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ABSTRACT

Exploiting the computing power of the diversity of resources available on heterogeneous
systems is mandatory but a very challenging task. The diversity of architectures, execu-
tion models and programming tools, together with disjoint address spaces and di�erent
computing capabilities, raise a number of challenges that severely impact on application
performance and programming productivity. This problem is further compounded in the
presence of data parallel irregular applications.

This paper presents a framework that addresses development and execution of data
parallel irregular applications in heterogeneous systems. A uni�ed task-based program-
ming and execution model is proposed, together with inter and intra-device scheduling,
which, coupled with a data management system, aim to achieve performance scalabil-
ity across multiple devices, while maintaining high programming productivity. Intra-
device scheduling on wide SIMD/SIMT architectures resorts to consumer-producer ker-
nels, which, by allowing dynamic generation and rescheduling of new work units, enable
balancing irregular workloads and increase resource utilization.

Results show that regular and irregular applications scale well with the number of
devices, while requiring minimal programming e�ort. Consumer-producer kernels are
able to sustain signi�cant performance gains as long as the workload per basic work
unit is enough to compensate overheads associated with intra-device scheduling. This
not being the case, consumer kernels can still be used for the irregular application.
Comparisons with an alternative framework, StarPU, which targets regular workloads,
consistently demonstrate signi�cant speedups. This is, to the best of our knowledge, the
�rst published integrated approach that successfully handles irregular workloads over
heterogeneous systems.

Keywords: Heteregeneous systems, irregular applications, e�ciency, programming pro-
ductivity
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1. Introduction

Heterogeneous Systems (HS) are an emerging trend in today's computing solutions.

The high performance computing community has substantially increased the de-

mand for computational power to which manufacturers answered with a range of

highly parallel computing devices, including many core CPU architectures, such

as Intel MICs, GPUs, DSPs, FPGAs, usually packaged as co-processing expansion

boards. Even domestic computing machines are heterogeneous in the sense that

they are equipped with one or more GPUs. Leveraging the whole heterogeneous set

of computational resources available on a single machine in order to speedup data

parallel applications' execution times is thus an obvious course of action.

However, HS pose a number of challenges which might prevent programmers

from fully exploiting the available computing power and seriously reduce program-

ming productivity. Typically accelerators have disjoint address spaces among them-

selves and the host CPU, usually interconnected with a limited bandwidth bus

which is a potential performance bottleneck. Despite all the e�orts from the man-

ufacturers to elide this problem (such as the CUDA Uni�ed Memory model [1] for

NVIDIA GPUs), data transfers must still be explicitly managed and minimized

for optimization and e�ciency purposesa. Di�erent architectures typically exhibit

di�erent execution and programming models and are deployed with di�erent pro-

gramming languages and development tools, severely impacting on both code and

performance portability.

In order to maximize performance, an application is designed and carefully tuned

to fully utilize each resource computing capability according to the device speci�c

architecture and execution model, seriously reducing development productivity. Ad-

ditionally, the application's workload has to be distributed and balanced among the

multiple devices, and, within each device, among its multiple computing units; this

leads to inter- and intra-device scheduling, which must be e�ectively handled in

order to achieve acceptable performance levels.

The above challenges are further compounded if the data parallel application

exhibits an irregular behavior. The workload is usually classi�ed as irregular if it

involves irregular data structures, irregular control �ow or irregular communica-

tion patterns [2]. The main consequences of irregularity are load imbalance, code

divergence and uncoalesced memory accesses, all potentially resulting on signi�cant

performance losses. This hurdle is aggravated in HS due to di�erences in the archi-

tectures and computing capabilities of each device [3]. Yet, irregular applications

constitute an important class of algorithms that are present in well-known scien-

ti�c applications, such as graph and sparse matrix algorithms, n-body simulation,

data mining, knowledge discovery, language understanding, decisions problems, op-

timization theory, system modelling, discrete-event simulation, pattern recognition

aCUDA 6.0 Uni�ed Memory capabilities do not provide fully transparent support for data migra-
tion within multi-GPU systems, nor automatic concurrent copy and kernel execution.
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and meshing among others [2, 4]. A particularly relevant class of irregular applica-

tions are Monte Carlo simulations [5], widely used in many knowledge areas, such

as �nancial valuation and option pricing [6] or physically based simulation of light

transport within complex media [7, 8], among many others. Monte Carlo simulation

entails performing multiple Markov random walks within the function multidimen-

sional domain and then averaging the results of such random walks in order to

obtain an estimate of the metric of interest. Since both the directions taken and the

length of the random walk are stochastically generated, this results on an irregular

workload, exhibiting load imbalances, control �ow divergence and irregular memory

accesses; two of the case studies analysed throughout this paper are Monte Carlo

simulations.

This paper focuses on irregular data parallel applications, which exhibit unpre-

dictable workload and memory access patterns, varying across elements of the data

domain. These are in opposition to regular applications, whose memory access pat-

terns and workload can be predicted, mainly because they do not change across

data elements. Optimizing irregular applications is a much more challenging task.

The above cited problems are particularly relevant on wide SIMD/SIMT (Single

Instruction Multiple Threads) devices, such as the ubiquitous GPUs. The hardware

work dispatch units within these devices are optimized for homogeneous regular

workloads, maintaining high utilization of SIMD/SIMT lanes and thus exhibiting

remarkable performance improvements over CPUs for regular data parallel appli-

cations. Irregular applications, however, have the potential to follow di�erent code

paths and perform scattered memory accesses within the same SIMD/SIMT lane,

resulting on code divergence, increased memory access latencies and resource un-

derutilization. In order to fully exploit these devices, maximum levels of occupancy

should be guaranteed, even with irregular workloads. This paper addresses this

problem by resorting to persistent kernels and a queuing system, inspired by the

results presented in [9, 10].

The adoption of HS has been limited by the lack of programming models

and frameworks that hide these challenges and reduce the complexity of address-

ing such systems. Several such frameworks have been proposed in the specialized

literature [11, 12, 13, 14, 15], but none of them is focused on irregular data parallel

applications. This paper presents a framework that speci�cally addresses develop-

ment and execution of data parallel irregular applications in heterogeneous systems.

Our goal is to potentiate e�cient utilization of HS while maintaining high program-

ming productivity. This framework integrates the following features:

• a uni�ed task-based programming and execution model for data parallel

irregular applications, together with high-level programming abstractions,

which increase productivity by introducing transparency with respect to

the burden of handling multiple platforms and enable the programmer to

focus in the application functionality rather than architectural details [16];

• an application programming interface (API) that supports the above model;
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• a scheduling mechanism that transparently partitions the data domain into

tasks and deals with all inter- and intra-device workload distribution and

balancing;

• a data management strategy that transparently guarantees that required

data is readily available on each task's addressable memory space.

This paper's main contributions are the uni�ed execution and programming

model and the integration of persistent kernels [9, 10] on the proposed framework

as the solution to handle irregular workloads, particularly on what concerns intra-

device scheduling. Additionally, a concrete implementation of the framework is

presented, together with an experimental assessment of its ability to e�ciently

handle regular and irregular workloads and a comparison with a competitive ap-

proach, StarPU [12]. The proposed framework has been developed and tested on

CPU+GPU heterogeneous platforms and emphasis has been put on scheduling ir-

regular workloads within the GPUs; we expect most of the results to apply to other

wide SIMD/SIMT platforms. Four case studies are used: a regular matrix multipli-

cation, an irregular n-body problem using the Barnes-Hut algorithm, an irregular

path tracing based renderer and an irregular simulation of light transport with �uo-

rescence within multi-layered tissues. This is, to the best of our knowledge, the �rst

published integrated approach that successfully handles irregular workloads over

heterogeneous systems.

The next section presents related work, followed by an overview of the program-

ming and execution model. Section 4 details the proposed scheduling techniques,

Section 5 describes the experimental applications and setup, while results are pre-

sented and analysed in Section 6. The paper closes with some concluding remarks

and proposals for future work.

2. Related Work

In this section we discuss some of the proposed programming models and frameworks

that tackle the challenges of using parallel heterogeneous systems. We also present

some of the e�orts done towards the handling of irregular workloads in parallel

computing systems.

2.1. Frameworks for Heterogeneous Systems

Several e�orts have been made towards programming and execution models that

provide increased levels of development productivity, while distributing the load

across the available resources of an HS. The main goal of Hybrid Multi-core Paral-

lel Programming (HMPP) is to handle devices and use them without the need to

re-write the applications [13]. Codelets are introduced as a means to express the ap-

plication functionality on each device and primitives for execution and data transfers

are provided. However, it does not address irregular workloads and lacks a run-time

system and scheduling policies that allow for a proper load balancing and full ex-



June 2, 2014 10:44 WSPC/INSTRUCTION FILE ppl

5

ploitation of available resources. Diamos [17] identi�es some challenges and proposes

several techniques to address HS and tackle the associated complexity. The author

assesses and validates some solutions presenting preliminary results of a uni�ed ex-

ecution model combining functional kernels, control decisions and a shared address

space [11]. Optimizations are proposed such as performance modelling, static and

dynamic optimizations, among others. Merge, proposed by Linderman et al. [14],

is focused on portability issues providing a compiler and run-time system and fol-

lowing a map-reduce paradigm for scheduling. The authors advocate that Merge

is applicable to di�erent HS and applications are easily extensible and can easily

target new architectures. These approaches are focused on the challenges that the

multiplicity of architectures pose, such as code portability, and few attention is

given to data management, scheduling, load balancing and irregular workloads.

StarPU [12], Qilin [15] and Model Driven Runtime (MDR) [18] are similar HS

frameworks that provide high-level programming abstractions, integrated data man-

agement and enhanced scheduling mechanisms. StarPU provides a uni�ed execution

model combined with a virtual shared memory and a performance model working

together with dynamic scheduling policies. The run-time features a data manage-

ment system that entails several features: automatic work decomposition and data

transfers, communication and computation overlapping, data pre-fetching and data

locality aware scheduling, among others. While Qilin has some enhanced compiling

features and a simpler performance modelling mechanism, StarPU has more ad-

vanced data-management and sophisticated scheduling techniques, such as the Het-

erogeneous Earliest Finish Time (HEFT) approach [19]. MDR focuses on schedul-

ing, proposing a scheduling approach entirely based on online history-based per-

formance modelling coupled with an analytical model for communications. While

addressing some of the challenges associated with HS, these frameworks make no

attempt to deal with irregular workloads. In particular, intra-device scheduling is

not addressed and inter-device scheduling and work decomposition are based on a

sampling performance model, which measures the devices performance on a small

subset of the data domain and then generalizes for the whole domain � irregular

applications are particularly sensitive to these generalizations, since the workload

varies among data elements in an unpredictable manner. The data management

system used by the framework proposed on this paper is strongly inspired on that

of StarPU; it uses the same cache protocol with lazy consistency and keeps the

programmer agnostic to data movements. An implementation of StarPU, support-

ing multi-core CPUs and CUDA enabled GPUs, is publicly available. We compare

its performance and that of the proposed approach for an irregular workload � see

Section 6.3.

2.2. Handling Irregular Workloads

Irregular data parallel workloads require performing some fundamental operation

to each data element an unknown number of times; e.g., on a path tracer the length
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of the path per pixel, i.e., the number of rays, is unknown and varies unpredictably

across screen space � path tracing can thus be seen as tracing a previously unknown

number of rays. On current highly parallel SIMD/SIMT devices, such as the GPUs,

this irregularity would lead to code divergence and huge resource underutilization.

Programmers do explicitly resort to multiple passes to increase processor utilization,

with the added cost of a global synchronisation in between passes. Under this model,

each pass produces work for the next passes, which will consume it and, eventually,

generate even more work. In the literature e�orts can be found to transparently

map irregular applications to wide SIMD/SIMT devices, balancing the workload

across the device computation units (CU) and alleviating the programmer from the

need to explicitly deal with this issue. Cederman et al. [20] evaluates the use of

dynamic load balancing methods based on queues with lock-free and work-stealing

mechanisms. Tzeng et al. [10], improving on the proposals by Aila and Laine [9], in-

troduced a task management system based on persistent kernels and queues, which

maximizes CUs utilization and load balance. Persistent kernels produce and con-

sume work using a queuing system, avoiding the multi-pass approach and allowing

load redistribution through a task donation/stealing mechanism. Additionally, tasks

are scheduled in blocks with the same size as the SIMD/SIMT lane width, allow-

ing for better SIMD e�ciency. Our approach for intra-device scheduling is inspired

by Tzeng's task management system, integrated on a framework handling multiple

heterogeneous devices.

After Tzeng's, other sophisticated approaches have been proposed with the same

goal. For instance, Softshell [21] proposes a three-tier scheduling model for the GPU

that aims to replace the current built-in scheduling systems. It addresses the major

limitations of the GPU proposing an aggregation scheme of threads and work items,

sorting work items by priority and using queues to manage work items. However,

the actual implementation of Softshell resorts to a persistent kernel approach with

a model similar to Tzeng's. We also use this model in order to e�ciently address

irregular workloads within the GPU.

3. A Framework for Heterogeneous Systems

This section provides a detailed description of the proposed programming and ex-

ecutions models, programming interface and system architecture that tackle the

challenges posed when e�ciently exploiting heterogeneous systems with irregular

applications.

3.1. Programming and Execution Model

The proposed framework follows a host-device system model, with applications be-

ing composed by a host control program (HCP) plus one or more computation

kernels and respective data sets. The HCP typically runs on the CPU and inter-

faces with the runtime system, being responsible for data registration and partition-

ing, synchronisation and enforcement of dependency constraints among computing
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kernels. Kernels, executed on the system devices (including the multi-core CPU),

apply some computation to all elements of a data set; in this sense, kernels express

data parallel problems and the application of a kernel to one data element is re-

ferred to as a basic work unit. Basic work units within the same job are assumed

to exhibit no data dependencies among them. It is the programmer's responsibility

to provide implementations of the kernels targeted and optimized for each device

architecture.

An application consists on one or more jobs, each consisting on applying a

computation kernel to a data set. The runtime system partitions the job data set into

blocks of basic work units, referred to as tasks, whose execution is dispatched onto

available devices. The data set partitioning and dispatching is transparent to the

application programmer and referred to as inter-device scheduling. Partitioning

is, however, dependent on application speci�c data representation; the programmer

is thus required to provide a callback method capable of creating arbitrarily sized

data partitions upon system demand; this method, renders the runtime system

independent on data representation. Dependency constraints among jobs must be

explicitly speci�ed by the HCP using system primitives, otherwise they may execute

concurrently; tasks are executed out-of-order and completely transparent to the

application programmer, other than the data partitioning operation.

Data management is handled by the runtime system, transparently to the appli-

cation programmer, by resorting to domains. These, inspired by Partitioned Global

Address Space based languages such as Chapel [22], encapsulate all the information

required for the system to manage user data, including data location and transfers.

This information is provided upon domain registration by the HCP and the data

partitioning method. Hierarchic data partitioning is internally supported by a hier-

archy of sub-domains, which represent smaller regions of the data set. Kernels are

agnostic to sub-domains and respective sizes, since the runtime system converts do-

main global indexes to task local sub-domain indexes, thus transparently supporting

arbitrarily sized tasks; only the notion of domain is exposed to the programmer. Re-

sults gathering in-between jobs has to be explicitly triggered by the HCP in order to

avoid useless data transfers. Furthermore, the runtime system does not ensure data

consistency among concurrent jobs, i.e., if di�erent jobs update the same data, then

they must be explicitly serialized by the HCP using system primitives. The data

management system uses a MSI cache coherence protocol, similar to StarPU [12],

to enable data replication and ensure consistency among replicas, which combined

with lazy data transfers reduces data movement overheads. Data pre-fetching and

overlapping of asynchronous data transfers with computation are also supported to

further reduce communication overheads.

In order to e�ectively handle both regular and irregular workloads the runtime

system supports two types of kernels: consumer and consumer-producer kernels.

Consumer kernels imply the complete processing of a data element. These are well

suited for regular workloads, since imbalances among basic work units within the



June 2, 2014 10:44 WSPC/INSTRUCTION FILE ppl

8

same task are unlikely. Consumer-producer kernels, inspired on Tzeng's persistent

kernels [10] (see also Section 2), deal with the fact that irregular workloads imply

highly unbalanced computational and memory demands across data elements. On

wide SIMD/SIMT architectures this would result on underutilization of the devices'

CUs. Building on the fact that irregular data parallel workloads consist on perform-

ing some fundamental operation to each data element an unknown number of times,

the basic work unit is now de�ned as this fundamental operation, rather than the

complete processing of a data element.

A consumer-producer kernel applies this basic work unit to a data element and,

if required by the algorithm, dynamically generates a number of new basic work

units, which are then rescheduled within the device by resorting to a queuing sys-

tem � this process is referred to as intra-device scheduling and allows balancing

the irregular workload and increasing resource utilization within each device. Back

to the path tracer example introduced in Section 2, a consumer kernel would follow

the entire path, eventually leading to imbalances when paths have di�erent lengths;

a consumer-producer kernel would follow a single segment of the path, i.e., a ray

(and, eventually, associated shadow rays), generating a new basic work unit (a new

path segment) at each intersection point until the path �nishes. By rescheduling

the newer generations of basic work units within the device, imbalances due to the

irregularity of the workload can be minimized. It is the responsibility of the appli-

cation programmer to decide whether a consumer or a consumer-producer kernel

is to be used for each job; for a deeper discussion of this subject, please refer to

Section 4 and 6.4.

Note that consumer kernels are launched by the runtime system on the host,

associated with the respective device context and parameterized with the task to

process (i.e., the respective set of basic work units) and the data required to process

this task. The consumer kernel allows the application programmer to freely map the

task workload onto the device resources, granting it complete control over the device

and enabling the use of lower level programming tools, such as CUDA [23], or highly

optimized libraries, such as CuBLAS [24] or the Intel Math Kernel Library [25].

Consumer-producer kernels, on the other hand, are under complete control of the

runtime system � the latter is in fact running a persistent kernel [10], which calls

the consumer-producer kernel, provided by the application programmer, in order

to process basic work units � thus precluding the utilization of such third party

libraries. Since consumer-producer kernels are intended to wide SIMD/SIMT ar-

chitectures, these operate over sets of basic work units with the same cardinality

as the SIMD lane width. For path tracing on a NVIDIA GPU, for instance, the

consumer producer kernel traces a single segment of the path, but 32 instances are

simultaneously scheduled and executed in lock-step, as a warp, to trace 32 path

segments that have been extracted from the respective task by the runtime system.
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3.2. Programming Interface

Applications are expressed using a HCP that enables the programmer to use the

proposed mechanisms. Code block 1 illustrates the HCP for the path tracer appli-

cation. Domains for the resulting pixels radiance and for the geometry are created

and linked to the corresponding data structures (Lines 6 and 7). A job is then cre-

ated, associated with the domains, parameterized and associated with the devices

architecture speci�c kernels (Lines 9 to 15). The job is launched, the HCP is told

to wait for the job to �nish and the computations results, stored onto one domain,

are gathered by the host under explicit demand by the HCP (Lines 17 to 19). The

HCP is completely agnostic of the number of existing devices and only depends on

the existing architectures in the sense that a kernel has to be speci�ed for each.

1 HCP_PATHTRACER () {
2 RGB* pixelsRadiance = new RGB[PIXEL_COUNT ];
3 Geometry *geometry = new Geometry ();
4 (...)
5

6 Domain <RGB >* d_pixelsRadiance = new Domain <RGB > ("RAD", pixelsRadiance ,
dim_space(0, PIXEL_COUNT));

7 Domain <char >* d_geometry = new Domain <byte > ("GEO", geometry , dim_space (0,
GEOMETRY_SIZE));

8

9 Job_PATHTRACER* t = new Job_PATHTRACER ();
10 t->associate_domain(d_pixelsRadiance ,d_geometry ,...);
11 t->camera = CAMERA;
12 t->SPP = SPP;
13 (...)
14 t->associate_kernel(CPU , &CPU_pathtracer_kernel);
15 t->associate_kernel(GPU , &GPU_pathtracer_cpkernel);
16

17 AddJob(t);
18 WaitForAllTasks ();
19 GetDomain(d_pixelsRadiance);
20 }

Code block 1: Pathtracer host control program

Code block 2 presents a high level excerpt of a consumer kernel for pathtracing

on the GPU. The appropriate domain is gathered from the runtime system, followed

by gathering the appropriate basic work unit � on this example this is represented

by the �rst ray the kernel will have to trace and shade (Lines 3 and 7). Then the it-

erative intersect and shade of the sample path is performed, using Russian roulette

to stochastically decide whether the path should continue or not. The result of

this basic work unit is then written onto the domain. Code block 3 illustrates a

consumer-producer kernel for the same application and device. The main di�erence

is the loop removal since the processing of a sample is now transformed into a se-

quence of an unknown number of basic units. After intersection and shading, and

depending on the result of the Russian roulette, a new basic work unit is created

and submitted to the runtime system for scheduling within the device (Line 12).

Finally the result is accumulated onto the domain. Together with the data parti-
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1 GPU_pathtracer_ckernel(TASK* task) {
2 Domain <RGB > pixelsRadiance;
3 task ->GetDomain ("RAD", pixelsRadiance);
4

5 RayHit hit;
6 RGB result_rad;
7 Ray ray = getRay(task);
8

9 do {
10 Intersect(ray , hit , ...);
11 continue = ShadeAndRussianRoullete(result_rad ,...);
12 } while (continue);
13

14 int pixel_id = getPixelID(task);
15 pixelsRadiance ->at(pixel_id) = result_rad;
16 }

Code block 2: Pathtracer GPU consumer kernel

1 GPU_pathtracer_cpkernel(TASK* task) {
2 Domain <RGB > pixelsRadiance;
3 task ->GetDomain ("RAD", pixelsRadiance);
4

5 RayHit hit;
6 RGB result_rad;
7 Ray ray = getRay(task);
8

9 Intersect(ray , hit , ...);
10 continue = ShadeAndRussianRoullete(result_rad ,...);
11

12 if (continue) newBWU ();
13

14 int pixel_id = getPixelID(task);
15 pixelsRadiance ->at(pixel_id) += result_rad;
16 }

Code block 3: Pathtracer GPU consumer-producer kernel

tioning method and additional kernels for each supported device architecture, these

code blocks illustrate all the functionality the application programmer has to pro-

vide in order to be able to execute it on heterogeneous systems and transparently

bene�t from multi-device data management and dynamic workload distribution and

balancing. Automatic extraction of architecture speci�c kernels from some generic

speci�cation is an interesting feature that would further decrease the user provided

code; we intend to address it on the near future.

3.3. System Architecture

Figure 1 illustrates the run-time system architecture and how the di�erent enti-

ties cooperate with each other. All the communication between the application and

the framework is done through the API, which is one of the main entities along

with the Scheduler, Performance Model (discussed in Section 4.1) and Data Man-

agement System. The system has a central job queue from where the Scheduler

dequeues jobs upon device request and, using the data partitioning methods and



June 2, 2014 10:44 WSPC/INSTRUCTION FILE ppl

11

Application

Scheduler

Performance 
Model

Data 
Management 

System

Job Queue

...

A
P

I

JobJobJob

Run-time

Dependency 
constraints

T

..
.

Job

Kernel

Job

Kernel

Device

Global Inbox Queue

Stream
 Multiprocessor 1

Device global memory

Local inbox queue

Local outbox queue

Stream
 Multiprocessor N

Local inbox queue

Local outbox queue

..
.

A
P

I

1 Data partitioning B

A

E

2

3

4 3

5 6

7

8

9

10

Consumer execution model scope

Consumer-producer execution model scope

..
.

Job

C - P Kernel

M
E

M DEV

D
riv

er
 A

P
I

C Kernel

M
E

M

DEV

D
riv

er
 A

P
I

C Kernel

C - P Kernel
Q

A
P

I
T

Q

CD

Device ControllerQueue

Data item

H
C

P

10

Fig. 1: Framework and persistent kernel architecture and work �ow. (1) Application jobs and
dependency constraints are submitted to the system by implementing the HCP using the API; (2)
through the API, the user will register data in DMS and gather the results back; (3) the number
of data elements to process is provided as well as user-provided information to the performance
model if applicable; task execution information may also be provided from the devices to the
Performance Model; (4) application-speci�c data partition methods de�ned; (5) jobs are enqueued
in the main queue; (6) the scheduler dequeues and enqueues jobs or tasks from the main queue;
(7) the scheduler assigns a job to a device, reasoning about job workload and device compute
capabilities which will potentially trigger data partitioning methods to create a properly sized task;
(8) task is enqueued in device queue; (9) the device controller signals data movements required
for the task; (10) device controller signals for task execution using the user-provided kernel. In
an irregular application consumer kernels are replaced with built-in persistent kernels; these use
the following task processing model: (A) if space available in local inbox queue (LIQ) try-lock
global inbox queue (GIQ) and dequeue tasks; (B) Retrieve tasks and execute them using the user-
provided consumer-producer kernel; (C) If there is not enough room in local outbox queue (LOQ)
and in LIQ to store all secondary tasks, force GIQ lock and enqueue all the elements from the
LOQ; (D) Store generated tasks in LOQ; (E) Enqueue in LIQ elements from LOQ. If LIQ is full
try-lock GIQ.

the information provided by the Performance model, produces the proper sized task

and assigns it to the device. Each device in the system has its own queue and asso-

ciated control thread running on the host, enabling asynchronous data and control

�ow using system messages. This distributed-like system increases scalability since

the devices will request work asynchronously and process tasks' data concurrently.

The devices' queues support an execution window of tasks enabling computation

overlapping with data transfers and data pre-fetching. The rightmost block of this

Figure illustrates how consumer-producer kernels are supported through a persis-

tent kernel and how intra-device scheduling is achieved. Note that this requires the

runtime system to manage the kernel execution within the device, whereas with con-

sumer kernels the application code has complete control of kernel execution within

the device. Each device architecture supported by the framework requires the de-

velopment of a Device API implementation, allowing the framework to perform

low level operations such as initiating computations or copying data to/from the
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device. The Device API is transparent to application programmers, but explicitly

managed by the framework developers. For instance, a system with three NVIDIA

GPUs and two CPUs requires two Device API implementations, one for the GPUs

and another for the CPUs. For each of these implementations, alternative program-

ming and execution environments might be selected; for example, either CUDA or

OpenCL might be used to control the GPUs.

4. Scheduling

Scheduling is handled by the proposed framework at two di�erent levels: inter and

intra-device scheduling. The former partitions the job's workload into tasks and

assigns them to individual devices, whereas the latter distributes a given task basic

work units among the device computational units (CU). The goal is to minimize

execution time by keeping the workload distribution well balanced among compu-

tational resources. Even though scheduling is a major component of the proposed

framework it is transparent to the application programmer.

4.1. Inter-device Scheduling

Inter-device scheduling is performed by resorting to a demand driven strategy, where

tasks are assigned upon device request. When a device �nishes a task it signals

the scheduler, indicating that it is available for further processing. The scheduler

then fetches a job, decides the new task size by applying the partitioning strategy

described below, applies the data partitioning method to get the proper sized task

and submits the task for execution to the requesting device.

Demand driven has been preferred over the HEFT scheduling algorithm [19],

which is used by StarPU, since the latter makes its decisions based on an initial

sampling of the workload behavior. However, the behavior of irregular workloads

is mostly unpredictable by de�nition and thus we conjecture that HEFT is not

appropriate for this kind of workloads. Demand driven has been shown to be able

to cope with a wide range of workload pro�les and with devices with diverse com-

puting power. By partitioning a job's workload into a number of tasks larger than

the number of devices and then assigning tasks on demand it adapts to both the

workload requirements and the devices' capabilities.

However, scheduling overheads are also dependent on the number of tasks. A

heterogeneous system is expected to have devices with very di�erent computing

powers, which would require a large number of tasks in order to maintain load

balance, severely impacting on scheduling overheads. The total number of tasks

can be reduced by tailoring the task size to the relative computing power of the

device where it is being scheduled; this is the responsibility of the work partitioning

strategy.

Let Cd represent the computing capability of device d, de�ned according to some

performance model. Results presented on Section 6 are based on the devices' the-

oretical peak performances, as announced by the respective manufacturers. This
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might not be the metric that guarantees the best results, particularly for irregular

workloads. However, it is beyond the scope of this paper to select and evaluate the

most appropriate performance modelling technique. In fact, the proposed frame-

work takes a modular approach towards the performance model, allowing it to be

replaced without impacting on the remaining runtime system architecture. This

modularity assures that more e�cient performance models and appropriate met-

rics, eventually resorting to dynamic approaches, can be used in the future. Cd is

normalized according to Equation 1 to represent relative computing capability with

respect to the other devices present on the heterogeneous system. Tdevices is the

total number of computing devices.

C̄d =
Cd

max (C1, ..., CTdevices
)

(1)

The size of the task to assign to the requesting device, expressed in terms of the

number of data elements to process (or basic work units), is then given by Equation 2

N

dd
× C̄d (2)

where N is the job's total number of basic work units and dd is a system constant

that allows control over the tasks' granularity, assuring that the total number of

tasks is signi�cantly larger than the number of devices, as required for a demand

driven strategy to be able to properly balance the workload. For instance, consider

a system composed by a GPU and a CPU where the performance model dictates

that the normalized relative compute capabilities are 1.0 and 0.3 to the GPU and

CPU, respectively, and let dd be equal to 10. Upon receiving a work request, the

scheduler will fetch a job, say with 1000 basic work units (BWU), and assign a task

with 100 BWUs if the requesting device is a GPU or with 30 BWUs if it is a CPU.

4.2. Intra-device Scheduling

Intra-device scheduling, as described on this section, applies only to consumer-

producer kernels and irregular workloads; for consumer kernels the application pro-

grammer has complete control over the device and is able to freely map the task

workload onto the device's CUs, as described on Section 3. Intra-device scheduling

exploits the fact that irregular workloads can be seen as applying some fundamen-

tal operation to each data element an unknown and unpredictable number of times;

the basic work unit is thus rede�ned as this fundamental operation, rather than the

complete processing of a data element. This view enables a work-spawn strategy

where the execution of a basic work unit leads to the potential spawning of one

or more dynamically generated new basic work units. In order to e�ciently handle

this mechanism within a SIMD/SIMT device we implemented a generic pipeline

that features most of the techniques proposed by Tzeng et. al [10].

A GPU is a SIMT device that schedules bundles of threads with the same car-

dinality as a SIMD lane � on NVIDIA GPUs these bundles contain 32 threads and
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are referred to as warps. Since warps are executed in lockstep, code divergence and

uncoalesced memory accesses should be minimized for performance maximization.

However, irregular applications tend to exhibit divergence and unpredictable mem-

ory accesses. The execution model of our persistent kernel follows a SIMD lane

programming approach that cooperates with the hardware scheduler to manage

these lanes � Figure 1. Each lane is endued with two local queues for getting work

to consume and to store locally generated new basic work units, respectively Lo-

cal Inbox Queue (LIQ) and Local Outbox Queue (LOQ). Work is shared among

di�erent SIMD lanes by using a device Global Inbox Queue (GIQ) with a try-lock

mechanism to avoid contention. Each lane will fetch a bundle of 32 basic work units

(on NVIDIA GPUs) and call the consumer-producer kernel, using a callback mech-

anism, in order to process all fetched basic work units. Dynamically generated basic

work units are stored on the LOQ and eventually moved to the GIQ in order to

allow execution on other SIMD lanes. This enables transparent access to SIMD lane

programming and intra-device scheduling by the application programmer, which is

now able to maximize application code convergence and coalesced memory accesses

assuming that all 32 basic work units will be executed within a single lane.

5. Experimental Setup

This section presents the applications used to evaluate the e�ectiveness of the

proposed model and associated framework. These include a regular application

(matrix multiplication (MM)) and three irregular applications (a Barnes-Hut n-

body simulation (BH), a path tracer (PT) and a Fluorescence simulation (FL)).

The computing system used to obtain the results analysed in Section 6 is also de-

scribed.

5.1. Applications

Being a regular application, only the consumer kernel is provided for the matrix

multiplication. In order to compute an element Cij of the result matrix, the kernel

performs a dot product between the row Ai and column Bj of the factor matrices.

The kernel uses the CuBLAS and the Intel Math Kernel Library optimized libraries

for the GPUs and CPUs kernels, respectively. A reference version executing on a

single GPU was developed with CuBLAS for performance comparison purposes.

The Barnes-Hut algorithm [26] casts an n-body simulation as a hierarchical prob-

lem, reducing its complexity to O(N log(N)). The goal is to compute the force ex-

erted on each particle of the data set by all other particles of the same set. The BH

algorithm orders the particles by resorting to an octree (in 3 dimensions). When

computing the resulting force, if a voxel is farther away from the particle being

processed than a given threshold, then all the particles contained in that voxel are

approximated by their center of mass and the sub-tree associated with the voxel

can be pruned. The unpredictability of which nodes of the octree will be visited

for each particle renders the workload irregular. A consumer kernel will, for each
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particle in the data set, traverse the octree, deciding which nodes to visit and which

to prune and �nally computing the resulting force � the basic work unit is thus

computing the force for one particle of the data set. A consumer-producer kernel

entails visiting one node of the octree and deciding which of its children to visit and

which to approximate. All those children nodes that have to be visited result on

the generation of new basic work units, which will be rescheduled within the device

by the runtime system. On wide SIMD/SIMT devices, such as the GPUs, basic

work units will be executed in groups with the same cardinality as the SIMD lane

width (32 for current NVIDIA GPUs). In order to increase coherence within each

SIMD lane, particles are initially sorted such that neighboring particles have high

probability of being scheduled onto the same SIMD lane [27]; neighboring particles

have high probability of visiting the same regions of the octree.

Monte Carlo Path Tracing (PT) is a well known ray tracing based rendering

algorithm. It entails following light paths from the eye into the scene; at each inter-

section point radiant �ux is gathered from the light sources using a given number of

shadow rays and the continuation of the path is stochastically decided using Rus-

sian Roullette; if continued, a new ray is spawn, its direction being stochastically

determined. The Russian Roullette path termination approach and the stochastic

direction of each new ray render the workload irregular. On wide SIMD/SIMT ar-

chitectures, coherent path tracing [28] is used, where the random numbers used to

decide about path termination and new ray direction are the same for all threads

within a SIMD lane. This will make paths within the same SIMD lane coherent

(same length, same overall directions), which results on perceivable image artifacts;

these artifacts are eliminated by shu�ing the paths on the image plane before

tracing them, thus avoiding spatial neighborhood among coherent paths [28]. A

consumer kernel entails processing the whole path, whereas a consumer-producer

kernel processes a segment of the path, i.e., one ray plus associated shadow rays

and, if the path is continued, generates a new basic work unit with the new ray. The

image plane is divided into multiple pixels and in order to increase image conver-

gence multiple samples (i.e. light paths) are taken per pixel (SPP). Each sample is

processed independently and the more samples, the better the image convergence,

but the workload increases and more irregular paths are processed. We will use the

SPP parameter to express the workload size as it is one of the parameters with

major impact in image rendering and also impacts algorithm irregularity, which we

propose to address. Our basis pathtracing code was extended from the SmallLux

renderer [29]; a reference version of SmallLux running on a single GPU is used for

performance comparison purposes.

The Monte Carlo simulation of light transport with �uorescence in multi-layered

tissues (FL) is frequently viewed as a reference method, whose results can be used to

validate other less demanding methods [8]. It is based on following a packet of pho-

tons along random walk steps within a multi-layered media with complex structure,

the size of each step being stochastically generated according to the media optical

properties. After each step a fraction of the photon packet's energy is absorbed and
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a new step and scattering direction are stochastically chosen according to the cur-

rent tissue layer properties. When a boundary between di�erent layers, or between

a tissue layer and the exterior, is crossed by the packet it might be either entirely

transmitted into the new layer or re�ected back into the same layer; this decision

is once again made by resorting to a stochastic process and the optical properties

of both layers. The random walk is continued until the photon packet exits the

tissue or its termination is decided by Russian Roullette. Fluorescence emission is

simulated by deciding, after each step, whether a fraction of the absorbed energy,

as given by the quantum yield optical property of the tissue layer, is re-emitted as a

new �uorescent photon packet with a di�erent wavelength; this decision is made by

resorting to Russian Roullette. Fluorescent photon packets are propagated through

the media using Monte Carlo simulation, with the same algorithm as the original

excitation packets, except that they will not generate further �uorescent packets

since their wavelength will not trigger this phenomenon. The basic work unit for a

consumer kernel entails simulating all steps of a photon packet and respective �uo-

rescent packets until they exit the media or are terminated by the Russian Roullette

process. The consumer-producer kernel processes a single step of a photon packet

random walk; a new basic work unit is created if the random walk is continued and

an additional one is created for each emitted �uorescent packet.

Even though PT and FL resort to Monte Carlo simulations, the associated work-

loads exhibit some fundamental di�erences. The former entails tracing rays through

the scene 3D volume, which is a computational expensive procedure, whereas the

latter does not involve any tracing. In fact, FL just requires advancing the photon

packet position along the random walk step direction; boundary crossing among

layers is veri�ed by checking the Z coordinate, since the modelled layers are aligned

with the XY plane and thus all boundaries are perpendicular to the Z axis. Con-

sequently, the basic work unit for the consumer producer kernel involves much less

computation for FL than for PT. Additionally, for FL all photon packets are shot

into the media through the same in�nitesimal point, i.e., all random walks have the

same origin. This is in contrast with the PT application where all paths initiate

at di�erent points of the image plane. This particularity hinders the application of

coherence increasing techniques, such as the coherent path tracing technique used

for PT. On wide SIMD/SIMT architectures, and for the consumer kernel, threads

within a SIMD lane are thus expected to be more incoherent for FL than for PT,

exhibiting larger code divergence, load imbalance and irregularity of memory ac-

cesses; the consumer producer kernel has the opportunity to minimize load imbal-

ances within a device since new basic work units are rescheduled after each random

walk step. Furthermore, in FL a photon packet can contribute to any voxel within

the grid embedded in the tissue, whereas in PT a path only contributes to the pixel

where it is originated: contention in memory writes, which are solved by resorting

to atomic operations, is thus much more frequent in FL than in PT. Also, each

task in PT requires a number of memory management operations, such as dynamic

allocation and data copying, which is not required in FL. This is due to the fact that
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each task entails generating a tile of the image plane which is dynamically allocated

by each device; such requirements do not exist in FL, where the above referred grid

of voxels is only allocated once on each device, given that any thread can write to

any voxel and the grid is much smaller than the �nely sampled image plane. Such

memory management operations represent an implementation penalty that might

harm PT's e�ciency. Finally, PT basic work units with the consumer-producer ker-

nel have a branching factor of 1, i.e., after tracing a ray in the path if the random

walk continues a single new task is generated with the new secondary ray. FL can

have a branching factor of 2, since a new �uorescent photon packet can be created;

the higher branching factor will impact on the results.

5.2. Heterogeneous Systems Metrics

Speedup, S(p), and e�ciency, E(p), are two metrics often used to report and analyse

the performance of homogeneous parallel systems with p processors. If Tp and T1 are

the execution times of the parallel and uniprocessor systems, respectively, then these

are given by Equations 3 and 4. S(p) is a measure of how faster the parallel system

is than a sequential one and E(p) constitutes a measure of resource utilization.

S(p) =
T1

Tp
(3)

E(p) =
S(p)

p
(4)

The problem with the above metrics is that they are de�ned for the homogeneous

case, where all p processors are identical. Similar metrics have been de�ned for the

heterogeneous case [30, 12] and are used on this paper to analyse the experimental

results.

Let W de�ne the workload associated with solving a given problem and Tdev be

the execution time of that workload on a given device. Then the device's observed

computing capacity, Cdev for that problem is given by Cdev = W
Tdev

. Identically, if

the execution time of that workload on a given heterogeneous set D of devices is

TD, then CD = W
TD

. The heterogeneous speedup, Sh(D), relatively to the execution

time on some given single reference device ref is then given by Equation 5:

Sh(D) =
Tref

TD
=

CD

Cref
(5)

Intuitively, the computing capacity available on the set D of devices is given by

the sum of the individual capacities of all devices in D, i.e., C∗D =
∑

i∈D Cdevi =

W
∑

i∈D
1

Tdevi
. Heterogeneous e�ciency can now be de�ned as the ratio of used

computing capacity over the available capacity:

Eh(D) =
CD

C∗D
=

1
TD∑

i∈D
1

Tdevi

(6)
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In Section 6.2 we perform a strong scalability analysis (constant problem size,

i.e., constant W) by using Eh(D) for di�erent heterogeneous sets of devices D.

Equation 6 shows that if, due to algorithmic and implementation penalties, the

used computing capacity, CD, grows at a lower rate than C∗D , then Eh(D) will

become smaller as the number of devices in D increases.

5.3. Computing System

The computing system used to assess the proposed framework is equipped with

two Intel Xeon CPU E5649, each running at 2.53GHz with six cores and 12GB of

memory RAM. The platform is also equipped with a NVIDIA Fermi GTX 480

with 480 CUDA cores and 1.5 GB of memory, plus two NVIDIA Tesla C2070,

with 448 CUDA cores with 6GB of memory. The code was compiled with the GNU

C compiler 4.6 and NVCC compiler, provided by CUDA toolkit 5.5, in a LINUX

operating system.

6. Results

This Section presents and discusses experimental results with respect to intra-device

scheduling of irregular workloads, performance scalability and a comparison with a

state of the art framework � StarPU.

6.1. Scheduling Irregular Workloads

Irregular applications imply unbalanced computational demands across data ele-

ments, which, on wide SIMD architectures, would result on severe resource under-

utilization. Consumer-producer kernels are thus proposed as the means to avoid

this potential performance penalty. Figure 2 presents performance comparisons for

the consumer and consumer producer-kernels, labelled as FULLT (from full traver-

sal) and PKERNEL (from persistent kernel), respectively, for the BH, PT and

FL applications with di�erent problem sizes and using a single GPU. Speedup of

the consumer-producer kernel over the consumer kernel is also presented in the

rightmost axis. Note that Figure 2b depicts PT throughput, expressed in MRays/s,

instead of execution time. Throughput will be used throughout this paper for PT

because it provides an abstraction to the light transport model details and algo-

rithms' implementation. A further reason to use throughput is that the performance

of PT will be compared to a reference path tracing version using SmallLux (Table 3).

SmallLux uses a slightly di�erent light transport model that results on tracing di�er-

ent numbers of rays; by reporting rays per second, for the same scene and rendering

parameters, performance comparisons can be made.

The consumer-producer approach provides a very signi�cant speedup for both

the path tracer (40% better) and �uorescence (84% better), while performing about

20% worse in the BH problem. While the basic work unit for the BH consumer-

producer kernel consists on a very light task (deciding, for one node of the octree,
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Fig. 2: Performance comparison between FULLT and PKERNEL on a single GPU. Note the
left-handed y-axis and x-axis in log scale and right-handed y-axis in linear scale.

whether its children have to be visited and computing the resulting force for those

that are not), in PT for instance, this is a demanding task, requiring tracing a ray

and associated shadow rays as well as shading computations. Our hypothesis is that

the workload associated with each BH basic work unit is not enough to compensate

the overheads associated with queuing and scheduling the dynamically generated

basic work units. In order to verify this hypothesis we added a parameterizable

synthetic workload (SW � computing the Fibonacci sequence up to a given index,

whenever an octree node is visited) to the Barnes-Hut consumer and consumer-

producer basic work units.

Figure 3 depicts the observed speedups for both BH and PT applications � ac-

tual values shown in Table 1. Note that in BH, as the SW increases the consumer-

producer kernel becomes more e�ective (maximum of 53% faster according to

Table 1a) than the consumer kernel, which corroborates the above cited hypoth-

esis. The PT result also corroborates the above conclusions. As the load per basic
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Fig. 3: Load impact in performance, expressed in terms of speedup of the consumer-producer kernel
over the consumer one. Number of shadow rays per shading point in PT (upper horizontal axes)
and synthetic load for BH (lower horizontal axes). Note that both horizontal axes are in log scale.

Table 1: Speedup values for load impact in performance as we increase workload per BWU in BH
and PT.

(a)

BH

synthetic load speedup

0 0.75
20 0.78
40 0.92
80 1.22
160 1.53

(b)

PT

shadow rays speedup

2 1.25
4 1.25
8 1.25
16 1.26
32 1.27

work unit increases (expressed as the number of shadow rays cast per shading point

to assess the visibility of the light sources), speedup increases although at a marginal

rate compared to BH (Table 1b); this is due to the fact that, even with only one

shadow ray per point, the load associated with each basic work unit is enough to

overcome the overheads associated with the queuing system. Given that without

synthetic workload the consumer-producer kernel is not e�ective for BH, results

obtained with this application will not be further reported on this Subsection. BH

results with the consumer kernel without synthetic workload will be presented in

Section 6.2 to demonstrate that the proposed framework can still e�ectively handle

this kind of workloads.

Figure 4 shows the speedup obtained with the consumer-producer kernel over

the consumer kernel for the PT and FL applications with di�erent con�gurations

of multiple heterogeneous devices and for di�erent problem sizes. For a single GPU

the curves are the same as in Figure 2. In PT for multiple-device con�gurations the

achieved speedup increases monotonically with the problem size to a maximum of

1.42x with three GPUs and 400 SPPs. As for for the FL case, the speedup increases

until a certain workload and then stabilizes with a maximum of 1.96x with three

GPUs � see Section 6.2 for a discussion on why is the speedup obtained with FL
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Fig. 4: Performance comparison between consumer kernel and consumer-producer kernel with
multiple-device con�gurations when scheduling PT and FL irregular workloads. C stands for CPU
and G for GPU. Note that horizontal axis is in log scale.

signi�cantly larger than that of PT. These results clearly show that the consumer

producer kernel provides a clear gain over the consumer approach, and that this

gain is sustainable in the presence of multiple heterogeneous devices. Also note that

using this multiplicity of heterogeneous devices requires no additional programming

e�ort from the application developer, which is this work's main goal.

6.2. Performance Scalability

The goal of the proposed framework is to allow e�cient execution of irregular data

parallel applications on HS, while maintaining high programming productivity by

hiding from the programmer many of the details associated with such systems; this

is achieved by complying with the proposed programming and execution model.

Table 2: Performance values with multi-device con�gurations. C stands for CPU and G for GPU.

App Workload C G C+G 2xG C+2xG 3xG C+3xG

MM (sec) 7k x 7k doubles 12.14 4.16 3.61 2.31 2.16 1.64 1.60
BH (sec) 1024k particles 291.99 101.60 80.26 58.11 55.09 42.08 37.64

PT (MRays/sec) 400 SPP 5.39 10.86 13.43 19.16 23.82 27.03 30.63
FL (sec) 32M Photons 542.32 120.26 100.47 66.66 60.82 46.09 44.23

Figure 5 presents the performance gain for the selected applications executing on

increasing numbers of computational devices � actual values shown in Table 2. Since

it is a regular application, the consumer kernel is used in the matrix multiplication.

Also, since the consumer-producer kernel is not able to provide performance gains

with respect to the consumer kernel for BH, due to the very light workload associated

with each BWU, results are reported using the consumer kernel; the goal is to

verify whether performance gains are still obtained as the number of heterogeneous
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Fig. 5: Performance with multiple-device con�gurations. A consumer kernel type is used for the
MM and BH applications and a consumer-producer kernel in PT and FL. C stands for CPU and
G for GPU. Note the vertical axis in log scale.

devices increases. The consumer-producer kernel is used for the irregular PT and

FL applications. Figure 5a clearly shows that the regular matrix multiplication has

increased performance as more devices are added. The horizontal dashed line depicts

the execution time of the same problem on a single GPU using a reference version

developed using CUBLAS (the same library used within the framework provided

kernel); there is no performance penalty associated with using this framework for

a single GPU and there is a clear gain as more devices are added to the system,

since performance scales without any programmer e�ort (see Tables 2 and 3). With

the four devices working together, the runtime system is able to extract about 8x

speedup compared to the single (multicore) CPU con�guration.

Table 3: Performance values with multi-device con�gurations compared to a reference version
running on a single GPU. PT values di�er from Table 2 because a single shadow ray was used per
shading point. C stands for CPU and G for GPU.

App Workload C G Ref (G) C+G 2xG C+2xG 3xG C+3xG

MM 7k x 7k doubles (sec) 12.14 4.16 4.16 3.61 2.31 2.16 1.64 1.60
PT 400 SPP (MRays/sec) 5.03 12.91 12.15 14.42 22.25 25.96 32.23 34.27
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Figure 5b clearly shows that the BH application execution time decreases as

more devices are added, achieving a maximum 7.6x speedup compared with the

CPU con�guration (see also Table 2). Remembering that the consumer kernel is

being used for this highly irregular application, this result allows us to conclude that

consumer kernels can still be used e�ectively to handle irregular workloads. This

is particularly useful when an application would exhibit a very light workload per

BWU under a consumer-producer model, insu�cient to compensate the associated

overheads. In such cases, the consumer kernel can still be used and performance

will still increase with the number of devices.

Figure 5c depicts PT throughput, expressed in MRays/s, and clearly shows that

performance increases signi�cantly as devices are added to the system (the vertical

axis is in log scale). Table 3 compares the achieved performance with that obtained

with a reference single GPU path tracer based on SmallLux. Note that the values

reported for PT are slightly di�erent from those reported on Table 2 because now

a single shadow ray is being shot per shading point, whereas previously several

shadow rays were used. It is clear that the proposed approach su�ers no performance

penalization compared to the reference SmallLux and that ray throughput increases

with the number of devices.

Finally, for the FL application we get a similar plot, with performance increasing

with the number of devices and achieving a remarkable speedup of 12.26x to the

single CPU. These larger performance gains obtained with FL when compared to

PT result from the minimal memory management overheads associated with the

former (as explained in Section 5.1) and a large gain when using GPUs compared

to the CPU (according to Table 2 the GPU is 4.5x faster than the CPU for FL

and only 2x faster for PT). A 1.8x speedup can also be observed when adding a

Tesla to a GTX480 (the Tesla has one less SM) and 1.45x speedup when adding

another Tesla to the GTX480+Tesla con�guration (additional tests were performed

that reveled a 1.99x speedup from one Tesla to 2xTesla) � overheads associated with

increasing the number of devices are thus minimal for the FL case.

Performance scalability is achieved with minimum programmer e�ort: adding

devices with the same architectures only requires registering them through the

HCP, while adding devices with di�erent architectures (supported by the frame-

work through the device API) requires providing the respective kernels. Program-

ming productivity is thus preserved, while enabling e�cient execution of regular

and irregular applications on heterogeneous systems.

In order to measure how e�ectively the proposed framework uses the resources

available on the parallel heterogeneous system a strong scalability analysis is per-

formed using the heterogeneous e�ciency metric introduced in Section 5.2. Strong

scalability analysis entails studying how the system e�ciency varies with the number

of devices for a �xed workload (i.e., problem size). E�ciency is expected to decrease

with the number of devices, since overheads (such as devices' idleness due to load

imbalances, communication and runtime system management costs) increase. How-

ever, if e�ciency decreases in a very sublinear manner, the system is deemed scalable
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for �xed problem size. Ideally, the above mentioned overheads would be measured

directly; this is however not possible, since multiple management operations occur

concurrently and asynchronously. E�ciency analysis provides thus a robust tool to

assess the impact of such overheads.
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Fig. 6: Strong scalability: heterogeneous e�ciency for the four case studies. 7k x 7k matrix for
MM, 1024k particles in BH, 400 SPP for PT and 32M photons in FL.

Table 4: Strong scalability: heterogeneous e�ciency for the four case studies. 7k x 7k matrix for
MM, 1024k particles in BH, 400 SPP for PT and 32M photons in FL. C stands for CPU and G
for GPU.

Application C+G 2xG C+2xG 3xG C+3xG

MM 94% 92% 83% 85% 74%
BH 94% 97% 85% 92% 91%
PT 83% 99% 97% 98% 93%
FL 98% 99% 97% 99% 95%

Figure 6 illustrates the variation of heterogeneous e�ciency for the four appli-

cations with di�erent devices' con�gurations � Table 4 shows the corresponding

values. These results show that high e�ciency values (above 80%) are maintained

for all applications. MM exhibits slightly lower e�ciency values than the others

because it has a very low computation�communication ratio, i.e., the number of

arithmetic operations performed per byte read from memory is very low. There is

also a drop in e�ciency every time a CPU is added to a multiple GPU con�guration.

This happens because the CPU exhibits a much lower computing capacity (in the

terms de�ned in Section 5.2) than the GPUs for these applications, as can be clearly

seen in Figure 5 by comparing the C and G bars. It becomes thus extremely di�cult

for the runtime system to maintain the same e�ciency level when a relatively less

powerful device is added � remember however that this does not represent a loss in

performance for the general case, just a loss in e�ciency. Note that the e�ciency

reported for BH is lower than for PT and FL; however, the consumer kernel is be-
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ing used for this irregular application. These results con�rm that the conclusions

drawn above with respect to irregular applications with light workloads per BWU:

the consumer kernel can still be used, even though e�ciency values will be lower

than for more adequate irregular workloads.
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Fig. 7: Heterogeneous e�ciency with multiple workloads and multiple-device con�gurations. Con-
sumer kernel for MM and BH, consumer-producer kernel for PT and FL. C stands for CPU and
G for GPU.

Heterogeneous e�ciency for all four case studies across di�erent workloads and

number of devices is depicted in Figure 7. In the general case e�ciency increases

with the workload and values within the range of 80% to 100% are achieved for the

maximum tested workloads. It can thus be concluded that the proposed approach

scales well with problem size within the range of devices and workloads evaluated.

In the general case e�ciency decreases as the number of devices increases, par-

ticularly when the CPU is added to a con�guration based only on GPUs. This is

strong scalability and has been discussed before; overheads are expected to increase
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with the number of devices and the CPU contributes with a reduced computing ca-

pability compared to the GPUs, making it harder to maintain very high e�ciency

levels. E�ciency, nevertheless, drops sublinearly with the number of devices.

PT and FL achieve higher e�ciency than MM and BH across a wide range of

problem sizes, with FL still struggling for smaller workloads. MM presents the worst

e�ciency values and its scalability is the poorest across both dimensions: workload

and number of devices. This is due to the low computation-communication ratio.

However, it still exhibits an average 80% e�ciency and for the highest workload

e�ciency ranges from 74% to 94%, which are reasonable values considering the

memory access overheads. BH's e�ciency ranges between 80 and 98% for all problem

sizes, except for very small workloads, with maximum values being achieved with

two and three GPUs. This is a very good result since a consumer kernel is being

used for an irregular application, given that BH exhibits very low workload per

BWU. PT consistently achieves e�ciency values above 80% for all workloads and

system con�gurations. Even at low workloads PT performs well given the workload

associated with each BWU and in spite of the memory management costs associated

with tasks assignment as described in Section 5.1. Finally, FL has very low memory

management overheads which enables the system to achieve an average of 98%

e�ciency above 8 million photons. This is very close to the ideal case, demonstrating

that with the proper amount of work to suit available computer power and in the

absence of implementation penalties (such as dynamic memory allocation per task),

the overhead of the framework is properly compensated by the gains obtained with

an e�ective intra-device scheduling.

6.3. Comparison with StarPU

In order to further validate our approach we compare the proposed run-time system

with a state of the art heterogeneous system scheduling framework � StarPU [12].

Both run-time systems have similar data-management mechanisms, but StarPU

does not explicitly target irregular workloads, uses a di�erent inter-device schedul-

ing strategy and ignores intra-device scheduling. StarPU scheduling is based on the

Heterogeneous Earliest Finish Time (HEFT) algorithm [19] and in a history-based

performance modelling. The HEFT has demonstrated to achieve good results with

regular workloads on heterogeneous systems, but it does not address irregular work-

loads. We implemented the PT application in StarPU using the typical algorithm

equivalent to FULLT and compare with our run-time system using the consumer-

producer execution model. In StarPU, it is the user's responsibility to specify the

task granularity, therefore we have tested multiple grain sizes and selected the one

achieving the best results (240 tasks for most of the device con�gurations).

Figure 8 illustrates the speedup of our approach over StarPU with multiple

device con�gurations and di�erent workloads. With a single multi-core CPU our

framework achieves a fairly constant speedup of 1.30x. The di�erent tasks' sizes in

both frameworks results on di�erent behaviors that justify this speedup. The re-
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maining con�gurations clearly show the bene�t of using our intra-device scheduling

mechanisms. With a single GPU a consistent increase in speedup is observed up to

1.53. Adding a CPU reduces the speedup because the gain with the CPU is lower and

constant, but for the remaining con�gurations the speedup increases consistently

achieving a maximum of about 1.50 with 576 SPP. The persistent kernel approach

is able to balance the load within the GPU, which increases resource utilization and

also leverages the coherence exhibited by the algorithm. These results clearly show

that the proposed approach consistently achieves larger performance than StarPU

for irregular workloads and that this performance gain increases with the workload

size, thus favoring larger problem sizes. Also, even though speedups are reported

only for up to 4 devices (one multi-core CPU and three GPUs), the data suggests,

specially for larger workloads, that no in�ection point is about to be reached and

that additional devices would still exhibit signi�cant speedups over StarPU. This

conclusion has to be validated once we gain access to a system endowed with more

computing devices. Combined with a suitable and unpredictability tailored inter-

device scheduling our approach is thus able to deliver more performance and to

e�ciently exploit the available computing resources when compared with a state of

the art system designed for regular workloads such as StarPU.
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Fig. 8: Path tracing � Performance comparison with StarPU with multiple device con�gurations
when scheduling irregular workloads. C stands for CPU and G for GPU. Note that horizontal axis
is in log scale

6.4. Discussion: Consumer vs Consumer-Producer

The application programmer is responsible for selecting whether a consumer or a

consumer-producer kernel is used to implement a given job. A consumer kernel has

the advantages of allowing the utilization of optimized third party libraries and hav-

ing an associated execution and programming model familiar to most programmers.

A consumer-producer kernel explicitly handles load imbalances within a device, but

exhibits overheads associated with queue management. The latter should be pre-
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ferred over the former whenever the application workload is expected to be irregular,

in the sense that it exhibits unpredictable workload and memory access patterns,

which vary across elements of the data domain, and the workload per basic work

unit mitigates the queue management overhead. A very important result is that

it has been demonstrated that irregular applications that do not ful�ll this last

condition, can still scale well using a consumer kernel.

7. Conclusion and Future Work

This paper presented a framework for e�cient execution of data parallel irregular

applications on heterogeneous systems while maintaining high programming produc-

tivity. The framework integrates a uni�ed programming and execution model with

data-management and scheduling services, that keep the programmers agnostic to

HS particularities, allowing them to concentrate on the application functionality.

This paper concentrates on the programming model and on intra-device scheduling.

Reported results show that both regular and irregular applications scale well as

more devices are added to the computing system. They also show that intra-device

scheduling, based on consumer-producer kernels, is able to sustain signi�cant perfor-

mance gains over consumer kernels for irregular applications, as long as the workload

per basic work unit is enough to compensate the overheads associated with queuing

and scheduling the large number of dynamically generated tasks. If the application

exhibits a very low workload per basic work unit, then consumer kernels can still

be used.

The proposed framework has proven to enable e�cient exploitation of HS for

irregular applications, while requiring minimal programming e�ort: using additional

devices with architectures already exploited by the application only requires reg-

istering them through the HCP, while adding devices with di�erent architectures

(supported by the framework through the device API) requires providing the respec-

tive kernels. Expanding the framework support to new device architectures requires

developing API implementations for those architectures, a task to be entailed by

the framework developers, not application programmers. The run-time system was

further validated and compared with a heterogeneous system scheduling framework

� StarPU. Results reveal that our approach is able to outperform a state of the art

run-time system designed for regular workloads. This is, to the best of our knowl-

edge, the �rst published integrated approach that successfully handles irregular

workloads over heterogeneous systems.

In the future we are planning to extend the proposed framework to clustered

heterogeneous systems with further abstractions and mechanisms to maximize the

use of these systems while maintaining high programming productivity. We also aim

to provide support for emerging architectures such as DSPs and the brand new Intel

MICs, and to further assess the scalability of the proposed mechanisms with systems

with a larger number of devices. Finally, we plan to develop a mechanism to extract

architecture speci�c kernels from a generic kernel, written in some higher level
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language, which abstracts from particular execution models, inspired on approaches

such as the OpenMP 4 [31] and OpenACC [32] programming models.
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