
ar
X

iv
:1

21
0.

46
73

v1
 [

cs
.D

S
]

17
 O

ct
 2

01
2

Approximation algorithms for energy, reliability
and makespan optimization problems

Guillaume Aupy
LIP, ENS Lyon, France

Guillaume.Aupy@ens-lyon.fr

Anne Benoit
LIP, ENS Lyon, France & Institut Universitaire de France, Paris, France

Anne.Benoit@ens-lyon.fr

September 14, 2018

Abstract

In this paper, we consider the problem of scheduling an application on a par-
allel computational platform. The application is a particular task graph, either a
linear chain of tasks, or a set of independent tasks. The platform is made of iden-
tical processors, whose speed can be dynamically modified. It is also subject to
failures: if a processor is slowed down to decrease the energy consumption, it has
a higher chance to fail. Therefore, the scheduling problem requires to re-execute
or replicate tasks (i.e., execute twice a same task, either on the same processor,
or on two distinct processors), in order to increase the reliability. It is a tri-criteria
problem: the goal is to minimize the energy consumption, while enforcing a bound
on the total execution time (the makespan), and a constrainton the reliability of
each task.

Our main contribution is to propose approximation algorithms for these partic-
ular classes of task graphs. For linear chains, we design a fully polynomial time
approximation scheme. However, we show that there exists noconstant factor ap-
proximation algorithm for independent tasks, unless P=NP,and we are able in this
case to propose an approximation algorithm with a relaxation on the makespan
constraint.

1 Introduction

Energy-awareness is now recognized as a first-class constraint in the design of new
scheduling algorithms. To help reduce energy dissipation,current processors from
AMD, Intel and Transmetta allow the speed to be set dynamically, using a dynamic
voltage and frequency scaling technique (DVFS). Indeed, a processor running at speed
s dissipatess3 watts per unit of time [6]. However, it has been recognized that reducing
the speed of a processor has a negative effect on the reliability of a schedule: if a
processor is slowed down, it has a higher chance to be subjectto transient failures,
caused for instance by software errors [20, 11].

Motivated by the application of speed scaling on large scalemachines [15], we
consider a tri-criteria problem energy/reliability/makespan: the goal is to minimize the

1

http://arxiv.org/abs/1210.4673v1

energy consumption, while enforcing a bound on the makespan, i.e., the total execution
time, and a constraint on the reliability of each task. The application is a particular task
graph, either a linear chain of tasks, or a set of independenttasks. The platform is made
of identical processors, whose speed can be dynamically modified.

In order to make up for the loss in reliability due to the energy efficiency, we con-
sider two standard techniques:re-executionconsists in re-executing a task twice on a
same processor [20, 19], whilereplication consists in executing a same task on two
distinct processors simultaneously [2]. We do not considercheckpointing, which con-
sists in “saving” the work done at some points, hence reducing the amount of work lost
when a failure occurs [14, 18].

The schedule therefore requires to (i) decide which tasks are re-executed or repli-
cated; (ii) decide on which processor(s) each task is executed; (iii) decide at which
speed each processor is processing each task. For a given schedule, we can compute
the total execution time, also calledmakespan, and it should not exceed a prescribed
deadline. Each task has a reliability that can be computed given its execution speed
and its eventual replication or re-execution, and we must enforce that the execution of
each task is reliable enough. Finally, we aim at minimizing the energy consumption.
Note that we consider a set of homogeneous processors, but each processor may run at
a different speed; this corresponds to typical current platforms with DVFS.

Related work. The problem of minimizing the energy consumption without exceed-
ing a given deadline, using DVFS, has been widely studied, without accounting for
reliability issues. The problem for a linear chain of tasks is known to be solvable in
polynomial time in this case, see [3]. [1] showed that the problem of scheduling in-
dependent tasks can be approximated by a factor(1 + ε): they exhibit a polynomial
time approximation scheme (PTAS). [9] studied the performance of greedy algorithms
for the problem of scheduling independent tasks, with the objective of minimizing the
energy consumption, and proposed some approximation algorithms.

All these work do not account for reliability issues. However, [20] showed that
reducing the speed of a processor increases the number of transient failure rates of the
system; the probability of failures increases exponentially, and this probability cannot
be neglected in large-scale computing [15]. Few authors have tackled the tri-criteria
problem including reliability, and to the best of our knowledge, there are no approx-
imation algorithms for this problem. [19] initiated the study of this problem, using
re-execution. However, they restrict their study to the scheduling problem on a sin-
gle processor, and do not try to find any approximation ratio on their algorithm. [2]
have recently proposed an off-line tri-criteria scheduling heuristic (TSH), which uses
replication to minimize the makespan, with a threshold on the global failure rate and
the maximum power consumption. TSH is an improved critical-path list scheduling
heuristic that takes into account power and reliability before deciding which task to
assign and to replicate onto the next free processors. However, the complexity of this
heuristic is unfortunately exponential in the number of processors, and the authors did
not try to give an approximation ratio on their heuristic. Finally, [4] also study the
tri-criteria problem, but from an heuristic point of view, without trying to ensure any
approximation ratio on their heuristics. Moreover, they donot consider replication of
tasks, but only re-execution as in [19]. However, they present a formal model of the
tri-criteria problem, re-used in this paper.

Finally, there is some related work specific to the problem ofindependent tasks,
since several approximation algorithms have been proposedfor variants of the problem.

2

One may try to minimize theℓk norm, i.e., the quantity(
∑p

q=1(
∑

i∈load(q) ai)
k)1/k,

with p processors, wherei ∈ load(q) means that taskTi is assigned to processorq, and
ai is the weight of taskTi [1]. Minimizing the power consumption then amounts to
minimize theℓ3 norm [9], and the problem of makespan minimization is equivalent to
minimizing theℓ∞ norm, i.e., minimizemax1≤q≤p

∑

i∈load(q) ai [13, 5]. These prob-
lems are typicalload balancingproblems, in which the load (computation requirement
of the tasks) must be balanced between processors, according to various criteria.

Main contributions. In this paper, we investigate the tri-criteria problem of mini-
mizing the energy with a bound on the makespan and a constraint on the reliability.
First in Section 2, we formally introduce this tri-criteriascheduling problem, based on
the previous models proposed by [19] and [4]. To the best of our knowledge, this is the
first model including both re-execution and replication in order to deal with failures.
The main contribution of this paper is then to provide approximation algorithms for
some particular instances of this tri-criteria problem.

For linear chains of tasks, we propose a fully polynomial time approximation
scheme (Section 3). Then in Section 4, we show that there exists no constant fac-
tor approximation algorithm for the tri-criteria problem with independent tasks, unless
P=NP. We prove that by relaxing the constraint on the makespan, we are able to give
a polynomial time constant factor approximation algorithm. To the best of our knowl-
edge, these are the first approximation algorithms for the tri-criteria problem.

2 Framework

Consider an application task graphG = (V, E), whereV = {T1, T2, . . . , Tn} is the
set of tasks,n = |V |, and whereE is the set of precedence edges between tasks. For
1 ≤ i ≤ n, taskTi has a weightwi, that corresponds to the computation requirement
of the task.S =

∑n
i=1 wi is the sum of the computation requirements of all tasks.

The goal is to map the task graph ontop identical processors, with the objective
of minimizing the total energy consumption, while enforcing a bound on the total ex-
ecution time (makespan), and matching a reliability constraint. Processors can have
arbitrary speeds, determined by their frequency, that can take any value in the interval
[fmin, fmax] (dynamic voltage and frequency scaling with continuous speeds). Higher
frequencies, and hence faster speeds, allow for a faster execution, but they also lead to
a much higher (supra-linear) power consumption. Moreover,reducing the frequency of
a processor increases the number of transient failures of the system. Therefore, some
tasks are executed once at a speed high enough to satisfy the reliability constraint, while
some other tasks are executed several times (either on the same processor, or on differ-
ent processors), at a lower speed. We detail below the conditions that are enforced on
the corresponding execution speeds. The problem is therefore to decide which tasks
should be executed several times, on which processor, and atwhich speed to run each
execution of a task, as well as the schedule, i.e., in which order the tasks are executed
on each processor. Note that [4] showed that it is always better to execute a task at a
single speed, and therefore we assume in the following that each execution of a task is
done at a single speed.

We now detail the three objective criteria (makespan, reliability, energy), and then
define formally the problem.

3

2.1 Makespan

The makespan of a schedule is its total execution time. The first task is scheduled at
time 0, so that the makespan of a schedule is simply the maximum timeat which one
of the processors finishes its computations. Given a schedule, the makespan should not
exceed the prescribed deadlineD.

Let Exe(wi, f) be the execution time of a taskTi of weightwi at speedf . We
assume that the cache size is adapted to the application, therefore ensuring that the
execution time is linearly related to the frequency [14]:Exe(wi, f) = wi

f . Note that
we consider a worst-case scenario, and the deadlineD must be matched even in the
case where all tasks that are scheduled to be executed several times fail during their
first executions, hence all execution times for a same task should be accounted for.

2.2 Reliability

To define the reliability, we use the failure model of [20] and[19]. Transientfailures
are failures caused by software errors for example. They invalidate only the execu-
tion of the current task and the processor subject to that failure will be able to recover
and execute the subsequent tasks assigned to it (if any). In addition, we use the re-
liability model introduced by [17], which states that the radiation-induced transient
failures follow a Poisson distribution. The parameterλ of the Poisson distribution is

thenλ(f) = λ̃0 e
d̃ fmax−f

fmax−fmin , wherefmin ≤ f ≤ fmax is the processing speed, the
exponent̃d ≥ 0 is a constant, indicating the sensitivity of failure rates to dynamic volt-
age and frequency scaling, and̃λ0 is the average failure rate at speedfmax. We see
that reducing the speed for energy saving increases the failure rate exponentially. The
reliability of a taskTi executed once at speedf is

Ri(f) = e−λ(f)×Exe(wi,f).

Because the failure ratẽλ0 is usually very small, of the order of10−5 per time unit [2],
or even10−6 [7, 16], we can use the first order approximation ofRi(f) as

Ri(f) = 1− λ(f)× Exe(wi, f)

= 1− λ̃0 e
d̃ fmax−f

fmax−fmin × wi

f

= 1− λ0 e−df × wi

f
,

whered = d̃
fmax−fmin

andλ0 = λ̃0e
dfmax .

Note that this equation holds ifεi = λ(f)× wi

f ≪ 1. With, say,λ(f) = 10−5,
we needwi

f ≤ 103 to get an accurate approximation withεi ≤ 0.01: the task should
execute within16 minutes. In other words, large (computationally demanding) tasks
require reasonably high processing speeds with this model (which makes full sense in
practice).

We want the reliabilityRi of each taskTi to be greater than a given threshold,
namelyRi(frel), hence enforcing a local constraint dependent on the task:Ri ≥
Ri(frel). If task Ti is executed only once at speedf , then the reliability ofTi is
Ri = Ri(f). Since the reliability increases with speed, we must havef ≥ frel to
match the reliability constraint. If taskTi is executed twice (speedsf (1) andf (2)),
then the execution ofTi is successful if and only if one of the attempts do not fail, so

4

that the reliability ofTi is Ri = 1 − (1 − Ri(f
(1)))(1 − Ri(f

(2))), and this quantity
should be at least equal toRi(frel).

We restrict in this work to a maximum of two executions of a same task, either on
the same processor (what we callre-execution), or on two distinct processors (what we
call replication). This is based on the following observation on the two casesin which
a third execution of a task may be useful.

1. The deadline is such that even if all tasks are executed twice at the slowest possi-
ble speed, the execution time is still lower than the deadline. Then, the problem
is to decide which task should be executed three times, and itis quite similar to
the problem that we discuss in this paper.

2. Some tasks are too big to be re-executed while there remains some time such that
some small tasks can be executed at least three times at a speed even slower. In
this case, the gain in energy consumption is negligible compared to the energy
consumption of the big tasks at speedfrel.

Note that if both execution speeds are equal, i.e.,f (1) = f (2) = f , then the relia-
bility constraint writes1− (λ0wi

e−df

f)2 ≥ Ri(frel), and therefore

λ0wi
e−2df

f2
≤ e−dfrel

frel
.

In the following, finf,i is the solution to the equationλ0wi
e−2dfinf,i

(finf,i)2
= e−dfrel

frel
, and

hence taskTi can be executed twice at a speed greater than or equal tofinf,i while
meeting the reliability constraint. In practice,finf,i is small enough so that tasks are
usually executed faster than this speed, hence reinforcingthe argument that it is mean-
ingful to restrict to two executions of a same task.

2.3 Energy

The total energy consumption corresponds to the sum of the energy consumption of
each task. LetEi be the energy consumed by taskTi. For one execution ofTi at
speedf , the corresponding energy consumption isEi(f) = Exe(wi, f)×f3 = wi×f2,
which corresponds to the dynamic part of the classical energy models of the literature
[6, 8]. Note that we do not take static energy into account, because all processors are
up and alive during the whole execution.

If taskTi is executed only once at speedf , thenEi = Ei(f). Otherwise, if taskTi

is executed twice at speedsf (1) andf (2), it is natural to add up the energy consumed
during both executions, just as we consider both execution times when enforcing the
deadline on the makespan. Again, this corresponds to the worst-case execution sce-
nario. We obtainEi = Ei(f

(1)
i)+Ei(f

(2)
i). Note that some authors [19] consider only

the energy spent for the first execution in the case of re-execution, which seems unfair:
re-execution comes at a price both in the makespan and in the energy consumption.
Finally, the total energy consumed by the schedule, which weaim at minimizing, is
E =

∑n
i=1 Ei.

2.4 Optimization problem

Given an application graphG = (V, E) andp identical processors, TRI-CRIT is the
problem of finding a schedule that specifies which tasks should be executed twice, on
which processor and at which speed each execution of a task should be processed, such

5

that the total energy consumptionE is minimized, subject to the deadlineD on the
makespan and to the local reliability constraintsRi ≥ Ri(frel) for eachTi ∈ V .

We focus in this paper on the two following sub-problems thatare restrictions of
TRI-CRIT to special application graphs:

• TRI-CRIT-CHAIN : the graph is such that
E = ∪n−1

i=1 {Ti → Ti+1};

• TRI-CRIT-INDEP: the graph is such thatE = ∅.

3 Linear chains

In this section, we focus on the TRI-CRIT-CHAIN problem, that was shown to be NP-
hard even on a single processor [4]. We derive an FPTAS (FullyPolynomial Time
Approximation Scheme) to solve the general problem with replication and re-execution
on p processors. We start with some preliminaries in Section 3.1that allow us to
characterize the shape of an optimal solution, and then we detail the FPTAS algorithm
and its proof in Section 3.2.

3.1 Characterization

First, we note that while TRI-CRIT-CHAIN is NP-hard even on a single processor, the
problem has polynomial complexity if no replication nor re-execution can be used.
Indeed, each task is executed only once, and the energy is minimized when all tasks
are running at the same speed. Note that this result can be found in [3].

Lemma 1. Without replication or re-execution, solvingTRI-CRIT-CHAIN can be done
in polynomial time, and each task is executed at speedmax

(

frel,
S
D

)

.

Proof. For a linear chain of tasks, all tasks can be mapped on the sameprocessor,
and scheduled following the dependencies. No task may startearlier by using another
processor, and all tasks run at the same speed. Since there isno replication nor re-
execution, each task must be executed at least at speedfrel for the reliability constraint.
If S/frel > D, then the tasks should be executed at speedS/D so that the deadline
constraint is matched (recall thatS =

∑n
i=1 wi), hence the result.

Next, accounting for replication and re-execution, we characterize the shape of
an optimal solution. For linear chains, it turns out that with a single processor, only
re-execution will be used, while with more than two processors, there is an optimal
solution that do not use re-execution, but only replication.

Lemma 2 (Replication or re-execution). When there is only one processor, it is opti-
mal to only use re-execution to solveTRI-CRIT-CHAIN . When there are at least two
processors, it is optimal to only use replication to solveTRI-CRIT-CHAIN .

Proof. With one processor, the result is obvious, since replication cannot be used. With
more than one processor, if re-execution was used on taskTi, for 1 ≤ i ≤ n, we can
derive a solution with the same energy consumption and a smaller execution time by
using replication instead of re-execution. Indeed, all instances of tasksTj , for j < i,
must finish beforeTi starts its execution, and similarly, all instances of tasksTj, for
j > i, cannot start before both copies ofTi has finished its execution. Therefore, there
are always at least two processors available when executingTi for the first time, and

6

the execution time is reduced when executing both copies ofTi in parallel (replication)
rather than sequentially (re-execution).

We further characterize the shape of an optimal solution by showing that two copies
of a same task can always be executed at the same speed.

Lemma 3 (Speed of the replicas). For a linear chain, when a task is executed two
times, it is optimal to have both replicas executed at the same speed.

Proof. The proof for re-execution has been done by [4]: by convexityof the energy
and reliability functions, it is always advantageous to execute two times the task at the
same speed, even if the application is not a linear chain.

For replication, this lemma is only true in the case of linearchains. Indeed, because
of the structure of the chain, as explained in the proof of Lemma 2, both copies of a
task have the same constraints on starting and ending time, and hence it is better to
execute them exactly at the same time.

We can further characterize an optimal solution by providing detailed information
about the execution speed of the tasks, depending whether they are executed only once,
re-executed, or replicated.

Proposition 1. If D > S
frel

, then in any optimal solution ofTRI-CRIT-CHAIN , all
tasks that are neither re-executed nor replicated are executed at speedfrel. Fur-
thermore, letVr ⊆ V be the subset of tasks that are either re-executed or repli-
cated. Then, these tasks are all executed at the same speedfre-ex, if fre-ex ≥
max(fmin,maxTi∈Vr finf,i).

Proof. The proof forp = 1 (re-execution) can be found in [4]. We prove the result
for p ≥ 2, which corresponds to the case with replication and no re-execution (see
Lemma 2). Note first that sinceD > S

frel
, if no task is replicated, we have enough time

to execute all tasks at speedfrel.
Now, let us consider that taskTi is replicated at speedfi (recall that both replicas

are executed at the same speed, see Lemma 3), and taskTj is executed only once at
speedfj. Then, we havefj ≥ frel (reliability constraint onTj), and 1√

2
frel ≥ fi

(otherwise, executingTi only once at speedfrel would improve both the energy and
the execution time while matching the reliability constraint).

If fj > frel, let us show that we can rather executeTj at speedfrel andTi at a
new speedf ′

i > fi, while keeping the same deadline:wi

f ′
i
+

wj

frel
= wi

fi
+

wj

fj
. The

energy consumption is then2wif
′2
i + wjf

2
rel. Moreover, we know that the minimum

of the function2wif
2
1 + wjf

2
2 , given thatwi

f1
+

wj

f2
is a constant (wheref1 andf2 are

the unknowns), is obtained forf1 = 1
21/3

f2 (see Theorem 1 by [3]). Therefore, if the
optimal speed ofTj (i.e., f2) is strictly greater thanfrel, then the optimal speed for
Ti is f ′

i = f1 = 1
21/3

f2 > 1
21/2

f2 > 1
21/2

frel, that means that we can improve both
energy and execution time by executingTi only once at speedfrel. Otherwise, the
speed ofTj is further constrained byfrel, hence the previous inequality (f1 = 1

21/3
f2)

does not hold anymore, and the function is minimized forf2 = frel. The value off ′
i

can be easily deduced from the constraint on the deadline. This proves that all tasks
that are not replicated are executed at speedfrel.

Let M = max(fmin,maxTi∈Vr finf,i). We now prove that if two tasks are repli-
cated at a speed greater thanM , then both tasks are executed at the same speed.
Suppose thatTi and Tj are executed twice at speedsfi > fj ≥ M . Let f̃ =

7

fifj
wi+wj

wifj+wjfi
. Thenfi > f̃ > fj ≥ M , and therefore we can execute both tasks

at speedf̃ while keeping the same deadline and matching the reliability constraints.
By convexity, such an execution gives a better energy consumption. We can iterate on
all the tasks that are replicated, hence obtaining the speedat which each task will be
re-executed,fre-ex. This concludes the proof.

Following Proposition 1, we are able to precisely definefre-ex, and give a closed
form expression of the energy of a schedule.

Corollary 1. Given a subsetVr of tasks re-executed or replicated, letX =
∑

Ti∈Vr
wi,

and

fre-ex =

max
(

fmin,
2X

Dfrel−S+X frel

)

if p = 1;

max
(

fmin,
X

Dfrel−S+X frel

)

if p ≥ 2.

Then, iffre-ex ≥ maxTi∈Vr finf,i, the optimal energy consumption is

(S −X)f2
rel

+ 2Xf2
re-ex

. (1)

Note that the energy consumption only depends onX , and thereforeTRI-CRIT-
CHAIN is equivalent in this case to the problem of finding the optimal set of tasks that
have to be re-executed or replicated.

Proof. Given a deadlineD, the problem is to find the set of tasks re-executed (or repli-
cated), and the speed of each task. Thanks to Proposition 1, we know that the tasks
that are not in this set are executed at speedfrel, and given the set of tasks re-executed
or replicated, we can easily compute the optimal speed to execute each task in order
to minimize the energy consumption: all tasks are executed at the same speed, and we
haveλ X

fre-ex
+ S−X

frel
= D, with λ = 1 in the case of replication (p ≥ 2), andλ = 2 in

the case of re-execution (p = 1). Hence the corollary.

Remark.Note that if there is a taskTi ∈ Vr such thatfinf,i > fre-ex, then the optimal
solution for this set of replicated tasks is obtained by executingTi at speedfinf,i, and by
executing all the other tasks at a new speedfnewre-ex ≤ fre-ex, such thatD is exactly met.
We can do this recursively until there are no more tasksTi such thatfinf,i > fnewre-ex.
Using the procedure COMPUTE Vl(Vr) (see Algorithm 1), we can compute the optimal
energy consumption in a time polynomial in|Vr|.

Let (Vl, fre-ex) be the result of COMPUTE Vl(Vr). Then the optimal energy con-
sumption is(S −X)f2

rel +
∑

Ti∈Vl
2wif

2
inf,i +

∑

Ti∈Vr\Vl
2wif

2
re-ex .

Corollary 2. If D > S
frel

, TRI-CRIT-CHAIN can be solved using an exponential time
exact algorithm.

Proof. The algorithm computes for every subsetVr of tasks the energy consumption
if all tasks in this subset are re-executed, and it chooses one with the minimal energy
consumption, that corresponds to an optimal solution. It takes exponential time to
compute every subsetVr ⊆ V , with |V | = n.

Thanks to Corollary 1, we are also able to identify problem instances that can be
solved in polynomial time.

Theorem 1. TRI-CRIT-CHAIN can be solved in polynomial time in the following
cases:

8

Algorithm 1: Computing re-execution speeds; tasks inVr are re-executed.
procedure COMPUTE Vl(Vr)
begin

V
(0)
l = ∅;

f
(0)
re-ex =

max
(

fmin,
2X

Dfrel−S+X frel

)

if p = 1;

max
(

fmin,
X

Dfrel−S+X frel

)

if p ≥ 2.

j = 0;

while j = 0 or V (j)
l 6= V

(j−1)
l do

j := j + 1;

V
(j)
l = V

(j−1)
l ∪ {Ti ∈ Vr | finf,i > f

(j−1)
re-ex};

f
(j)
re-ex =

max

(

fmin,

∑

Ti∈Vr\V
(j)
l

2wi

D−S−X
frel

−
∑

Ti∈V
(j)
l

2wi
finf,i

)

if p = 1;

max

(

fmin,

∑

Ti∈Vr\V
(j)
l

wi

D−S−X
frel

−
∑

Ti∈V
(j)
l

wi
finf,i

)

if p ≥ 2.

return (V
(j)
l , f

(j)
re-ex);

1. D ≤ S
frel

(no re-execution nor replication);

2. p = 1, D ≥ 1+c
c

S
frel

, wherec is the only positive solution to the polynomial

7X3+21X2− 3X − 1 = 0, and hencec = 4
√

2
7 cos

1
3 (π − tan−1 1√

7
)− 1 (≈

0.2838), and for1 ≤ i ≤ n, finf,i ≤ 2c
1+cfrel (all tasks can be re-executed);

3. p ≥ 2, D ≥ 2 S
frel

, and for 1 ≤ i ≤ n, finf,i ≤ 1
2frel (all tasks can be

replicated).

Proof. First note that whenD ≤ S
frel

, the optimal solution is to execute each task only

once, at speedSD , sinceS/D ≥ frel. Indeed, this solution matches both reliability and
makespan constraints, and it was proven to be the optimal solution in Proposition 2
by [3] (it is easy to see that replication or re-execution would only increase the energy
consumption).

Let us now consider thatD > S
frel

. We aim at showing that the minimum of the
energy function is reached when the total weight of the re-executed or replicated tasks
is

{

c(Dfrel − S) if p = 1;
(Dfrel − S) if p ≥ 2.

Then necessarily, when this total weight is greater thanS, the optimal solution is to
re-execute or replicate all the tasks. Hence the theorem. Wedifferentiate the two cases
in the following (p = 1 or p = 2).

Case 1 (p = 1). We want to show that the minimum energy is reached when the
total weight of the subset of tasks is exactlyc(Dfrel − S). Let I = {i | Ti is executed
twice in the solution}, and letX =

∑

i∈I ai.

9

We saw in Corollary 1 that the energy consumption cannot be lower than(S −
X)f2

rel+2Xf2
re-ex wherefre-ex = 2X

Dfrel−S+X frel. Therefore, we want to minimize

E(X) = (S −X)f2
rel + 2X

(

2X
Dfrel−S+X frel

)2

.

If we differentiateE, we can see that the minimum is reached when−1+ 24X2

(Dfrel−S+X)2−
16X3

(Dfrel−S+X)3 = 0, that is,−(Dfrel−S+X)3+24X2(Dfrel−S+X)−16X3 = 0,
or

7X3+21(Dfrel − S)X2 − 3(Dfrel − S)2X − (Dfrel − S)3 = 0.

The only positive solution to this equation isX = c(Dfrel − S), and therefore the
minimum is reached for this value ofX , and thenfre-ex = 2c

1+cfrel.
WhenX ≥ S, re-executing each task is the best strategy to minimize theenergy

consumption, and that corresponds to the caseD ≥ 1+c
c

S
frel

. The re-execution speed

may then be lower than2c1+cfrel. Therefore, it may happen thatfinf,i > fre-ex for
some taskTi. However, even with a tighter deadline, it would be better tore-executeTi

at speed 2c
1+cfrel rather than to execute it only once at speedfrel. Therefore, since

finf,i ≤ 2c
1+cfrel, it is optimal to re-executeTi, at the lowest possible speed, i.e.,finf,i.

Note that this changes the value offre-ex, and the call to COMPUTE Vl(V) (see Algo-
rithm 1) returns tasks that are executed atfinf,i, together with the re-execution speed
for all the other tasks.

Case 2 (p ≥ 2). Similarly, we want to show that, in this case, the minimum energy
is reached when the total weight of the subset of tasks that are replicated is exactly
Dfrel − S. Let I = {i | Ti is executed twice in the solution}, and letX =

∑

i∈I ai.
We saw in Corollary 1 that the energy consumption cannot be lower than(S −

X)f2
rel+2Xf2

re-ex wherefre-ex = X
Dfrel−S+X frel. Therefore, we want to minimize

E(X) = (S −X)f2
rel + 2X

(

X
Dfrel−S+X frel

)2

.

If we differentiateE, we can see that the minimum is reached when

−1 +
6X2

(Dfrel − S +X)2
− 4X3

(Dfrel − S +X)3
= 0,

that is,−(Dfrel − S +X)3 + 6X2(Dfrel − S +X)− 4X3 = 0, or

X3+3(Dfrel − S)X2 − 3(Dfrel − S)2X − (Dfrel − S)3 = 0.

The only positive solution to this equation isX = Dfrel − S, and therefore the
minimum is reached for this value ofX , and thenfre-ex = 1

2frel.
WhenX ≥ S, replicating each task is the best strategy to minimize the energy

consumption, and that corresponds to the caseD ≥ 2S
frel

. Similarly to Case 1, it is easy

to see that each task should be replicated, even iffinf,i > fre-ex, sincefinf,i ≤ 1
2frel.

The optimal solution can also be obtained with a call to COMPUTE Vl(V).

3.2 FPTAS for TRI -CRIT -CHAIN

We derive in this section a fully polynomial time approximation scheme (FPTAS) for
TRI-CRIT-CHAIN , based on the FPTAS for SUBSET-SUM [10], and the results of Sec-
tion 3.1. Without loss of generality, we use the termreplicationfor either re-execution

10

or replication, since both scenarios have already been clearly identified. The prob-
lem consists in identifying the set of replicated tasksVr , and then the optimal solution
can be derived from Corollary 1; it depends only on the total weight of these tasks,
∑

Ti∈Vr
wi, denoted in the following asw(Vr).

Note that we do not account in this section forfinf,i or fmin for readability rea-
sons: finf,i can usually be neglected becauseλ0wi/f is supposed to be very small
whateverf , andfmin simply adds subcases to the proofs (rather than an executionat
speedf , the speed should bemax(f, fmin)).

First we introduce a few preliminary functions in Algorithm2, and we exhibit their
properties. These are the basis of the approximation algorithm.

WhenD > S
frel

, X-OPT(V,D, p) returns the optimal value for the weightw(Vr) of
the subset of replicated tasksVr , i.e., the value that minimizes the energy consumption
for TRI-CRIT-CHAIN . The optimality comes directly from the proof of Theorem 1.

Given a valueX , which corresponds tow(Vr), ENERGY(V,D, p,X) returns the
optimal energy consumption when a subset of tasksVr is replicated.

Then, the function TRIM(L, ε,X) trims a sorted listL = [L0, · · · , Lm−1] in timeO(m),
givenL andε. L is sorted into non decreasing order. The function returns a trimmed
list, where two consecutive elements differ from at least a factor(1 + ε), except the
last element, that is the smallest element ofL strictly greater thanX . This trimming
procedure is quite similar to that used for SUBSET-SUM [10],except that the latter
keeps only elements lower thanX . Indeed, SUBSET-SUM can be expressed as fol-
lows: givenn strictly positive integersa1, . . . , an, and a positive integerX , we wish
to find a subsetI of {1, . . . , n} such that

∑

i∈I ai is as large as possible, but not larger
thanX . In our case, the optimal solution may be obtained either by approachingX by
below or by above.

Finally, the approximation algorithm is APPROX-CHAIN(V,D, p, ε) (see Algo-
rithm 2), where0 < ε < 1, and it returns an energy consumptionE that is not greater
than (1 + ε) times the optimal energy consumption. Note that ifL = [L0, . . . , Lm−1],
then ADD-L IST(L, x) adds elementx at the end of listL (i.e., it returns the list[L0, . . . , Lm−1, x]);
L + w is the list[L0 + w, . . . , Lm−1 + w]; and MERGE-L ISTS(L,L′) is merging two
sorted lists (and returns a sorted list).

We now prove that this approximation scheme is an FPTAS:

Theorem 2. APPROX-CHAIN is a fully polynomial time approximation scheme for
TRI-CRIT-CHAIN .

Proof. We assume that
• if p = 1, then S

frel
< D < 1+c

c
S

frel
< 5 S

frel
;

• if p ≥ 2, then S
frel

< D < 2 S
frel

;
otherwise the optimal solution is obtained in polynomial time (see Theorem 1).

LetIinf = {V ′ ⊆ V | w(V ′) ≤ X-OPT(V,D, p)}, andIsup = {V ′′ ⊆ V | w(V ′′) >
X-OPT(V,D, p)}. Note thatIinf is not empty, since∅ ∈ Iinf .

First we characterize the solution with the following lemma:

Lemma 4. SupposeD > S
frel

. Then in the solution ofTRI-CRIT-CHAIN , the subset
of replicated tasksVr is either an elementV ′ ∈ Iinf such thatw(V ′) is maximum, or
an elementV ′′ ∈ Isup such thatw(V ′′) is minimum.

Proof. Recall first that according to Proposition 1, the energy consumption of a linear
chain is not dependent on the number of tasks replicated, butonly on the sum of their
weights.

11

Algorithm 2: Approximation algorithm for TRI-CRIT-CHAIN .
function X-OPT(V,D, p)
begin

S =
∑

Ti∈V wi;
if p = 1 then return c(Dfrel − S);
else returnDfrel − S;

function ENERGY(V,D, p,X)
begin

S =
∑

Ti∈V wi;

if p=1 then return (S−X)f2
rel

+2X
(

max
(

fmin,
2X

Dfrel−S+X frel

))2

;

else return (S −X)f2
rel

+ 2X
(

max
(

fmin,
X

Dfrel−S+X frel

))2

;

function TRIM(L, ε,X)
begin

m = |L|; L = [L0, . . . , Lm−1]; L′ = [L0]; last = L0;
for i = 1 to m− 1 do

if (last ≤ X andLi > X) or Li > last× (1 + ε) then
L′ = ADD-L IST(L′, Li); last = Li;

return L′;
function APPROX-CHAIN (V,D, p, ε)
begin

X = ⌊X-OPT(V,D, p)⌋; n = |V |; L(0) = [0];
for i = 1 to n do

L(i) = MERGE-L ISTS(L(i−1), L(i−1) + wi);
L(i) = TRIM(L(i), ε/(28× 2n), X);

Let Y1 ≤ Y2 be the two largest elements ofL(n);
return min(ENERGY(V,D, p, Y1),ENERGY(V,D, p, Y2));

12

Then the lemma is obvious by convexity of the functions, and since X-OPT returns
the optimal value ofw(Vr), the weight of the replicated tasks. Therefore, the closest
the weight of the set of replicated tasks is to the optimal weight, the better the solution
is. Finally, any element inIinf is a solution (since we have a solution for X-OPT), and
if the minimal element (if it exists) ofIsup is not a solution, (fre-ex too large because
of time constraints), then no element ofIsup can be a better solution.

We are now ready to prove Theorem 2. LetX1 = maxV1∈Iinf w(V1), andX2 =
maxV2∈Isup w(V2). Thanks to Lemma 4, the optimal set of replicated tasksVo is such
thatXo = w(Vo) = X1 or Xo = X2. The corresponding energy consumption is
(Corollary 1):

Eopt =

{

(S −Xo)f
2
rel +

(2Xo)
3

(Dfrel−S+Xo)2
f2
rel if p = 1

(S −Xo)f
2
rel +

2X3
o

(Dfrel−S+Xo)2
f2
rel if p ≥ 2

.

The solution returned by APPROX-CHAIN corresponds either toY1 or toY2, where
Y1 andY2 are the two largest elements of the trimmed list. We first prove that at least
one of these two elements, denotedXa, is such thatXa ≤ Xo ≤ (1 + ε′)Xa, where
ε′ = ε

28 .

Existence ofXa such thatXa ≤ Xo ≤ (1 + ε′)Xa. We differentiate two cases.

(a) If Y2 > X , thenY1 is the value obtained by the FPTAS for SUBSET-SUM [10]
with the approximation ratioε′, since it is the largest value not greater thanX ,
and our algorithm is identical for such values. Moreover, note thatX1 is the
optimal solution of SUBSET-SUM by definition, and thereforeY1 ≤ X1 <
(1 + ε′)Y1. If Xo = X1, the valueXa = Y1 satisfies the property.

If Xo = X2, we prove that the property remains valid, by considering the
SUBSET-SUM problem with a boundX2 instead ofX . Then, sinceY2 > X , we
haveY2 ≥ X2 by definition ofX2. Moreover, APPROX-CHAIN is not removing
any element of the list greater thanY2, and therefore all elements betweenX
andX2 are kept, similarly to the FPTAS for SUBSET-SUM. IfY2 = X2, then
Xa = Y2 satisfies the property. Otherwise,Y1 is the result of the FPTAS for
SUBSET-SUM with a boundX2, whose optimal solution isX2, and therefore
Y1 is such thatY1 ≤ X2 < (1 + ε′)Y1; Xa = Y1 satisfies the property.

(b) If Y2 ≤ X , no elements greater thanX have been removed from the lists, and
APPROX-CHAIN has been identical to the FPTAS for SUBSET-SUM. Then,
Xa = Y2 is the solution, that is valid both for SUBSET-SUM applied with the
original boundX (optimal solutionX1), and with the modified boundX2 (opti-
mal solutionX2). Therefore,Y2 ≤ X1 < (1+ε′)Y2 andY2 ≤ X2 < (1+ε′)Y2,
which concludes the proof.

We have shown that there always isXa (eitherY1 or Y2) such thatXa ≤ Xo <
(1+ ε′)Xa. Next, we show that the energyEa obtained with this valueXa is such that
Eopt ≤ Ea ≤ (1 + ε)Eopt.

Approximation ratio on the energy: Ea ≤ (1 + ε)Eopt. Let us consider first that

p ≥ 2. Then we haveEa = (S−Xa)f
2
rel+

2X3
a

(Dfrel−S+Xa)2
f2
rel. Re-using the previous

13

inequalities onXa, we obtain: Ea

f2
rel

≤ S − Xo

1+ε′ +
2X3

o

(Dfrel−S+ Xo
1+ε′

)2
. Then, this can be

rewritten so thatEopt appears:

Ea

f2
rel

≤
(

1

1 + ε′
(S −Xo) +

ε′

1 + ε′
S

)

+

(

(1 + ε′)2
2X3

o

((1 + ε′)(Dfrel − S) +Xo)2

)

Ea

f2
rel

≤ ((S −Xo) + ε′S)

+

(

(1 + ε′)2
2X3

o

(Dfrel − S +Xo)2

)

≤ ((S −Xo) + ε′S)

+

(

(1 + ε′)2(
Eopt

f2
rel

− (S −Xo))

)

≤ (1 + ε′)2
Eopt

f2
rel

− ((1 + ε′)2 − 1)(S −Xo) + ε′S

≤ (1 + ε′)2
Eopt

f2
rel

+ ε′S.

The casep = 1 leads to the same inequality; the only difference is in the energyEa,
where2X3

a is replaced by(2Xa)
3, and the same difference holds forEopt (2X3

o is
replaced by(2Xo)

3).
Finally, note that with no reliability constraints, each task is executed only once at

speedS/D, and therefore the energy consumption is at leastEopt ≥ S S2

D2 . Moreover,

by hypothesis,D < 5S
frel

(for p ≥ 1). Therefore,S <
25Eopt

f2
rel

and Ea

f2
rel

< (1 +

ε′)2 Eopt

f2
rel

+ ε′ 25Eopt

f2
rel

.

We conclude that

Ea

Eopt
< 1 + 27ε′ + ε′2 < 1 + 28ε′ = 1 + ε.

Conclusion. The energy consumption returned by APPROX-CHAIN , denoted as
Ealgo, is such thatEalgo ≤ Ea, since we take the minimum out of the consumption
obtained forY1 or Y2, andXa is eitherY1 or Y2. Therefore,Ealgo ≤ (1 + ε)Eopt.

It is clear that the algorithm is polynomial both in the size of the instance and
in 1

ε , given that the trimming function and APPROX-CHAIN have the same complexity
as in the original approximation scheme for SUBSET-SUM (see[10]), and all other
operations are polynomial in the problem size (X-OPT, ENERGY).

4 Independent tasks

In this section, we focus on the problem of scheduling independent tasks, TRI-CRIT-
INDEP. Similarly to TRI-CRIT-CHAIN , we know that TRI-CRIT-INDEP is NP-hard,

14

even on a single processor. We first prove in Section 4.1 that there exists no constant
factor approximation algorithm for this problem, unless P=NP. We discuss and char-
acterize solutions to TRI-CRIT-INDEP in Section 4.2, while highlighting the intrinsic
difficulty of the problem. The core result is a constant factor approximation algorithm
with a relaxation on the constraint on the makespan (Section4.3).

4.1 Inapproximability of T RI -CRIT -I NDEP

Lemma 5. For all λ > 1, there does not exist anyλ-approximation ofTRI-CRIT-IN-
DEP, unlessP = NP .

Proof. Let us assume that there is aλ-approximation algorithm for TRI-CRIT-IN-
DEP. We consider an instanceI1 of 2-PARTITION: givenn strictly positive integers
a1, . . . , an, does there exist a subsetI of {1, . . . , n} such that

∑

i∈I ai =
∑

i/∈I ai?
LetS =

∑n
i=1 ai.

We build the following instanceI2 of our problem. We haven independent tasksTi

to be mapped onp = 2 processors, and:
• taskTi has a weightwi = ai;
• fmin = frel = fmax = S/2;
• D = 1.

We use theλ-approximation algorithm to solveI2, and the solution of the algorithm
Ealgo is such thatEalgo ≤ λEopt, whereEopt is the optimal solution. We consider the
two following cases.
(i) If the λ-approximation algorithm returns a solution, then necessary all tasks are
executed exactly once at speedfmax, since

∑n
i=1 wi/fmax = 2 and there are two

processors. Moreover, because of the makespan constraint,the load on each processor
is equal. LetI be the indices of the tasks executed on the first processor. Wehave
∑

i∈I ai =
∑

i/∈I ai, and thereforeI is also a solution toI1.
(ii) If the λ-approximation algorithm does not return a solution, then there is no solution
to I1. Otherwise, ifI is a solution toI1, there is a solution toI2 such that tasks ofI
are executed on the first processor, and the other tasks are executed on the second
processor. SinceEalgo ≤ λEopt, the approximation algorithm should have returned a
valid solution.

Therefore, the result of the algorithm forI2 allows us to conclude in polynomial
time whether there is a solution to the instanceI1 of 2-PARTITION or not. Since 2-
PARTITION is NP-complete [12], the inapproximability result is true unless P=NP.

4.2 Characterization

As discussed in Section 1, the problem of scheduling independent tasks is usually
close to a problem of load balancing, and can be efficiently approximated for vari-
ous mono-criterion versions of the problem (minimizing themakespan or the energy,
for instance). However, the tri-criteria problem turns outto be much harder, and cannot
be approximated, as seen in Section 4.1, even when reliability is not a constraint.

Adding reliability further complicates the problem, sincewe no longer have the
property that on each processor, there is a constant execution speed for the tasks exe-
cuted on this processor. Indeed, some processors may process both tasks that are not
replicated (or re-executed), hence at speedfrel, and replicated tasks at a slower speed.

15

Similarly to Section 3.2, we use the termreplicationfor either re-execution or replica-
tion; if a task is replicated, it means it is executed two times, and it appears two times
in the load of processors, be it the same processor or two distinct processors.

Furthermore, contrary to the TRI-CRIT-CHAIN problem, we do not always have
the same execution speed for both executions of a task, as in Lemma 3:

Proposition 2. In an optimal solution ofTRI-CRIT-INDEP, if a taskTi is executed
twice:

• if both executions are on the same processor, then both are executed at the same
speed, lower than1√

2
frel;

• however, when the two executions of this task are on distinct processors, then
they are not necessarily executed at the same speed. Furthermore, one of the two
speeds can be greater than1√

2
frel.

Moreover, we havewi <
1√
2
Dfrel.

Proof. We start by proving the properties on the speeds. When both executions occur
on the same processor, this property was shown by [4]: a single execution at speedfrel
leads to a better energy consumption (and a lower execution time).

In the case of distinct processors, we give an example in which the optimal solution
uses different speeds for a replicated task, with one speed greater than 1√

2
frel. Note

that one of the speeds is necessary lower than1√
2
frel, otherwise a solution with only

one execution of this task at speedfrel would be better, similarly to the case with
re-execution.

Consider a problem instance with two processors,frel = fmax, D = 6.4
fmax

, and
three tasks such thatw1 = 5, w2 = 3, andw3 = 1. Because of the time constraints,T1

andT2 are necessarily executed on two distinct processors, and neither of them can be
re-executed on its processor. The problem consists in scheduling taskT3 to minimize
the energy consumption. There are three possibilities:

• T3 is executed only once on any of the processors, at speedfrel = fmax;
• T3 is executed twice on the same processor; it is executed on thesame processor

thanT2, hence having an execution time ofD− w2

fmax
= 3.4

fmax
, and therefore both

executions are done at a speed23.4fmax;
• T3 is executed once on the same processor thanT1 at a speed1

1.4fmax, and once
on the other processor at a speed13.4fmax.

It is easy to see that the minimum energy consumption is obtained with the last solution,
and that 1

1.4fmax > 1√
2
frel, hence the result.

Finally, note that since at least one of the executions of thetask should be at a
speed lower than1√

2
frel, and since the deadline isD, in order to match the deadline,

the weight of the replicated task has to be strictly lower than 1√
2
Dfrel.

Because of this proposition, usual load balancing algorithms are likely to fail, since
processors handling only non-replicated tasks should havea much higher load, and
speeds of replicated tasks may be very different from one processor to another in the
optimal solution.

We now derive lower bounds on the energy consumption, that will be useful to
design an approximation algorithm in the next section.

Proposition 3 (Lower bound without reliability). The optimal solution ofTRI-CRIT-
INDEP cannot have an energy lower thanS

3

(pD)2 .

16

Proof. Let us consider the problem of minimizing the energy consumption, with a
deadline constraintD, but without accounting for the constraint on reliability.A lower
bound is obtained if the load on each processor is exactly equal to S

p , and the speed of

each processor is constant and equal toS
pD . The corresponding energy consumption is

S ×
(

S
pD

)2

, hence the bound.

However, if the speedSpD is small compared tofrel, the bound is very optimistic
since reliability constraints are not matched at all. Indeed, replication must be used in
such a case. We investigate bounds that account for replication in the following, using
the optimal solution of the TRI-CRIT-CHAIN problem.

Proposition 4 (Lower bound using linear chains). For theTRI-CRIT-INDEP problem,
the optimal solution cannot have an energy lower than the optimal solution to theTRI-
CRIT-CHAIN problem on a single processor with a deadlinepD, where the weight of
the re-executed tasks is lower than1√

2
Dfrel.

Proof. We can transform any solution to the TRI-CRIT-INDEP problem into a solu-
tion to the TRI-CRIT-CHAIN problem with deadlinepD and a single processor. Tasks
are arbitrarily ordered as a linear chain, and the solution uses the same number of
executions and the same speed(s) for each task. It is easy to see that the TRI-CRIT-
INDEP problem is more constrained, since the deadline on each processor must be
enforced. The constraint on the weights of the re-executed tasks comes from Proposi-
tion 2. Therefore, the solution to the TRI-CRIT-CHAIN problem is a lower bound for
TRI-CRIT-INDEP.

The optimal solution may however be far from this bound, since we do not know if
the tasks that are re-executed on a chain with a long deadlinepD can be executed at the
same speed when the deadline isD. The constraint on the weight of the re-executed
tasks allows us to improve slightly the bound, and this lowerbound is the basis of the
approximation algorithm that we design for TRI-CRIT-INDEP.

4.3 Approximation algorithm for T RI -CRIT -I NDEP

We have seen in Section 4.1 that there exists no constant factor approximation algo-
rithm for TRI-CRIT-INDEP, unless P=NP, even without accounting for the reliability
constraint. This is due to the constraint on the makespan andthe maximum speedfmax.
Therefore, in order to provide a constant factor approximation algorithm, we relax
the constraint on the makespan and propose an(α, β)-approximation algorithm. The
solutionEalgo is such thatEalgo ≤ α × Eopt, whereEopt is the optimal solution
with the deadline constraintD, and the makespan of the algorithmMalgo is such that
Malgo ≤ β ×D.

The result of Section 4.1 means that for allα > 1, there is no(α, 1)-approxi-
mation algorithm for TRI-CRIT-INDEP, unlessP = NP . Therefore, we present an
algorithm that realizes a(1+ 1

β2 , β)-approximation, where the minimum relaxation on
the deadline is smaller than2. It is of course possible to run the algorithm with larger
values ofβ, leading to a better guarantee on the energy consumption.

Sketch of the algorithm. In the first step of the algorithm, we schedule each task
with a big weight alone on one processor, with no replication. A taskTi is considered
asbig if wi ≥ max(Sp , Dfrel). This step is done in polynomial time: we sort the tasks

17

p1

D0

p2

p3

p4

p5

p6

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

(a) Input: six processors and eleven tasks

p1 w1

p2 w2

peq1 w3 w4 w5 w6 w7

w10w11 w
(1)
8 w

(2)
8 w

(1)
9 w

(2)
9

0 D 2D 3D 4D

(b) Schedule thebig tasks onp1 andp2, and call APPROX-CHAIN with deadline(6 − 2)D on the remaining tasks

p1

0 D βD

w1

p2 w2

p3 w3
w

(2)
9

w10

p4 w4
w

(1)
9

w11

p5 w
(1)
8 w5

p6 w
(2)
8 w6 w7

(c) Greedy algorithm to schedule the new tasks

Figure 1:
(

1 + 1
β2 , β

)

-approximation algorithm for independent tasks

by non-increasing weights, and then we check whether the current task is such that
wi ≥ max(Sp , Dfrel). If it is the case, we schedule the task alone on a processor and
we letS = S − wi andp = p− 1. The procedure ends when the current task is small
enough, i.e., all remaining tasks are such thatwi < max(Sp , Dfrel), with the updated
values ofS andp.

• If S > pDfrel, i.e., the load islarge enough, we do not use replication, but
we schedule the tasks at speedSpD , using a simple scheduling heuristic, DEC-
REASING-FIRST-FIT [13]. Tasks are sorted by non increasing weights, and
at each time step, we schedule the current task on the least loaded processor.
Thanks to the lower bound of Proposition 3, the energy consumption is not
greater than the optimal energy consumption, and we determineβ such that the
deadline is enforced.

• If S ≤ pDfrel, the previous bound is not good enough, and therefore we use the
FPTAS on a linear chain of tasks with deadlinepD for TRI-CRIT-CHAIN (see
Theorem 2). The FPTAS is called with

ε = min

(

2wmin

3S

(

fmin

frel

)2

,
1

3β2

)

, (2)

18

wherewmin = min1≤i≤n wi. Note that it is slightly modified so that only tasks
of weightw < 1√

2
Dfrel can be replicated, and that we enforce a minimum

speedfmin. The FPTAS therefore determines which tasks should be executed
twice, and it fixes all execution speeds.
We then use DECREASING-FIRST-FIT in order to map the tasks onto thep pro-
cessors, at the speeds determined earlier. The new set of tasks includes both ex-
ecutions in case of replication, and tasks are sorted by non increasing execution
times (since all speeds are fixed). At each time step, we schedule the current task
on the least loaded processor. If some tasks cannot fit in one processor within
the deadlineβD, we re-execute them at speedwi

βD on two processors. Thanks to
the lower bound of Proposition 4, we can bound the energy consumption in this
case.

We illustrate the algorithm on an example in Figure 1, where eleven tasks must be
mapped on six processors. For each task, we represent its execution speed as its height,
and its execution time as its width. There are twobig tasks, of weightsw1 andw2,
that are each mapped on a distinct processor. Then, we havep = 4 and we call
APPROX-CHAIN with deadline4D; tasksT8 andT9 are replicated. Finally, DEC-
REASING-FIRST-FIT greedily maps all instances of the tasks, slightly exceeding the
original boundD, but all tasks fit within the extended deadline.

This algorithm leads to the following theorem:

Theorem 3. For the problemTRI-CRIT-INDEP, there are
(

1 + 1
β2 , β

)

-approximation

algorithms, for allβ ≥ 2−Θ(1p), that run in polynomial time.

Before proving Theorem 3, we give some preliminary results:we prove below the
optimality of the first step of the algorithm, i.e., the optimal solution would schedule
tasks of weight greater thanmax(Sp , Dfrel) alone on a processor:

Proposition 5. In any optimal solution toTRI-CRIT-INDEP, each taskTi such that
wi ≥ max(Sp , Dfrel) is executed only once, and it is alone on its processor.

Proof. Let us prove the result by contradiction. Suppose that thereexists a taskTi such
thatwi ≥ max(Sp , Dfrel), and that this task is executed on processorp1. Suppose
also that there is another taskTj executed onp1, with wj ≤ wi. Necessarily, there
exists a processor, sayp2, whose load is smaller thanSp , since the load ofp1 is strictly

greater thanSp . Consider the energy of the tasks executed on processorsp1 andp2.
Because of the convexity of the energy function, it is strictly better to execute taskTj on
processorp2, and thenTi is executed alone on processorp1, at a speedwi

D ≥ frel.

Next, we prove a lemma that will allow us to tackle the case where the load islarge
enough(S > pDfrel), and we obtain a minimum on the approximation ratio of the
deadlineβ.

Lemma 6. For the problemTRI-CRIT-INDEP where each taskTi is such thatwi <
max(Sp , Dfrel), scheduling each task only once at speedmax(frel,

S
pD) with the

DECREASING-FIRST-FIT heuristic leads to a makespan of at mostβD, with β =

max
(

2− 3
2p+1 , 2−

p+2
4p+2

)

.

Note that we introducemax(Sp , Dfrel) since the lemma is also used in the case
S ≤ pDfrel. Also, sinceβ is increasing withp and the bound is computed in fact for

19

a number of processors smaller than the original one (some processors are dedicated to
big tasks), the value ofβ computed with the total number of processorsp is not smaller
and it is possible to achieve a makespan of at mostβD.

Proof. Let ldff be the maximal load of the processors after applying DECREASING-
FIRST-FIT on the weights of the tasks. Let us findβ such thatldff

pD
S ≤ βD: this

means that within a timeβD, we can schedule all tasks at speedSpD , and therefore

at speedmax(frel,
S
pD), since the most loaded processor succeeds to be within the

deadlineβD.
Let lopt be the maximal load of the processors in an optimal solution,and letTi be

the last task executed on the processor with the maximal loadldff by DECREASING-
FIRST-FIT. We have eitherwi ≤ lopt/3 orwi > lopt/3.

• If wi ≤ lopt/3, we know thatlopt≤ ldff ≤
(

4
3− 1

3p

)

lopt, since DECREASING-FIRST-

FIT is a
(

4
3 − 1

3p

)

-approximation [13]. We want to comparelopt toS/p (average load).

We consider the solution of DECREASING-FIRST-FIT. At the time whenTi was sched-
uled, all the processors were at least as loaded as the one on whichTi was scheduled,
and hence we obtain a lower bound onS: S ≥ (p− 1)(ldff − wi) + ldff. Furthermore,
ldff −wi ≥ 2

3 lopt (becauseldff ≥ lopt andwi ≤ lopt/3). Finally,S ≥ (p− 1)23 lopt+ lopt,

which means thatlopt ≤ S
p

3p
2p+1 , andldff ≤

(

4
3 − 1

3p

)

3p
2p+1

S
p =

(

2− 3
2p+1

)

S
p .

In this case, withβ = 2− 3
2p+1 , we can execute all the tasks at speedmax(frel,

S
pD)

within the deadlineβD.

• If wi > lopt/3, it is known that DECREASING-FIRST-FIT is optimal for the execu-
tion time [13], i.e.,lopt = ldff, and we aim at finding an upper bound onlopt. We assume
in the following that tasks are sorted by non increasing weights.

If wi ≥ S
p , then we show thatTi is the only task executed on its processor (re-

call thatTi is the last task executed on the processor with the maximal load by DEC-
REASING-FIRST-FIT). Indeed, there cannot bep tasks of weight not smaller thanSp ,
hencei < p, andTi is the first task scheduled on its processor. Moreover, if DEC-
REASING-FIRST-FIT were to schedule another task on the processor ofTi, then this
would mean that thep− 1 other processors all have a load greater thanwi, and hence
the total load would be greater thanS. Then, sincewi < max(Sp , Dfrel) andwi ≥ S

p ,

we havewi < Dfrel and we can execute each task at speedfrel = max(frel,
S
pD)

within a deadlineD. Indeed, the maximal load is thenwi, by definition ofTi. There-
fore, the result holds (withβ = 1).

Now suppose thatwi < S
p . In that case, ifTi was the only task executed on

its processor, then we would havelopt = ldff < S
p , which is impossible sinceS =

∑p
k=1 lk ≤ plopt. Therefore,Ti is not the only task executed on its processor. A direct

consequence of this fact is thatp+1 ≤ i. Indeed, DECREASING-FIRST-FIT schedules
the p largest tasks onp distinct processors; sinceTi is the last task scheduled on its
processor, but not the only one, thenTi is not among thep first scheduled tasks. Also,
there are only two tasks on the processor executingTi, sincewi > lopt/3 and the tasks
scheduled beforeTi have a weight at least equal towi. Finally,p+ 1 ≤ i ≤ 2p.

After scheduling taskTj on processorj for 1 ≤ j ≤ p, DECREASING-FIRST-
FIT schedules taskTp+j on processorp − j + 1 for 1 ≤ j ≤ i − p, andTi is
therefore scheduled on processorp2p−i+1, together with taskT2p−i+1, and we have

20

wi + w2p−i+1 = lopt. Note that because thewj are sorted,S ≥ ∑j≤i wj ≥ iwi. We

also havew2p−i+1 < S
p : indeed, whenTi was scheduled, the load of thep processors

was at least equal to the load of the processor whereT2p+i−1 was scheduled. Hence,
w2p−i+1 cannot be greater thanSp . Then, sincew2p−i+1 = lopt − wi, wi > lopt − S

p ,

and finallylopt − S
p < wi ≤ S

i .
In order to find an upper bound onlopt, we provide a lower bound toS, as a function

of wi:

S =

n
∑

j=1

wj ≥
i
∑

j=1

wj =

2p−i+1
∑

j=1

wj +

i
∑

j=2p−i+2

wj

≥ (2p− i+ 1)w2p−i+1 + (2(i− p)− 1)wi

= (2p− i+ 1)(lopt − wi) + (2(i− p)− 1)wi

= (2p− i+ 1)lopt + (3i− 4p− 2)wi = f(wi).

We then havef ′(wi) = 3i− 4p− 2, and we consider two cases.

If f ′(wi) ≥ 0, then we havei ≥ 4p+2
3 , and finallyS ≥ iwi >

4p+2
3

(

lopt − S
p

)

.

We can conclude thatlopt <
S
p

(

1 + 3p
4p+2

)

= S
p

(

2− p+2
4p+2

)

.

Otherwise,f ′(wi) < 0 andf is a decreasing function ofwi, i.e., its minimum is
reached whenwi is maximal, andS ≥ f(Si). Hence,S ≥ (2p − i + 1)lopt + (3i −
4p− 2)Si . Sincei ≤ 2p, 2p− i+ 1 > 0 and

lopt ≤
S

i

(

i− 3i+ 4p+ 2

2p− i+ 1

)

=
2S

i
.

Finally, sincei ≥ p+ 1, lopt ≤ 2S
p+1 = S

p

(

2− 2
p+1

)

.

Overall, ifwi > lopt/3, we have the bound

lopt ≤
S

p
×max

(

2− p+ 2

4p+ 2
, 2− 2

p+ 1

)

.

Therefore, forβ ≥ max
(

2− p+2
4p+2 , 2− 2

p+1

)

, we can execute all the tasks on the

processor of maximal load (and hence all the tasks) at speedmax(frel,
S
pD) within the

deadlineβD in the casewi > lopt/3.

We can now conclude the proof of Lemma 6 by saying that forβ = max
(

2− 3
2p+1 , 2−

p+2
4p+2 , 2− 2

p+1

)

,

i.e.,β = max
(

2− 3
2p+1 , 2−

p+2
4p+2

)

, scheduling each task only once at speedmax(frel,
S
pD)

with the DECREASING-FIRST-FIT heuristic leads to a makespan of at mostβD.

We are now ready to prove Theorem 3.

Proof of Theorem 3. First, thanks to Proposition 5, we know that the first step of
the algorithm takes decisions that are identical to the optimal solution, and there-
fore these tasks that are executed once, alone on their processor, have the same en-
ergy consumption than the optimal solution and the same deadline. We can therefore
safely ignore them in the remaining of the proof, and consider that for each taskTi,
wi < max(Sp , Dfrel).

21

In the case whereS > pDfrel, we use the fact thatS(S
pD)2 is a lower bound on

the energy (Proposition 3). Each task is executed once at speedmax(frel,
S
pD) = S

pD ,

and therefore the energy consumption is equal to the lower boundS(S
pD)2. The bound

on the deadline is obtained by applying Lemma 6.

We now focus on the caseS ≤ pDfrel. Therefore, in the following,max(S
pD , frel) =

frel. The algorithm runs the FPTAS on a linear chain of tasks with deadlinepD, and
ε as defined in Equation (2). The FPTAS returns a solution on thelinear chain with
an energy consumptionEFPTAS such thatEFPTAS ≤ (1 + ε)

2
Echain, whereEchain is the

optimal energy consumption for TRI-CRIT-CHAIN with deadlinepD on a single pro-
cessor. According to Proposition 4, since the solution for the linear chain is a lower
bound, the optimal solution of TRI-CRIT-INDEP is such thatEopt ≥ Echain.

For each taskTi, let f chain
i be the speed of its execution returned by the FPTAS for

TRI-CRIT-CHAIN . Note that in case of re-execution, then both executions occur at the
same speed (Lemma 3). We now consider the TRI-CRIT-INDEP problem with the set
of tasksṼ : for each taskTi, T̃i ∈ Ṽ and its weight isw̃i = wi

frel
f chain
i

; moreover, ifTi is

re-executed, we add two copies ofT̃i in Ṽ . Then,
∑

T̃i∈Ṽ
w̃i

frel
= pD by definition of

the solution of TRI-CRIT-CHAIN .
Let β = max(2 − 3

2p+1 , 2 −
p+2
4p+2) be the relaxation on the deadline that we have

from Lemma 6. The goal is to map all the tasks ofṼ at speedfrel within the dead-
line βD, which amounts at mapping the original tasks at the speeds assigned by the
FPTAS:

• If there are tasks̃Ti such that w̃i

frel
> βD, we execute them at speedw̃i

βD alone on
their processor, so that they reach exactly the deadlineβD. Note that in this case,
the energy consumption of the algorithm becomes greater thanEFPTAS, since we
execute these tasks faster than the FPTAS to fit on the processor.

• TasksT̃i such thatD ≤ w̃i

frel
≤ βD are executed alone on their processor at

speedfrel.

• For the remaining tasks and processors, we use DECREASING-FIRST-FIT as in
Lemma 6. Since the previous tasks take a time of at leastD in the solution of the
FPTAS, and they are mapped alone on a processor, we can safelyremove them
and apply the lemma. Note that the number of processors may now be smaller
thanp, hence leading to a smaller boundβ.

In the end, all tasks are mapped within the deadlineβD (whereβ is computed with
the original number of processors). There remains to check the energy consumption of
the solution returned by this algorithm.

If all tasks are such that̃wi ≤ βDfrel, Ealgo = EFPTAS ≤ (1 + ε)
2
Echain ≤

(1 + ε)
2
Eopt.

According to Equation (2),ε ≤ 1
3β2 , and therefore

Ealgo ≤
(

1 +
2

3β2
+

1

9β4

)

Eopt ≤
(

1 +
1

β2

)

Eopt.

Otherwise, letṼ ′ be the set of tasks̃Ti such thatw̃i > βDfrel. For T̃i ∈ Ṽ ′,
wi > βDf chain

i . Sincewi < Dfrel (larger tasks have been processed in the first step
of the algorithm), we havef chain

i < frel. This means thatTi belongs to the set of

22

the tasks that are re-executed by the FPTAS. Hence, since we enforced an additional
constraint, we havewi <

1√
2
Dfrel. The least energy consumed for this task by any

solution to TRI-CRIT-INDEP is therefore obtained when re-executing taskTi on two
distinct processors at speedwi

D , in order to fit within the deadlineD. TaskTi appears
two times inṼ ′, and we letẼ be the minimum energy consumption required in the
optimal solution for tasks of̃V ′: Ẽ =

∑

T̃i∈Ṽ ′ wi

(

wi

D

)2
.

The algorithm leads to the same energy consumption as the FPTAS except for the
tasks ofṼ ′ that are removed from the setX of replicated tasks, and that are executed
at speedwi

βD :

Ealgo = (S −X)f2
rel + (2X −∑T̃i∈Ṽ ′ wi)f

2
re-ex

+
∑

T̃i∈Ṽ ′ wi

(

wi

βD

)2

.

SinceEFPTAS = (S −X)f2
rel + 2Xf2

re-ex, we obtain

Ealgo = EFPTAS+
1
β2 Ẽ −∑T̃i∈Ṽ ′ wif2

re-ex.

Furthermore,Ẽ ≤ Eopt since it considers only the optimal energy consumption
of a subset of tasks. We haveEFPTAS ≤ (1 + ε)2Eopt, and from Proposition 1, it is
easy to see thatEFPTAS ≤ Sf2

rel, i.e.,EFPTAS is smaller than the energy of every task
executed once at speedfrel. Hence,EFPTAS ≤ (1+ε)2min(Eopt, Sf

2
rel), and since

ε < 1, (1+ ε)2 ≤ 1+ 3ε. Finally,EFPTAS≤ Eopt +3εSf2
rel. Thanks to Equation (2),

3εSf2
rel ≤ 2wminf

2
min ≤ ∑

T̃i∈Ṽ ′ wif
2
re-ex (note that there are at least two tasks

in Ṽ ′, since tasks are duplicated).
Finally, reporting in the expression ofEalgo,

Ealgo ≤ Eopt+ 3εSf2
rel+

1
β2Eopt −

∑

T̃i∈Ṽ ′ wif
2
re-ex

≤
(

1 + 1
β2

)

Eopt.

To conclude, we point out that this algorithm is polynomial in the size of the input
and in 1

ε .

We can improve the approximation ratio on the energy for large values ofp. The
idea is to avoid the case in which tasks are replicated by the chain but are not fitting
within βD because the speed at which they are re-executed is too small.To do so, we

fix a valueε∗ = Θ
(

1
p

)

, such that0 < ε∗ < 1 for p ≥ 24. The variant of the algorithm

is used only whenp ≥ 24 (after scheduling the big tasks). The algorithm decides
that the load is large enough whenS > pDfrel

1
1+ε∗ , leading to a((1 + ε∗)2, β)-

approximation in this case. In the other case (S ≤ pDfrel
1

1+ε∗), it is possible to

prove that when there are tasks such thatw̃i

frel
> βD, then necessarily all tasks are

re-executed. Next we apply Theorem 1 while fixing values for the finf,i’s, so as to
obtain in polynomial time the optimal solution with new execution speeds, that can all
be scheduled withinβD using Lemma 6. Details can be found in the appendix.

5 Conclusion

In this paper, we have designed efficient approximation algorithms for the tri-criteria
energy/reliability/makespan problem, using replicationand re-execution to increase the

23

reliability, and dynamic voltage and frequency scaling to decrease the energy consump-
tion. Because of the antagonistic relation between processor speeds and reliability, this
tri-criteria problem is much more challenging than the standard bi-criteria problem,
which aims at minimizing the energy consumption with a boundon the makespan,
without accounting for a constraint on the reliability of tasks.

We have tackled two classes of applications. For linear chains of tasks, we propose
a fully polynomial time approximation scheme. However, we show that there exists no
constant factor approximation algorithm for independent tasks, unless P=NP, and we
are able in this case to propose an approximation algorithm with a relaxation on the
makespan constraint: with a deadline at most two times larger than the original one,
we can approach the optimal solution for energy consumption.

As future work, it may be possible to improve the deadline relaxation by using a
FPTAS to schedule independent tasks [5] rather than DECREASING-FIRST-FIT [13].
Also, an open problem is to find approximation algorithms forthe tri-criteria problem
with an arbitrary graph of tasks. Even though efficient heuristics have been designed
with re-execution of tasks (but no replication) by [4], it isnot clear how to derive
approximation ratios from these heuristics. It would be interesting to design efficient
algorithms using replication and re-execution for the general case, and to prove approx-
imation ratios on these algorithms. A first step would be to tackle fork and fork-join
graphs, inspired by the study on independent tasks.

Acknowledgements: This work was supported in part by the ANRRESCUEproject.

References

[1] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for
scheduling. InProceedings of SODA’97, the 8th annual ACM-SIAM Symposium
On Discrete Algorithms, pages 493–500, Philadelphia, PA, USA, 1997. Society
for Industrial and Applied Mathematics.

[2] I. Assayad, A. Girault, and H. Kalla. Tradeoff exploration between reliability
power consumption and execution time. InProceedings of SAFECOMP, the Conf.
on Computer Safety, Reliability and Security, Washington, DC, USA, 2011. IEEE
CS Press.

[3] G. Aupy, A. Benoit, F. Dufossé, and Y. Robert. Reclaiming the energy of a
schedule: models and algorithms.Concurrency and Computation: Practice and
Experience, 2012.

[4] G. Aupy, A. Benoit, and Y. Robert. Energy-aware scheduling under reliability
and makespan constraints. InProceedings of HiPC’2012, the IEEE Int. Conf. on
High Performance Computing, 2012. Also available atgaupy.org/?paper
as INRIA Research report 7757.

[5] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi.Complexity and Approximation. Springer Verlag, 1999.

[6] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor real-time
systems. InProceedings of IPDPS, the Int. Parallel and Distributed Processing
Symposium, pages 113–121. IEEE CS Press, 2003.

24

gaupy.org/?paper

[7] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri, and
S. Pezzini. Fault-tolerant platforms for automotive safety-critical applications. In
Proceedings of Int. Conf. on Compilers, Architectures and Synthesis for Embed-
ded Systems, pages 170–177. ACM Press, 2003.

[8] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and tem-
perature.Journal of the ACM, 54(1):1 – 39, 2007.

[9] A. Benoit, P. Renaud-Goud, and Y. Robert. On the performance of greedy algo-
rithms for power consumption minimization. InProceedings of ICPP 2011, the
Int. Conf. on Parallel Processing, pages 454 –463, Sept. 2011.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to algo-
rithms, third edition, 2009.

[11] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, and M. J.Irwin. Soft errors
issues in low-power caches.IEEE Transactions on Very Large Scale Integration
Systems, 13:1157–1166, October 2005.

[12] M. R. Garey and D. S. Johnson.Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[13] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17:416–429, 1969.

[14] R. Melhem, D. Mossé, and E. Elnozahy. The interplay of power management and
fault recovery in real-time systems.IEEE Transactions on Computers, 53:2004,
2003.

[15] A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta, and A. Sivasubramaniam.
Fault-aware job scheduling for bluegene/l systems. InProceedings of IPDPS, the
Int. Parallel and Distributed Processing Symposium, pages 64–73, 2004.

[16] P. Pop, K. H. Poulsen, V. Izosimov, and P. Eles. Scheduling and voltage scaling for
energy/reliability trade-offs in fault-tolerant time-triggered embedded systems. In
Proceedings of CODES+ISSS, the IEEE/ACM Int. Conf. on Hardware/software
codesign and system synthesis, pages 233–238, 2007.

[17] S. M. Shatz and J.-P. Wang. Models and algorithms for reliability-oriented task-
allocation in redundant distributed-computer systems.IEEE Transactions on Re-
liability , 38:16–27, 1989.

[18] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in embedded
real-time systems. InProceedings of DATE, the Conf. on Design, Automation and
Test in Europe, page 10918, 2003.

[19] D. Zhu and H. Aydin. Energy management for real-time embedded systems with
reliability requirements. InProceedings of ICCAD, the IEEE/ACM Int. Conf. on
Computer-Aided Design, pages 528–534, 2006.

[20] D. Zhu, R. Melhem, and D. Mossé. The effects of energy management on relia-
bility in real-time embedded systems. InProceedings of ICCAD, the IEEE/ACM
Int. Conf. on Computer-Aided Design, pages 35–40, 2004.

25

Appendix: (1+Θ(1p), 2−Θ(1p))-approximation algorithm
for T RI -CRIT -I NDEP

This algorithm is used only forp ≥ 24, and we define:

K = 1− 1

c(2β
√
2− 1)

;

ε∗ =
1√

2cpK − 1
.

Recall thatβ = max(2 − 3
2p+1 , 2 − p+2

4p+2). The valueβ is therefore increasing
with p, and forp ≥ 24, we haveβ ≥ 1.9. Furthermore,c ≈ 0.2838 andK ≥ 0.2.
Finally, sincep ≥ 24, 0 < ε∗ < 1.

Modifications to the original algorithm.
The handling ofbig tasks is identical. However, we do not use replication whenS >
pDfrel

1
1+ε∗ : we schedule tasks at speedmax(frel,

S
pS) using DECREASING-FIRST-

FIT. Proposition 6 below shows that we obtain the desired guarantee in this case. In
the other case (S ≤ pDfrel

1
1+ε∗), we apply the FPTAS with the parameterε∗. It is

now possible to show that (i) either we can schedule all taskswith the speeds returned
by the FPTAS within the deadlineβD; (ii) or there is at least one task that does not
fit, but then all tasks are re-executed and we can find an optimal solution that can be
scheduled thanks to Theorem 1. The correction of this case isproven in Proposition 7.

Proposition 6. For the problemTRI-CRIT-INDEP where each taskTi is such that
wi < max(Sp , Dfrel), if (1+ ε∗) S

pD > frel, then scheduling each task only once

at speedmax(frel,
S
pD) with DECREASING-FIRST-FIT is a

(

(1 + ε∗)2 , β
)

-approxi-

mation algorithm, withβ=max
(

2− 3
2p+1 , 2−

p+2
4p+2

)

.

Proof. We use the fact thatS(S
pD)2 is a lower bound on the energy (Proposition 3). If

each task is executed once at speedmax(frel,
S
pD), sincefrel < (1 + ε) S

pD , then the

energy consumption is at most at a ratio(1+ε∗)2 of the value of the optimal energy
consumption. The bound on the deadline is obtained by applying Lemma 6.

Proposition 7. For the problemTRI-CRIT-INDEP where each taskTi is such that

wi < max(Sp , Dfrel), if S ≤ pDfrel
1

1+ε∗ , then there is a
(

(1 + ε∗)2 , β
)

-approxi-

mation algorithm, withβ=max
(

2− 3
2p+1 , 2−

p+2
4p+2

)

.

Proof. Similarly to the original algorithm, we use the FPTAS and we obtain a
(

(1 + ε∗)2 , β
)

-

approximation algorithm unless there is a taskTi such that w̃i

frel
> βD, and hence

wi

f chain
i

> βD. Sincewi < Dfrel (larger tasks have been processed in the first step of

the algorithm), we havef chain
i < frel. This means thatTi belongs to the set of the

tasks that are re-executed by APPROX-CHAIN . Hence, since we enforced an additional
constraint, we havewi <

1√
2
Dfrel. Finally,

f chain
i = fre-ex <

wi

βD
<

1√
2β

frel. (3)

26

Let Xchain be the total weight of the re-executed tasks (X1 or X2 in APPROX-
CHAIN), and letXopt = c(pDfrel − S) be the optimal weight to solve TRI-CRIT-
CHAIN with one processor. We computeXopt−Xchain. By definition offre-ex (Corol-
lary 1), the optimal speed at which each re-execution shouldoccur, we have:

pD =
S −Xchain

frel
+

2Xchain

fre-ex
=

S −Xopt

frel
+

2Xopt

fopt
,

wherefopt =
2c
1+cfrel (Corollary 1 applied toXopt). We now expressXopt −Xchain:

(

2

fre-ex
− 1

frel

)

Xchain=

(

2
1 + c

2c

1

frel
− 1

frel

)

Xopt,

and thereforeXchain=
fre-ex

c(2frel−fre-ex)
Xopt, and finallyXopt−Xchain=

(

1− fre-ex
c(2frel−fre-ex)

)

Xopt,

that is minimized whenfre-ex is maximized. Applying the upper bound onfre-ex
from Equation (3), we obtain:

Xopt −Xchain>

(

1− 1

c(2β
√
2− 1)

)

Xopt = K ×Xopt .

Since S
pD ≤ 1

1+ε∗ frel, we have S
pD ≤

(

1− 1√
2cpK

)

frel, andfrel − S
pD ≥

frel√
2cpK

. SinceXopt = c(pDfrel − S) andK > 0, we obtainK ×Xopt ≥ 1√
2
Dfrel,

and therefore we haveXopt−Xchain>
1√
2
Dfrel. This means that each task that can be

re-executed in any solution to TRI-CRIT-INDEP is indeed re-executed in the solution
given by APPROX-CHAIN , since all these tasks have a weight lower than1√

2
Dfrel.

SinceXopt is greater than the total weight of the tasks that can be re-executed, we can
use Theorem 1 in the casep = 1, on the subset of tasksTi such thatwi ≤ 1√

2
Dfrel.

The other tasks are executed once at speedfrel. We definefinf,i = wi

1.9D , so that
finf,i < 1

1.9
√
2
frel < 2c

1+cfrel and we can apply Theorem 1. Then, in polynomial

time, we have the optimal solution with new execution speeds: f̃i
chain

. Furthermore for
each taskTi, necessarily

wi

f̃i
chain ≤ wi

finf,i
= 1.9D.

Note that sincep ≥ 24, we haveβ ≥ 1.9, and wi

f̃i
chain ≤ βD. We can therefore

schedule the new tasks̃Ti within the deadline relaxation using DECREASING-FIRST-
FIT, as a direct consequence of Lemma 6.

We can conclude by stating that thanks to Propositions 6 and 7, sinceε∗ is inΘ(1p)

andβ is in 2−Θ(1p), this algorithm is a(1+Θ(1p), 2−Θ(1p))-approximation. Indeed,

ε∗ < 1 and therefore(1 + ε∗)2 < 1 + 3ε∗.
Furthermore, the algorithm is polynomial in the size of the input and in 1

ε∗ .

27

	1 Introduction
	2 Framework
	2.1 Makespan
	2.2 Reliability
	2.3 Energy
	2.4 Optimization problem

	3 Linear chains
	3.1 Characterization
	3.2 FPTAS for Tri-Crit-Chain

	4 Independent tasks
	4.1 Inapproximability of Tri-Crit-Indep
	4.2 Characterization
	4.3 Approximation algorithm for Tri-Crit-Indep

	5 Conclusion

