
Leader Election Requires Logarithmic Time in Population Protocols

Yuichi Sudo∗ and Toshimitsu Masuzawa†

Graduate School of Information Science and Technology, Osaka University, Japan

Abstract

This paper shows that every leader election protocol requires logarithmic stabilization time both in
expectation and with high probability in the population protocol model. This lower bound holds even
if each agent has knowledge of the exact size of a population and is allowed to use an arbitrarily large
number of agent states. This lower bound concludes that the protocol given in [Sudo et al., SSS 2019] is
time-optimal in expectation.

1 Introduction
We consider the population protocol (PP) model [1] in this paper. A network called population consists of a large
number of automata, called agents. Agents make interactions (i.e., pairwise communication) with each other by which
they update their states. Agents are strongly anonymous: they do not have identifiers and they cannot distinguish their
neighbors with the same state. As with the majority of studies on population protocols[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], we
assume that the network of agents is a complete graph and that the scheduler selects an interacting pair of agents at
each step uniformly at random.

In this paper, we focus on the leader election problem, which is one of the most fundamental and well studied
problems in the PP model. The leader election problem requires that starting from a specific initial configuration, a
population reaches a safe configuration in which exactly one leader exists and the population keeps that unique leader
thereafter.

1.1 Related Work
There have been many works which study the leader election problem in the PP model (Tables 1 and 2). Angluin
et al. [1] gave the first leader election protocol, which stabilizes in O(n) parallel time in expectation and uses only
constant space of each agent, where n is the number of agents and “parallel time” means the number of steps divided
by n. If we stick to constant space, this linear parallel time is optimal; Doty and Soloveichik [8] showed that any
constant space protocol requires linear parallel time to elect a unique leader. Alistarh and Gelashvili [2] made a
breakthrough in 2015; they achieved poly-logarithmic stabilization time (O(log3 n) parallel time) by increasing the
number of states from O(1) to only O(log3 n). Thereafter, the stabilization time has been improved by many studies
[11, 4, 5, 6, 7]. Gąsieniec et al. [6] gave a state-of-art protocol that stabilizes in O(log n · log log n) parallel time with
only O(log log n) states. Its space complexity is optimal; Alistarh et al. [3] showed that any poly-logarithmic parallel
time algorithm requires Ω(log log n) states. Michail et al. [7] gave a protocol with O(log n) parallel time but with

∗Corresponding Author: y-sudou@ist.osaka-u.ac.jp
†masuzawa@ist.osaka-u.ac.jp

1

ar
X

iv
:1

90
6.

11
12

1v
4

 [
cs

.D
C

]
 2

 N
ov

 2
01

9

Table 1: Leader Election Protocols (Stabilization time is shown in terms of expected parallel time)

States Stabilization Time
[1] O(1) O(n)

[2] O(log3 n) O(log3 n)

[3] O(log2 n) O(log5.3 n · log log n)

[4] O(log n) O(log2 n)

[5] O(log log n) O(log2 n)
[6] O(log log n) O(log n · log log n)
[7] O(n) O(log n)

[12] O(log n) O(log n)

Table 2: Lower Bounds for Leader Election (Stabilization time is shown in terms of expected parallel time)

States Stabilization Time
[8] O(1) Ω(n)
[3] < 1/2 log log n Ω(n/polylogn)

This work any large Ω(log n)

a linear number of states. Our previous work [12] gave a protocol with O(log n) parallel time and O(log n) states.
Those protocols with non-constant number of states [2, 3, 11, 4, 5, 6] are not uniform, that is, they require some rough
knowledge of n. For example, in the protocol of [5], a Θ(log log n) value must be hard-coded to set the maximum
value of one variable (named l in that paper). One can find detailed information about the leader election in the PP
model in two survey papers [13, 14].

There is a folklore that any leader election protocol requires Ω(log n) parallel time in the population protocol
model. One may think that this lower bound trivially holds because several agents have no interactions during o(log n)
parallel time with probability 1− o(1). However, as Alistarh and Gelashvili [2] pointed out, this idea is not sufficient
to prove the folklore. Let us discuss it in detail here. The lower bound of Ω(log n) expected parallel time holds almost
trivially if the initial output of the agents is L (i.e., all the agents are leaders initially). This is because we need Ω(log n)
expected parallel time before n − 1 agents have at least one interaction each. What if the initial output is F (i.e., all
the agents are non-leaders initially)? For any small constant ε, we can prove that with a constant probability, Ω(n1−ε)
agents remains still inexperienced after the first period of o(log n) parallel time in an execution, that is, they have
no interactions during the period. However, this does not immediately mean that Ω(log n) parallel time is necessary
to elect a leader in expectation because those Ω(n1−ε) inexperienced agents are non-leaders. We have to show that
no leader election protocol can create a unique leader with o(log n) expected parallel time starting from the initial
configuration where all agents are non-leaders. To the best of our knowledge, there is no proof in the literature for this
folklore, that is, the lower bound of Ω(log n) parallel time on the stabilization time for leader election.

1.2 Our Contribution
In this paper, we prove the above folklore, that is, we show that any leader election protocol requires Ω(log n) parallel
time in expectation. As mentioned above, most of recent protocols uses a non-constant (poly-logarithmic, in most
cases) number of states and assume that rough knowledge of the population size is given to each agent. This lower
bound holds even if each agent can use an arbitrarily large number of states and knows the exact size of a population.
Thus, by this lower bound, we can say that the protocols of [7] and [12] are optimal in terms of expected stabilization
time.

2

In our proof for the lower bound, we do not assume that every leader election protocol always stabilizes to elect a
unique leader. Therefore, our lower bound holds even if we allow a protocol to have a (small) probability that it fails
to elect a unique leader.

Strictly speaking, we give a stronger lower bound than Ω(log n) parallel stabilization time in expectation. Instead,
we show that every leader election protocol requires Ω(log n) parallel time to stabilize with probability 1− o(1). This
lower bound immediately gives the above lower bound in expectation. Moreover, it immediately yields that no leader
election protocol stabilizes within o(log n) parallel time with high probability; every leader election protocol stabilizes
within o(log n) parallel time with probability o(1).

To prove the lower bound, we introduce a novel notion that we call influencers. At any time of an execution, the
influencers of an agent v is the set of agents that could influence on the current state of v. The size of the influencers
is monotonically non-decreasing, and grows with the same speed as epidemics, which Angluin et al. [15] introduced
in order to analyze fast protocols to compute any semi-linear predicate. Actually, we will prove the lower bound
essentially by showing that Ω(log n) parallel time is necessary for the number of influencers of any agent v to reach
Ω(n2/3).

2 Preliminaries
In this section, we specify the population protocol model. For simplicity, we omit some elements of the population
protocol model that are not needed to study leader election. Specifically, we remove input symbols and input functions
from the definition of population protocols.

A population is a network consisting of agents. We denote the set of all the agents by V and let n = |V |. We
assume that a population is a complete graph, thus every pair of agents (u, v) can interact, where u serves as the
initiator and v serves as the responder of the interaction.

A protocol P (Q, sinit, T, Y, πout) consists of a finite set Q of agent states, an initial state sinit ∈ Q, a transition
function T : Q×Q→ Q×Q, a finite set Y of output symbols, and an output function πout : Q→ Y . Every agent is in
state sinit when an execution of protocol P begins. When two agents interact, T determines their next states according
to their current states. The output of an agent is determined by πout: The output of an agent in state q is πout(q). As
with all papers listed in Table 1 except for [1], we assume that a rough knowledge of n is available. Specifically, we
assume that an integer m such that m ≥ log2 n and m = Θ(log n) is given, thus we can design P (Q, sinit, T, Y, πout)
using this input m, i.e., Q, sinit, T , Y , and πout can depend on m.

A configuration is a mapping C : V → Q that specifies the states of all the agents. We define Cinit,P as the
configuration of P where every agent is in state sinit. We say that a configuration C changes to C ′ by the interaction
e = (u, v), denoted by C e→ C ′, if (C ′(u), C ′(v)) = T (C(u), C(v)) and C ′(w) = C(w) for all w ∈ V \ {u, v}.

A schedule γ = γ0, γ1, · · · = (u0, v0), (u1, v1), . . . is a sequence of interactions. A schedule determines which
interaction occurs at each step, i.e., interaction γt happens at step t under schedule γ. We consider a uniformly random
scheduler Γ = Γ0,Γ1, . . . where each Γt (t ≥ 0) is a random variable that specifies the interaction (ut, vt) at step t
and satisfies Pr(Γt = (u, v)) = 1

n(n−1) for any distinct u, v ∈ V . Given a schedule γ = γ0, γ1, . . . , the execution of

protocol P starting from a configuration C0 is uniquely defined as ΞP (C0, γ) = C0, C1, . . . such that Ct
γt→ Ct+1 for

all t ≥ 0. We usually focus on ΞP (Cinit,P ,Γ). We say that agent v ∈ V participates in Γt if v is either the initiator
or the responder of Γt. We say that a configuration C of protocol P is reachable if the initial configuration Cinit,P

changes to C by some finite sequence of interactions γ0, γ1, . . . , γk. We define Call(P) as the set of all reachable
configurations of P .

The leader election problem requires that every agent should output L or F which means “leader” or “follower”
respectively. Let SP,LE be the set of the configurations of P such that each C ∈ SP,LE satisfies the following:

• exactly one agent outputs L (i.e., is a leader) in C, and

• no agent changes its output in the execution ΞP (C, γ) for any schedule γ.

3

We call the configurations of SP,LE the safe configurations of P . We say that an execution of P stabilizes when it
reaches a configuration in SP,LE . For any leader election protocol P , we define the stabilization time of P as the
number of steps during which execution ΞP (Cinit,P ,Γ) reaches a configuration in SP,LE , divided by the number of
agents n. The division by n implies that we evaluate the stabilization time in terms of parallel time. Since Γ is a
random variable, the stabilization time of P is also a random variable. Thus, we usually evaluate it in terms of “in
expectation” or “with high probability”.

3 Lower Bound
Let P (Q, sinit, T, Y, πout) be any leader election protocol. We fix protocol P and its execution Ξ = ΞP (Cinit,P ,Γ) =
C0, C1, . . . throughout this section. We call Ct the configuration at step t or t-th configuration. Note that each Ct is a
random variable. Our goal is to prove the following proposition.

Proposition 1. For some constant c, the (parallel) stabilization time of P is at least c lnn with probability 1− o(1).

We prove Proposition 1 in the rest of this section. First, we prove the following lemma in a similar way as a
standard analysis of the coupon collector’s problem.

Lemma 1. Let ε be any (small) positive constant and f(n) be any function such that f(n) = O(n1−ε). There exists
some constant c such that execution Ξ requires at least cn lnn steps with probability 1− o(1) to reach a configuration
where less than f(n) agents are in state sinit.

Proof. Without loss of generality, we assume that an agent never gets state sinit once it has an interaction. (A transition
going back to sinit just increases the probability that Ξ requires Ω(n log n) steps to reach a configuration with less than
f(n) agents in state sinit.) Consider a configuration that exactly i agents are in sinit. Then, at least one of the i agents
has an interaction and leaves state sinit in the next step with probability pi = iC2+i(n−i)

nC2
= i(2n−i−1)

n(n−1) . Let Xi be a
geometric random variable with parameter pi, that is, the number of coin flips until it lands on heads where the coin
lands on heads with probability pi in each flip. LetX =

∑
i∈{f∗(n),f∗(n)+2,...,n}Xi where f∗(n) = 2df(n)/2e. Since

pn = pn−1 = 1 and pi is monotonically increasing in i ∈ [0, n− 1], for any integer a, the probability that Ξ requires
at least a steps to reach a configuration with less than f(n) agents in state sinit is lower bounded by Pr(X ≥ a). Thus,
it suffices to show Pr(X ≥ cn log n) = 1− o(1) for some constant c.

In what follows, we analyze the expectation and the variance of X and then obtain Pr(X ≥ cn log n) = 1− o(1)
by Chebyshev’s inequality. We obtain the lower bounds of the expectation and the variance as follows:

E[X] =
∑

i∈{f∗(n),f∗(n)+2,...,n}

1

pi
≥

∑
i∈{f∗(n),f∗(n)+2,...,n}

n

2i
= Ω

(
n log

n

f(n)

)
= Ω(n log nε) = Ω(n log n),

Var[X] =
∑

i∈{f∗(n),f∗(n)+2,...,n}

1− pi
p2i

≤
∑

i=1,2,...,n

1

p2i
≤

∑
i=1,2,...,∞

n2

i2
=
π2n2

6
< 2n2,

where we use 12 + 22 + 32 + · · · = π2/6 for the last equality. Let d be a constant such that E[X] ≥ dn lnn holds for
any sufficiently large n. Then, by Chebyshev’s Inequality, we obtain

Pr

(
X ≤ dn lnn

2

)
≤ Pr

(
X ≤ E[X]− dn log n

2

)
≤ 4Var[X]

(dn lnn)2
= O(1/ log2 n).

Thus, we have Pr(X > dn lnn/2) = 1−O(1/ log2 n) = 1− o(1).

Corollary 1. Proposition 1 holds if the initial output of P is L, i.e., πout(sinit) = L.

4

A B C D E
A B C D E

A B C D E
A B CD CD E

A B C D E
A B CD CDE CDE

A B C D E
A BCD BCD CDE CDE

A B C D E
A BCD BCDE CDE BCDE

A B C D E
ACDE BCDE BCDE ACDE BCDE

A B C D E
ACDE BCD BCDE ACDE BCDE

step 0

step 1

step 2

step 3

step 4

step 5

step 6

Figure 1: An example of the influencers. The circles
represent the agents. The dashed lines represents the
interactions in steps 0, 1, . . . , 5. The box below each
circle represents the set of influencers of the corre-
sponding agent at each step.

A,0 B,0 C,0 D,0 E,0

A,1 B,1 C,1 D,1 E,1

A,2 B,2 C,2 D,2 E,2

A,3 B,3 C,3 D,3 E,3

A,4 B,4 C,4 D,4 E,4

A,6 B,6 C,6 D,6 E,6

A,5 B,5 C,5 D,5 E,5

Figure 2: The graph H that corresponds to the in-
teraction sequence in Figure 1. The black ellipses
represent the nodes from which (A, 6) is reachable.

In the rest of this section, we assume πout(sinit) = F . Recall that a configuration C of P is safe if and only if
there exists exactly one leader in C and no agent can change its output in an execution after C. In what follows, we
use Lemma 1 by letting f(n) = n2/3 while the lemmas and corollaries in the rest of this section hold for more general
f(n) = O(n1−ε). The following corollary immediately follows from Lemma 1.

Corollary 2. Suppose that Proposition 1 does not hold, that is, the parallel stabilization time of P is less than c lnn
with probability 1−o(1) for any constant c. Then, there exists some safe configuration of P where at least n2/3 agents
are in state sinit.

Corollary 2 implies that an execution of P must involve more than n2/3 agents to create a new leader if Proposition
1 does not hold. This is because otherwise an execution of P creates a new leader with only interactions involving
only at most n2/3 agents, a contradiction to the existence of a safe configuration with at least n2/3 agents in state
sinit. In what follows, we elaborate this proposition as Lemma 2 after introducing the notion of influencer. The set
of influencers of agent v at step 0, denoted by F (v, 0), is only {v}. Thereafter, the influencers of agent v is expanded
every time it has an interaction with another agent. Specifically, for i > 0, F (v, i) = F (v, i− 1)∪F (u, i− 1) if v has
an interaction with an agent u at step i, that is, if there exists agent u ∈ V such that Γi−1 = (u, v) or Γi−1 = (v, u).
Otherwise, F (v, i) = F (v, i − 1). See Figure 1 that depicts the set of influencers where the population consists of
five agents {A,B,C,D,E}. In this example, by the interactions at steps 0, 1, . . . , 5, the set of the influencers of
agent A expands from {A} to {A,C,D,E}. We can represent F (v, t) more intuitively. Consider the directed graph

5

H = (VH , EH) where VH = {(u, i) | u ∈ V, i = 0, 1, . . . , t} and EH is defined as follows:

EH ={((u, i), (u, i+ 1))} | u ∈ V, i = 0, 1, . . . , t− 1}
∪ {((u, i), (w, i+ 1))} | u,w ∈ V, i = 0, 1, . . . , t− 1, (u,w) ∈ Γi ∨ (w, u) ∈ Γi}.

(See Figure 2 for the graph H that corresponds to the example of Figure 1.) It is obvious that a node u belongs to
F (v, t) if and only if node (v, t) is reachable from node (u, 0) in graph H .

Lemma 2. If Proposition 1 does not hold, an execution of P never reaches a safe configuration before the number of
influencers of some agent becomes greater than n2/3, that is, Ct is a safe configuration only if |F (v, t)| > n2/3 holds
for some v ∈ V .

Proof. Assume that Proposition 1 does not hold. Then, by Corollary 2, there exists a safe configuration C of P such
that m ≥ n2/3 agents are in state sinit. Since C is a safe configuration, there is no sequence of interactions that leads
to create another leader starting from C. This means that we cannot create a new leader by interacting only m agents
with state sinit even if we let them interact each other infinitely many times. Therefore, we require that the number
of influencers of some agent becomes greater than m ≥ n2/3 to create a new leader. In other words, in execution Ξ,
an agent v becomes a leader only at step t such that |F (v, t)| > n2/3. The lemma holds because no leader exists in a
configuration C0 = Cinit,P and thus Ξ must create a leader to reach a safe configuration.

By Lemma 2, it suffices to show that the expansion of influencers is not so fast in order to prove Proposition
1. More specifically, our goal is now to show that Ω(n log n) steps are needed until some agent v ∈ V satisfies
F (v, ∗) > n2/3. Fortunately, the expansion of influencers is symmetric to the expansion of the epidemic [15] and can
be analyzed similarly. Let t be any non negative integer. We define a sequence of sets Iv,t(0), Iv,t(1), . . . , Iv,t(t) ∈ 2V

based on the digraph H defined just above Lemma 2, as follows: for any i = 0, 1, . . . , t, a node u ∈ V belongs to
Iv,t(i) if and only if (v, t) is reachable from (u, i) in H . In the example of Figure 2, we have IA,6(6) = IA,6(5) =
{A}, IA,6(4) = IA,6(3) = IA,6(2) = {A,D}, IA,6(1) = {A,C,D}, IA,6(0) = {A,C,D,E}. By definition, we
have the following observation.

Observation 1. Let v ∈ V and t ∈ N≥0. Then, we have F (v, t) = Iv,t(0).

Let i ∈ [0, t− 1]. Note that Iv,t(i) is determined only by interactions Γt−1,Γt−2, . . . ,Γi. Hence, Iv,t(i) depends
on Iv,t(i+ 1), but Iv,t(i+ 1) is independent of Iv,t(i). Suppose |Iv,t(i+ 1)| = k. Then, |Iv,t(i)| = k+ 1 holds if and
only if one of the k agents in Iv,t(i + 1) and one of the n − k agents in V \ Iv,t(i + 1) interact at step i (i.e., in Γi).
Therefore, we have the following observation.

Observation 2. Let v ∈ V and t ∈ N≥0. Then, we have 0 ≤ |Iv,t(i)| − |Iv,t(i + 1)| ≤ 1 and Pr(|Iv,t(i)| = k + 1 |
|Iv,t(i+ 1)| = k) = 2k(n−k)

n(n−1) for any integer k = 1, 2, . . . , n.

We show that the above sufficient condition for Proposition 1 holds, as the following lemma.

Lemma 3. Let tmin be the smallest integer such that |F (v, tmin)| > n2/3 holds for some v ∈ V . Then, there exists
some constant c such that Pr(tmin ≥ cn lnn) = 1− o(1).

Proof. Let v be any agent in V . In what follows, we show Pr(|F (v, bcvn lnnc)| > dn2/3e) = O(n−2) for some
constant cv . This yields Pr(tmin < cn lnn) = O(n−1) = o(1) by the union bounds where c = min{cv | v ∈ V }.

By Observation 1, F (v, bcvn lnnc) = Iv,bcvn lnnc(0) holds. Therefore, lettingXk be a geometric random variable
with parameter pk = 2k(n−k)

n(n−1) and Si,j =
∑
i≤k≤j Xk, we obtain the following inequality by Observation 2:

Pr(|F (v, bcvn lnnc)| > dn2/3e) = Pr(|Iv,bcvn lnnc(0)| > dn2/3e) = Pr(S1,dn2/3e ≤ bcvn lnnc).

6

Let r = b
√
nc and κ = bdn2/3e/rc. To make use of Chernoff bounds, we divide S1,dn2/3e to κ = O(n1/6) groups,

S1,r, Sr+1,2r, . . . , S(κ−1)r+1,κr. 1 Rename S′i = Sir+1,(i+1)r−1 for any i = 0, 1, . . . , κ − 1. While k ≤ n/2,
probability pk is monotonically increasing. Since dn2/3e � n/2 holds for sufficiently large n, we can assume
E[X1] > E[X2] > · · · > E[Xdn2/3e]. Thus, letting B(l, p) be a binomial random variable with parameters l and p,
where l is the number of trials and p is the success probability, we have

Pr
(
S′i ≤

⌊r
2
·E[X(i+1)r]

⌋)
< Pr

(
B
(⌊r

2
·E[X(i+1)r]

⌋
, p(i+1)r

)
≥ r
)

≤ exp

(
−1

3
·
(r

2
− 1
))

� n−3

for sufficiently large n, where we use the Chernoff Bound for the second inequality. LetE′ =
∑

0≤i<κ
⌊
r
2E[X(i+1)r]

⌋
.

Then, we have

E′ =
∑

0≤i<κ

⌊
r

2
· n(n− 1)

2(i+ 1)r(n− (i+ 1)r)

⌋
= Ω

 ∑
0≤i<κ

n

i

 = Ω(n log κ) = Ω(n log n).

Thus, for some (small) constant cv and sufficiently large n, we have bcvn lnnc < E′. To conclude, we have

Pr(|F (v, bcvn lnnc)| > dn2/3e) = Pr(S1,dn2/3e ≤ bcvn lnnc)

< Pr

 ∑
0≤i<κ

S′i ≤ bcvn lnnc

< Pr

 ∑
0≤i<κ

S′i ≤ E′

<
∑

0≤i<κ

Pr
(
S′i ≤

⌊r
2
E[X(i+1)r]

⌋)
� n−2

for sufficiently large n.

Theorem 1. Proposition 1 holds. That is, every leader election protocol requires Ω(log n) (parallel) stabilization
time with probability 1− o(1).

Proof. Assume that the expected parallel stabilization time of protocol P is o(log n). By Lemma 2, an execution
cannot reach a safe configuration before |F (v, t)| ≥ n2/3 holds for some v ∈ V . However, Lemma 3 yields that this
requires Ω(log n) parallel time, contradiction.

The following two theorems immediately follows from Theorem 1.

Theorem 2. Every leader election protocol requires Ω(log n) (parallel) stabilization time in expectation.

Theorem 3. No leader election protocol stabilizes within o(log n) time with high probability (i.e., with probability
1−O(n−1)).

1 We ignore the last segment Sκr+1,dn2/3e when dn2/3e is not divisible by r. This ignorance only increase the error probability and thus does
not ruin the proof, as we will see in the last sentence of the proof of this lemma.

7

4 Conclusion
In this paper, we proved that in the population protocol model, any leader election protocol requires Ω(log n) parallel
stabilization time both in expectation and with high probability. This lower bound holds even if the protocol use an
arbitrarily large number of agent states and each agent knows the exact size n of a population.

Acknowledgments
This work was supported by JSPS KAKENHI Grant Numbers 17K19977, 18K18000, and 19H04085 and JST SICORP
Grant Number JPMJSC1606.

References
[1] Dana. Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation in networks of

passively mobile finite-state sensors. Distributed Computing, 18(4):235–253, 2006.

[2] Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population protocols. In Proceedings
of the 42nd International Colloquium on Automata, Languages, and Programming, pages 479–491. Springer,
2015.

[3] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L Rivest. Time-space trade-offs in
population protocols. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 2560–2579. SIAM, 2017.

[4] Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population protocols. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2221–2239. SIAM, 2018.

[5] Leszek Gąsieniec and Grzegorz Stachowiak. Fast space optimal leader election in population protocols. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2653–2667.
SIAM, 2018.

[6] Leszek Gąsieniec, Grzegorz Stachowiak, and Przemyslaw Uznanski. Almost logarithmic-time space optimal
leader election in population protocols. In The 31st ACM on Symposium on Parallelism in Algorithms and
Architectures, pages 93–102. ACM, 2019.

[7] Othon Michail, Paul G Spirakis, and Michail Theofilatos. Simple and fast approximate counting and leader
election in populations. In Proceedings of the 20th International Symposium on Stabilizing, Safety, and Security
of Distributed Systems, pages 154–169. Springer, 2018.

[8] David Doty and David Soloveichik. Stable leader election in population protocols requires linear time. Dis-
tributed Computing, 31(4):257–271, 2018.

[9] Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu. Kakugawa, and Toshimitsu
Masuzawa. Loosely-stabilizing leader election in a population protocol model. Theoretical Computer Science,
444:100–112, 2012.

[10] Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Masuzawa, Ajoy K Datta, and Lawrence L
Larmore. Loosely-stabilizing leader election with polylogarithmic convergence time. In 22nd International
Conference on Principles of Distributed Systems (OPODIS 2018), pages 30:1–30:16, 2018.

8

[11] Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Brief announcement: Population protocols
for leader election and exact majority with o(log2n) states and o(log2n) convergence time. In Proceedings of
the 38th ACM Symposium on Principles of Distributed Computing, pages 451–453. Springer, 2017.

[12] Yuichi Sudo, Fukuhito Ooshita, Taisuke Izumi, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Logarithmic
expected-time leader election in population protocol model. In Proceedings of the 21st International Symposium
on Stabilization, Safety, and Security of Distributed Systems, page (to appear), 2019.

[13] Dan Alistarh and Rati Gelashvili. Recent algorithmic advances in population protocols. ACM SIGACT News,
49(3):63–73, 2018.

[14] Robert Elsässer and Tomasz Radzik. Recent results in population protocols for exact majority and leader election.
Bulletin of EATCS, 3(126), 2018.

[15] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols with a leader.
Distributed Computing, 21(3):183–199, 2008.

9

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 Lower Bound
	4 Conclusion

