
all cases, including the ones which are denoted SIMPLE and already have a short period.
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Thus, the decrease in latency and buffer size is really important for other (complex) cases.

5.5. Running time of the scheduling algorithms

Figures 5(a) and 5(b) present the average time needed to compute the schedule of a batch
depending on its size, in the SIMPLE and GENERAL cases. We first notice that the list-
scheduling heuristic is extremely costly when the size of the batch is above a few hundreds.

In the SIMPLE cases, the time needed to optimally solve the inter-period dependency
minimization using the MIP is negligible, and the time needed to compute the periodic
schedule is always below 2 seconds for all strategies. In the GENERAL cases, the period
of the schedule is larger, and it induces more computation: initialization and termination
phases are longer (and may increase with the size of the batch), thus the computation of
their schedule takes some time. The optimization of the steady-state phase by the heuristic
is also time-consuming. Anyway, the computation of the schedule with steady-state ap-
proaches never exceeds 200 seconds, for a number of task graphs up to 10 000. Note that
without the non-conservative period reduction, the size of the period may be very large, and
the construction of the full periodic schedule is quite long (around 20 seconds on average)
because of the large size of the data structures handled by the algorithms.
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Figure 5. Scheduling time in seconds

6. Conclusion

In this study, we have presented an adaptation of steady-state scheduling techniques for
scheduling batches of task graphs in practical conditions. We consider medium-size batches
(a few hundreds of jobs), and concentrate both on performance metrics (makespan) and
on practical interest of the produced schedules (latencies and buffer sizes). We consider
two optimizations: a better use of the periodic schedule produced by the steady-state ap-
proach through dependency reorganization, and a reduction of the periodic schedule when
we allow a small throughput degradation. For the first optimization, we prove the problem
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NP-complete, which motivates the design of a solution based on Mixed Integer Program-
ming, and another heuristic solution. For the second optimization, we propose an algorithm
which shorten the period while limiting the decrease of throughput to 15%. To measure the
impact of our optimizations, we perform simulations, and show that both our optimizations
(and their combination) improve the efficiency on medium-size batches. Furthermore, the
proposed solution produces schedules that are much more practical (with smaller latency
and buffer sizes). This proves that steady-state scheduling is an efficient tool for dealing
with collections of task graphs, even if its analysis and optimization is a complex duty. In
future works, we plan to concentrate on the tolerance of steady-state scheduling techniques
to variations of the processing and communication capabilities of the platform as it may
arise on a real platform.
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