Trading off *t*-Resilience for Efficiency in Asynchronous Byzantine Reliable Broadcast

Damien Imbs[†] and Michel Raynal^{\star,\ddagger}

[†] LIF, Université d'Aix-Marseille, 13288 Marseille, France
 ^{*} Institut Universitaire de France
 [‡] IRISA, Université de Rennes, 35042 Rennes Cedex, France
 damien.imbs@lif.univ-mrs.fr

Abstract

This paper presents a simple and efficient reliable broadcast algorithm for asynchronous messagepassing systems made up of n processes, among which up to t < n/5 may behave arbitrarily (Byzantine processes). This algorithm requires two communication steps and $n^2 - 1$ messages. When compared to Bracha's algorithm, which is resilience optimal (t < n/3) and requires three communication steps and $2n^2 - n - 1$ messages, the proposed algorithm shows an interesting tradeoff between communication efficiency and t-resilience.

Keywords: Algorithm, Asynchronous system, Byzantine process, Distributed computing, Fault-tolerance, Message-passing, Reliable broadcast.

1 Introduction

On reliable broadcast *Reliable broadcast* (RB) is a communication abstraction central to fault-tolerant distributed systems. It allows each process to broadcast messages to all processes despite failures. More precisely, it guarantees that the non-faulty processes deliver the same set of messages and this set includes at least all the messages they broadcast. It can also contain messages broadcast by faulty processes.

The fundamental property of reliable broadcast lies in the fact that no two correct processes deliver different sets of messages. This communication abstraction is a basic building block used to build a *total order reliable broadcast* abstraction (sometimes called "atomic broadcast"), which adds the total order property on message delivery (see e.g., [1, 2, 5, 6, 7, 9, 11]). In turn, total order broadcast is a basic building block for state machine replication, which is a fundamental paradigm in fault-tolerance.

Reliable broadcast in the presence of Byzantine processes Reliable broadcast has been studied in the context of Byzantine failures since the eighties. A process commits a Byzantine failure if it behaves arbitrarily [8, 10]. Such a behavior can be intentional (also called malicious) or the result of a transient fault which altered the content of local variables of a process, thereby modifying its intended behavior in an unpredictable way.

An elegant algorithm, due to G. Bracha, implementing the reliable broadcast abstraction in an asynchronous system of n processes which communicate by message-passing, and where up to t < n/3processes may be Byzantine is described in [3]. This algorithm is signature-free. It is shown in [3, 4] that t < n/3 is an upper bound on the number of Byzantine processes that can be tolerated. Hence, Bracha's algorithm is t-resilience optimal. This algorithm is based on a "double echo" mechanism of the value broadcast by the sender process. It uses three types of messages, requires three consecutive communication steps, and $(n-1) + 2n(n-1) = 2n^2 - n - 1$ underlying messages.

Content of the paper This paper presents a new signature-free Byzantine-tolerant reliable broadcast algorithm, which uses only two message types, two consecutive communication steps, and $(n - 1) + n(n-1) = n^2 - 1$ underlying messages. This gain, with respect Bracha's algorithm, in both the time and the number of messages, is obtained with a weaker *t*-resilience requirement, namely t < n/5 instead of t < n/3. This shows an interesting tradeoff between communication cost (number of communication steps¹ and the number of messages) on one side, and fault-resilience on the other side (see Table 1).

	fault	communication steps	number of
	resilience	message types	messages
Bracha's algorithm [3]	n > 3t	3	$2n^2 - n - 1$
This paper	n > 5t	2	$n^2 - 1$

Table 1: Bracha's algorithm with respect to the proposed algorithm

2 Computation Model

Asynchronous processes The system is made up of a finite set Π of n > 1 asynchronous sequential processes, namely $\Pi = \{p_1, \ldots, p_n\}$. "Asynchronous" means that each process proceeds at its own speed, which can vary arbitrarily with time, and always remains unknown to the other processes.

Communication network The processes communicate by exchanging messages through an asynchronous reliable point-to-point network. "Asynchronous" means that a message that has been sent is eventually received by its destination process, i.e., there is no bound on message transfer delays. "Re-liable" means that the network does not loose, duplicate, modify, or create messages. "Point-to-point" means that there is a bi-directional communication channel between each pair of processes.

A process p_i sends a message to a process p_j by invoking the primitive "send TAG(m) to p_j ", where TAG is the type of the message and m its content. To simplify the presentation, it is assumed that a process can send messages to itself. A process receives a message by executing the primitive "receive()". The macro-operation "broadcast TAG(m)" is a shortcut for "for $j \in \{1, \dots, n\}$ do send TAG(m) to p_j end for".

Failure model Up to t processes can exhibit a *Byzantine* behavior. A Byzantine process is a process that behaves arbitrarily: it can crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary state, perform arbitrary state transitions, etc. As a simple example, a Byzantine process, which is assumed to send a message m to all the processes, can send a message m_1 to some processes, a different message m_2 to another subset of processes, and no message at all to the other processes. Moreover, Byzantine processes can collude to "pollute" the computation. They can also control the network in the sense that they can re-order message deliveries at correct processes. It is however assumed that a Byzantine process cannot send an infinite number of messages.

Let us notice that, as each pair of processes is connected by a channel, a process can identify the sender of each message it receives. Hence, no Byzantine process can impersonate another process. As in Bracha's algorithm, this allows the proposed algorithm to be signature-free.

¹The number of different message types is always the same as the number of communication steps. This is needed to associate the appropriate processing to each message.

A process that exhibits a Byzantine behavior is also called *faulty*. Otherwise, it is *correct* or *non-faulty*.

3 Reliable Broadcast

The reliable broadcast (denoted RB-broadcast) communication abstraction provides each process with two operations, denoted RB_broadcast() and RB_deliver(). As in [6], we use the following terminology: when a process invokes RB_broadcast(), we say that it "RB-broadcasts a message", and when it executes RB_deliver(), we say that it "RB-delivers a message". RB-broadcast is defined by the following properties.

- RB-Validity. If a correct process RB-delivers the message MSG(v) from a correct process p_i , then p_i RB-broadcast MSG(v).
- RB-Integrity. A correct process RB-delivers at most one message from any process p_i .
- RB-Agreement. No two correct processes RB-deliver distinct messages from the same process.
- RB-Termination-1. If a correct process RB-broadcast a message, all correct processes eventually RB-deliver this message.
- RB-Termination-2. If a correct process RB-delivers a message m from p_i (possibly faulty) then all correct processes eventually RB-deliver m from p_i .

On the safety properties' side RB-validity relates the output (messages RB-delivered) to the inputs (messages RB-broadcast). RB-integrity states that there is no duplication. RB-agreement states that there is no duplicity: be the sender correct or not, it is not possible for a correct process to RB-deliver m while another correct process RB-delivers $m' \neq m$.

On the liveness properties' side The RB-Termination properties state the guarantees on message RBdelivery. RB-Termination-1 states that a message RB-broadcast by a correct process is RB-delivered by all correct processes. RB-Termination-2 gives its name to reliable broadcast. Be the sender correct or not, every message RB-delivered by a correct process is RB-delivered by all correct processes.

It follows that all correct processes RB-deliver the same set of messages, and this set contains at least all the messages RB-broadcast by the correct processes.

RB-broadcasting a sequence of messages The previous definition considers that each correct process RB-broadcasts at most one message. It is easily possible to extend it to the case where a correct process RB-broadcasts a sequence of messages. In the algorithm that follows, the identity j of the sender p_j must then be replaced by a pair $\langle j, sn \rangle$, where sn is the sequence number associated by p_j with the message.

4 A Communication-Efficient Reliable Broadcast Algorithm for t < n/5

The algorithm Algorithm 1, which implements the reliable broadcast abstraction, consists of a client side and a server side. On the client side, when a (correct) process wants to RB-broadcast an application message $MSG(v_i)$, it simply broadcasts the algorithm message $INIT(i, v_i)$.

On the server side, a process can receive two types of messages.

• When it receives a message INIT(j, v) (necessarily from process p_j as the processes are connected by bidirectional channels), a process p_i broadcasts the message WITNESS(j, v) (line 2) if (a) this message is the first message INIT() p_i receives from p_j , and (b) p_i has not yet broadcast a message WITNESS(j, -).

- When a process p_i receives a message WITNESS(j, v) (from any process), it does the following.
 - If p_i has received the same message from "enough-1" processes (where "enough-1" is (n 2t), i.e., at least $n 3t \ge 2t + 1$ correct processes sent this message, and p_i has not yet broadcast the same message WITNESS(j, v), it forwards it to all processes. This concludes the "forwarding phase" of p_i as far as a message of p_j is concerned.
 - If p_i received the same message from "enough-2" processes (where "enough-2" means "at least (n t) processes", i.e., the message was received from at least $n 2t \ge 3t + 1$ correct processes, p_i locally RB-delivers MSG(j, v) if not yet done. This concludes the "RB-delivering phase" of a message from p_j , as far as p_i is concerned.

```
operation RB_broadcast MSG(v_i) is
(1) broadcast INIT(i, v_i).
when INIT(j, v) is received from p_j do
(2) if (first reception of INIT(j, -) and WITNESS(j, -) not yet broadcast) then broadcast WITNESS(j, v) end if.
when WITNESS(j, v) is received do
(3) if (WITNESS(j, v) received from (n - 2t) different processes and WITNESS(j, v) not yet broadcast)
       then broadcast WITNESS(j, v)
(4)
(5)
     end if:
     if (WITNESS(j, v) received from (n - t) different processes and MSG(j, -) not yet RB_delivered)
(6)
       then RB_deliver MSG(j, v)
(7)
(8)
     end if.
```

Algorithm 1: Communication-efficient Byzantine reliable broadcast algorithm for t < n/5

Cost of the algorithm Only two types of messages are used (INIT and WITNESS). It is easy to see that the broadcast of a message by a correct process requires two consecutive communication steps (broadcast of an INIT message whose receptions entail at most n broadcasts of WITNESS messages). Not counting the messages that a process sends to itself, a reliable broadcast by a correct process costs (n-1) messages INIT and at most n(n-1) messages WITNESS (counting only the messages under the control of the algorithm).

5 **Proof of the Algorithm**

The proof assumes t < n/5.

Lemma 1. Let INIT (i, v) be a message that is never broadcast by a correct process p_i . If Byzantine processes broadcast the message WITNESS (i, v), no correct process will forward this message at line 4.

Proof Let us consider the worst case where t processes are Byzantine and each of them broadcasts the same message WITNESS (i, v). For a correct process p_j to forward this message at line 4, the forwarding predicate of line 3 must be satisfied. But, in order for this predicate to be true at a correct process p_j , this process must receive the message WITNESS (i, v) from n - 2t different processes. As n - 2t > t, this cannot occur.

Theorem 1. Algorithm 1 implements the reliable broadcast abstraction in n-process asynchronous message-passing systems in which up to t < n/5 processes may commit Byzantine failures.

Proof

Proof of the RB-Validity property.

Let p_i be a correct process that invokes RB_broadcast MSG(v) and consequently broadcasts the message INIT(i, v) at line 1. The fact that no correct process RB-delivers a message different from MSG(i, v) comes from the following observation. To RB-deliver a message MSG(i, v'), a correct process must receive the message WITNESS(i, v') from more than (n - t) different processes (line 6). But if the (at most) t Byzantine processes forge a fake message WITNESS(i, v'), with $v \neq v'$, this message will never be forwarded by correct processes (Lemma 1). As n - t > t, it follows from the predicate of line 6 that the content of the message RB-delivered by any correct process cannot be different from (i, v).

Proof of the RB-Integrity property.

This property follows directly from the RB-delivery predicate of line 6, namely, at most one message MSG(j, v) can be delivered by any correct process p_i .

Proof of the RB-Agreement property.

Let p_k be a process that sends at least one message INIT(k, -). If p_k is correct, it sends at most one such message. If it is Byzantine, it may send more. Hence, let us assume that p_k sends $INIT(k, v_1)$, $INIT(k, v_2)$, etc., $INIT(k, v_m)$, where $m \ge 1$. For any $x \in [1..m]$, let Q_x be the set of correct processes that receive the message $INIT(k, v_x)$, and these receptions directed them to broadcast the message $WITNESS(k, v_x)$ at line 2. Due to the fact that only p_k can send messages INIT(k, -), it follows from the reception predicate of line 2 that a correct process can belong to at most one set Q_x . Hence, we have: $(x \ne y) \Rightarrow Q_x \cap Q_y = \emptyset$. We consider two cases according to the size of the sets Q_x .

- Let us first consider a set Qx such that |Qx| < n 3t. Let pj be any correct process that does not belong to Qx (hence pj does not process the message INIT(k, vx) at line 2 if it receives it). As n t > n 3t, pj does exist. Process pj can receive the message WITNESS(k, vx) (a) from each process of Qx, and (b) from each of the t Byzantine processes. It follows that pj can receive WITNESS(k, vx) from at most t + |Qx| different processes. As t + |Qx| < n 2t, the predicate of line 3 cannot be satisfied at pj, and consequently, pj (i.e., any correct process ∉ Qx) will never send the message WITNESS(k, vx). Hence the number of messages WITNESS(k, vx) received by any correct process can never attain (n t), from which we conclude that no correct process RB-delivers MSG(k, vx). It follows that |Qz| ≥ n 3t, at most one message MSG(k, -) may be RB-delivered by a correct process, and this message is then MSG(k, vz).
- Let us now consider the case where there are at least two different sets of correct processes Q_x and Q_y , each of size at least (n-3t). Let us remind that, in the worst case, each of the t Byzantine processes can systematically play double game by sending both WITNESS (k, v_x) and WITNESS (k, v_y) to each correct process without having received the associated message INIT(k, -)). Moreover, in the worst case, we have exactly (n t) correct processes. (If, in a given execution, strictly less than t processes are Byzantine, we consider the equivalent execution in which exactly t processes are Byzantine, and some of them behave like correct processes.) As both Q_x and Q_y contain only correct processes, and $Q_x \cap Q_y = \emptyset$, it follows that $|Q_x| + |Q_y| + t \le n$, which implies $2n 6t + t \le |Q_x| + |Q_y| + t \le n$, from which we obtain $5t \ge n$, which contradicts the assumption on t (namely, n > 5t). Consequently, at least one of Q_x and Q_y is composed of less than (n 3t) correct processes. It follows from the previous paragraph that the corresponding message MSG(k, -) cannot be RB-delivered by a correct process. As this is true for any pair of sets Q_x and Q_y , it follows that, if p_k sends several messages INIT (k, v_1) , INIT (k, v_2) , etc., INIT (k, v_m) , at most one of them can give rise to a set Q_x such that $|Q_x| \ge n 3t$, and, consequently, at most one message MSG (k, v_x) can be RB-delivered by any correct process.

Proof of the RB-Termination-1 property.

Let p_i be a correct process that invokes RB_broadcast MSG(v) and consequently broadcasts the message INIT (i, v_i) at line 1. It follows that any correct process p_j receives this message. Let us remember that, due to the network connectivity assumption, there is a channel connecting p_i to p_j and consequently the message INIT(i, v) cannot be a fake message forged by a Byzantine process. Moreover, due to Lemma 1, no message WITNESS(i, v'), with $v' \neq v$, forged by Byzantine processes, can be forwarded by a correct process at lines 3-4. Hence, when p_j receives INIT(i, v), it broadcasts the message from (n - t) different processes and consequently locally RB-delivers the message MSG(i, v) at lines 6-8, which proves the property.

Proof of the RB-Termination-2 property.

Let p_i be a correct process that RB-delivers the message MSG(k, v). It follows that the RB-delivery predicate of line 6 is true at p_i , and consequently, p_i received the message WITNESS(k, v) from at least (n - t) different processes, i.e., from at least n - 2t > t correct processes.

It follows that at least (n - 2t) correct processes broadcast WITNESS(k, v), and consequently the predicate of line 3 is eventually true at each correct process. Hence, every correct process eventually broadcasts the message WITNESS(k, v) at line 4, if not yet done before (at line 2 or line 4). As there are at least (n - t) correct processes, each of them eventually receives WITNESS(k, v) from (n - t) different processes, and consequently RB-delivers MSG(k, v) at line 7, which proves the property.

 $\square_{Theorem 1}$

Acknowledgments

The authors want to thank the reviewers for their constructive comments. This work has been partially supported by the Franco-German DFG-ANR Project 40300781 DISCMAT devoted to connections between mathematics and distributed computing, and the French ANR project DESCARTES devoted to distributed software engineering.

References

- [1] Attiya H. and Welch J., *Distributed computing: fundamentals, simulations and advanced topics*, (2d Edition), Wiley-Interscience, 414 pages, 2004.
- [2] Birman K. P., *Guide to Reliable Distributed Systems*. Texts in Computer Science, Springer, 730 pages, 2012 (ISBN 978-1-4471-2415-3).
- [3] Bracha G., Asynchronous Byzantine agreement protocols. *Information & Computation*, 75(2):130-143, 1987.
- [4] Bracha G. and Toueg S., Asynchronous consensus and broadcast protocols. *Journal of the ACM*, 32(4):824-840, 1985.
- [5] Cachin Ch., Guerraoui R., and Rodrigues L., *Reliable and secure distributed programming*, Springer, 367 pages, 2011 (ISBN 978-3-642-15259-7).
- [6] Hadzilacos V. and Toueg S., A Modular Approach to Fault-Tolerant Broadcasts and Related Problems. *Tech Report 94-1425*, 83 pages, Cornell University, Ithaca (USA), 1994.
- [7] Lamport L., The Part-time Parliament. ACM Transactions on Computer Systems, 16(2):133-169, 1998.

- [8] Lamport L., Shostack R., and Pease M., The Byzantine generals problem. *ACM Transactions on Programming Languages and Systems*, 4(3)-382-401, 1982.
- [9] Lynch N. A., *Distributed algorithms*. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996 (ISBN 1-55860-384-4).
- [10] Pease M., Shostak R., and Lamport L., Reaching agreement in the presence of faults. *Journal of the ACM*, 27:228-234, 1980.
- [11] Raynal M., Communication and agreement abstractions for fault-tolerant asynchronous distributed systems. Morgan & Claypool, 251 pages, 2010 (ISBN 978-1-60845-293-4).