
1

CONFLICT-FREE STRIDES FOR VECTORS IN MATCHED MEMORIES

MATEO VALERO, TOMÁS LANG, JOSÉ M. LLABERÍA,
MONTSE PEIRON, JUAN J. NAVARRO and EDUARD AYGUADÉ

Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya,
Gran Capità s/n Mòdul D4, 08034 Barcelona, Spain

E-mail: mateo@ac.upc.es

ABSTRACT
Address transformation schemes, such as skewing and linear transformations, have been proposed to
achieve conflict-free access to one family of strides in vector processors with matched memories.
In this paper, we extend these schemes to achieve this conflict-free access for several families. The ba-
sic idea is to perform an out-of-order access to vectors of fixed length, equal to that of the vector reg-
isters of the processor. The hardware required is similar to that for the access in order.

Keywords: Conflict-free Access, Out-of-order Access, Parallel Memory Architecturess, Storage
Schemes, Temporal Distribution, Vector Access.

1. Introduction

To have a sufficient memory bandwidth, the memory of vector processors is organized
as several modules that can be accessed simultaneously. The memory is matched if the
number of memory modules is equal to the ratio between the memory cycle and the proces-
sor cycle, since in this case the peak memory throughput is one word per processor cycle.
However, to obtain this peak throughput, the request sequence has to be such that there are
no conflicts in the accesses. This is achieved, for example, with standard memory interleav-
ing and for vectors of odd strides. However, this is not the case for other strides, which has
motivated the proposal of other addressing schemes.

The two main address transformation schemes used to achieve conflict-free access to
other strides are skewing and linear transformations. These schemes were initially pro-
posed for array processors [1, 2] and later for multiprocessors [3], vector processors [4, 5],
and VLIW processors [6]. For vectors, they can provide conflict-free access to one family

of strides, where the family defined by x is the set of stridesσ⋅2x with σ odd [7]. Moreover,
for the case in which different vectors are accessed with different strides, dynamic schemes
based on skewing [7] and on linear transformations [5] were proposed. Linear transforma-
tions have the advantage over skewing that the module number is simpler to compute.

Although out of the scope of this paper, it is worthwhile to mention that techniques have
also been proposed to improve efficiency for the cases in which conflict-free access is not
achieved. For the skewing and linear schemes mentioned above, peak memory throughput
can be obtained for x’ < x for long vectors by the use of buffers [4]. Moreover, schemes
based on linear transformations have been proposed to distribute randomly the modules
corresponding to consecutive addresses, so that the various strides do not produce cluster-
ing to memory modules [6, 8, 9]. Recently a proposal has been made [10] for an analytic
model that can be used to make comparisons among these methods. For both schemes, most
of the evaluations performed consider long vectors, so that the initial transient is not signif-
icant and the throughput is determined for the steady state. This throughput is evaluated as

Electronic version of an article published as :
Parallel processing letters, vol. 1, núm.2, 1991, p.95-102. DOI 10.1142/S0129626491000045
© World Scientific Publishing Company. http://www.worldscientific.com/doi/abs/10.1142/S0129626491000045

2

a function of several parameters, such as structure of the transformation, number of buffers,
and number of memory modules. Although in [6, 8, 11] some measurements are given for
short vectors, the effect of length is not discussed nor is the transformation determined with
a vector length in mind.

In this paper, we consider the case in which the processor accesses vectors of fixed
length equal to the number of elements of one of its vector registers, because this is the way
the LOAD and STORE instructions operate. Since the size of the vectors is usually much
larger than the size of vector registers, the above mentioned mode of operation requires
strip-mining by the compiler so that a very high fraction of the accesses are of vectors of
length equal to that of the registers. Moreover, we propose that the elements of the vector
be requested out of order and that the whole vector be stored in the register before its use
by the processor. This prevents the chaining of LOAD/STOREs with other operations;
however, this is reasonable because the complex timing of memory accesses make this
chaining difficult anyhow.

To introduce the out-of-order accessing we use a linear transformation of the addresses,
although the same results can be obtained with interleaving or with skewing. We show that
this mode of accessing results in conflict-free accesses for several families of strides,
whereas, as discussed in previous works, ordered access produces conflict-free access only
to one family.

2. Model

The memory is composed of M=2m modules and the module latency is of M processor
cycles (matched system). Each memory module has input and output buffers.

The processor requests one element per (processor) cycle unless it has to wait because
the memory module is busy and the associated input buffers are full.

The latency of the vector access is defined as the number of processor cycles from the
time the processor sends the first address until the last element is received. We assume zero
delay in the interconnection network.

The vector length is equal to L=2λ, which is a multiple of M. The first element of the
vector has address A1 and consecutive elements are separated by a constant value S (the

stride) so that the i-th element has address A1+S⋅(i-1). As done in [7], we classify the strides

into families defined by x so that all stridesσ⋅2x with σ odd, belong to the same family.
Since the memory is organized in several modules, an address mapping is required

which transforms the address A (one-dimensional) with binary representation an-1...a0

into the two-dimensional space (module, displacement). Since conflicts depend only on the
module number part, we only consider that component of the mapping. That is, the module
number b with binary representation bm-1...b0 is given by b = F(A) where F is the module

component of the address mapping.
We choose as F the linear transformation

bi = ai ⊕ as+i s≥ m, 0≤ i ≤ m - 1 (1)

This mapping has the property that when the elements of the vector are requested in order
the access is conflict free for strides of the family with x = s and for vectors of any length

3

and any initial address [5].
Figure 1 illustrates a portion of the mapping for M=8 and s=3.

3. Balanced Vectors

We now discuss the spatial and temporal distributions of the elements of a vector, since
these determine the latency of the access.
Definition: TheSPATIAL DISTRIBUTION of a vector in the multi-module memory is the
m-tuple SD, where SD(i) is the number of vector elements in module i. A vector isBAL-

ANCED if SD(i)= L/M for all i.
Definition: TheTEMPORAL DISTRIBUTION TD of a vector is the sequence of memory-
module numbers (m1,....mL) where mi is the module corresponding to the i-th processor re-

quest. Note that the elements can be requested out of order.
Definition: TheCANONICAL TEMPORAL DISTRIBUTION of a vector is the temporal dis-
tribution when the elements are requested in order.
Definition: A temporal distribution isCONFLICT FREE when every element can be access-
ed as soon as it is requested (the corresponding memory module is not busy with a previous
request).

In a matched memory system, a temporal distribution is conflict free if any subset of M
consecutively requested elements are located in the M memory modules.
Definition: The period P of an address mapping is the period of the canonical temporal dis-
tribution for a vector with stride 1 [5].

For the mapping defined in (1), the period is P = 2s+m [5].
Definition: The period Px of an address mapping is the period of the canonical temporal

distribution for a vector with strideσ⋅2x. For our mapping Px = 2s+m-x [5].

Definition: We call CTPx the canonical temporal distribution in one period for a vector
with strideσ⋅2x.
Definition: CTPx is BALANCED if it contains each module 2s-x times.
Lemma 1: Let x ≤ s and Px be the corresponding period. Consider the grouping of these

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
9 8 11 10 13 12 15 14

18 19 16 17 22 23 20 21

27 26 25 24 31 30 29 28
36 37 38 39 32 33 34 35

45 44 47 46 41 40 43 42
54 55 52 53 50 51 48 49

63 62 61 60 59 58 57 56

Mi

Fig. 1: Mapping of address space for (1) with M=8 and s=3

64 65 66 67 68 69 70 71
.
.
.

4

Px elements into 2s-x subsequences consisting of 2m elements each. The i-th subsequence

(1 ≤ i ≤ 2s-x) contains the elements (i + k1⋅2s-x) with 0 ≤ k1 ≤ 2m-1. For any of these sub-

sequences, all its elements are located in different memory modules.
Proof: Let Ai, with binary representation an-1an-2...a1a0, be the address of the i-th ele-

ment. For the mapping defined in (1), this element is located in module mi such that

mi = (as+m-1 ⊕ am-1, ..., as+1 ⊕ a1, as ⊕ a0) = as+m-1..s⊕ am-1..0 (2)

Moreover, the element i + k1⋅2s-x has address

A i + k1⋅2s-x⋅σ⋅2x = Ai + k1⋅σ⋅2s (3)
and is located in module

((as+m-1..s + k1⋅σ mod 2m) mod 2m) ⊕ am-1..0 (4)

Sinceσ is odd, the values (k1⋅σ) mod 2m for 0 ≤ k1 ≤ 2m-1 are all different. As the bits am-

1..0 are independent of k1, the 2m elements are stored in different modules❑.

Lemma 2: For the mapping defined in (1), the families of strides that produce balanced
CTPx are those defined by x = 0, 1,.., s.

Proof: If x ≤ s, because of Lemma 1 the elements (i + k1⋅2s-x) mod Px for 0≤ k1 ≤

2m-1 are in different modules. Taking as values for i 1, 2, ..., 2s-x we obtain 2s-x subsequenc-

es of 2m elements mapped into different modules, so each module contain 2s-x elements;
therefore CTPx is balanced.

On the other hand, if x > s the elements are mapped into just2s+m-x modules, so not
all modules are visited (s+m-x < m). Therefore, CTPx is not balanced ❑.

Lemma 3: If CTPx is balanced and L = k⋅Px with k > 0 then the vector is balanced.
Proof: This is evident since the length of the vector is a multiple of the period Px, which

is the length of CTPx ❑.

Theorem 1: The families of strides that produce balanced vectors correspond to the values
of x = s-N,..., s-1, s where N = min(λ-m, s).

Proof: Because of the address mapping used, s≥ m. Because of Lemma 3, for a vector

with stride Sx = σ⋅2x to be balanced it is necessary that CTPx be balanced and that L = k⋅Px.

Since Px= 2s+m-x, this last property can be expressed asλ ≥ s+m-x. Moreover, because of

Lemma 2, CTPx is balanced if x≤ s. Consequently, we get the following two cases:

(i) if λ ≥ s+m then 0≤ x ≤ s
(ii) if λ < s+m then s-(λ-m)≤ x ≤ s ❑.

Corollary: For fixed λ and m, the value of s defines a window of families of strides that
produce balanced vectors.

Up to now we have shown the conditions for a vector to be balanced. However, the ac-
cess in order can lead to a high latency because of an unsuitable canonical temporal distri-
bution. In the example of Figure 1, the vectors of length 64 are balanced for 0≤ x ≤ 3. Con-
sider the access of a vector with stride 12 and whose first element is in position 16. Since
x = 2 the period is Px = 16 and the CTPx is

 2, 7, 5, 2, 0, 5, 3, 0, 6, 3, 1, 6, 4, 1, 7, 4
and this sequence is repeated for each of the four periods of the vector. The access is not

5

conflict free. In fact only the family with x = 3 (in general with x = s) produces a conflict-
free access.

3. Reordering

We now show how to reorder the access of the vector elements so as to achieve a better
temporal distribution.

Theorem 2: The elements of a balanced vector can be grouped in subsequences such that
the temporal distribution of each subsequence is conflict free.

Proof: We know that the length of the vector is L = k⋅Px for some k > 0 because the

vector is balanced. Then the vector can be divided in k groups of length Px. In each of these

groups we define 2s-x subsequences as defined in Lemma 1. Since the elements of each sub-
sequence are mapped in different modules the temporal distribution of each subsequence is
conflict free❑.

For the calculation of the addresses of the consecutive elements in a subsequence it is

necessary to increment byσ⋅2s, instead ofσ⋅2x for the canonical order. The order of the sub-
sequences is not important. One possibility is to request all subsequences in one period and
then go to the following period, and so on. In such a case, the first elements of consecutive

subsequences in one period are separated byσ⋅2x, which is also the separation between the
last element of one period and the first of the next. The control to perform the requests in
this order is then:

SUB = A1 ;SUB is the initial address of the present subsequence

for k=1 to 2λ-m-s+x ; k is the period number
for j=1 to 2s-x ; j is the subsequence number

A = SUB ; A is the request address
for i=2 to 2m

A= A + σ⋅2s

end for

SUB = SUB + σ⋅2x

end for

SUB = A + σ⋅2x

end for
The hardware required to generate the addresses is practically the same as that for the

requests in order, which consists of the addition of the stride. In our case, it is necessary
also to save and update SUB.

For the previous example, for the first period we obtain two subsequences that contain
the elements (0, 2, 4, 6, 8, 10, 12, 14) and (1, 3, 5, 7, 9, 11, 13, 15), respectively. These are
located in modules (2, 5, 0, 3, 6, 1, 4, 7) and (7, 2, 5, 0, 3, 6, 1, 4).

Note that even if each subsequence is conflict free, the access to the whole vector is not,
because the temporal distributions of the different subsequences are not the same. Conse-
quently, in the next section we give an additional reordering that provides this conflict-free
access.

6

However, it is worth noticing that with two buffers at the input of each module and one
buffer at the output, the above mentioned ordering produces a latency which is not greater
than 2⋅M+L cycles, that is, that the increase in latency due to the non CF access is at most
of M-1 cycles [12].

4. Conflict-free Ordering

Even though the additional latency associated with the ordering described in the previ-
ous section is low in practice (since L>>M), we now propose a scheme that eliminates this
additional latency and permits the access of the whole vector in a conflict-free manner.

To achieve this, it is necessary to incorporate a second reordering so that the temporal
distribution of all subsequences is the same. However, this poses a problem with the calcu-
lation of the addresses inside the subsequences, since to have a simple incremental calcu-

lation (addingσ⋅2s) it is necessary to do this in the order described in the previous section.
The solution is to decouple the calculation of the addresses from the actual requests. This
is achieved by calculating the addresses of subsequence i+1 while accessing subsequence
i. Consequently, during the first subsequence, it is necessary to calculate the addresses of
the first subsequence (which are used immediately for memory access) and of the second
subsequence (which are stored in a set of latches for access as the next subsequence). After
that, for each subsequence, the addresses for access are obtained from the latches and a new
address is calculated to store. Consequently, two adders are needed, although one of them

is only used in the first 2m cycles. Moreover, it is necessary to store the temporal distribu-
tion of the first subsequence, which is used to control the order of the requests of the fol-
lowing subsequences. In addition to the latches in the processor no buffers are needed in
the memory modules.

5. Choice of s and Fraction of Conflict-Free Strides

As shown previously, the proposed scheme achieves conflict-free access to the families
of strides Sx such that s-N≤ x ≤ s, where N = min(λ-m, s) and the choice of s determines

the window of conflict-free strides. Since the family for x = 0 includes all the odd strides
(and in particular stride one), it is certainly convenient to include this family by making s
≤ λ-m. In such a case, the conflict-free strides belong to the families for 0≤ x ≤ s.

We now determine the fraction of conflict-free strides for the above mentioned choice

of s. Since the fraction of strides belonging to family Sx is 1/2x, the fraction of conflict-free

strides is

This fraction is quite high for practical values ofλ, m and s. For example, for L=128
and M=8 if we choose s=4, we get 15/16th conflict-free strides. Moreover, this set of strides
includes probably the most-frequently used ones.

Σ
i = 0

s
1
2i

= 1 - 1
2s

(5)

7

6. Conclusions

In this paper we have considered the access of vectors of fixed length, equal to the
length of a vector register. The access patterns correspond to constant strides and the vector
can begin in any address. The basic idea we propose is an out-of-order access of the ele-
ments of the vector to achieve conflict-free access for all strides that produce balanced vec-
tors. This corresponds to a window of stride families, in contrast with other schemes that
provide conflict-free access only to one family.

Specifically, we divide the vector in subvectors which are accessed in a conflict-free
manner. This by itself does not produce conflict-free access to the whole vector, although
the added latency is low. To achieve the conflict-free access to the whole vector we propose
that an additional set of M addresses be calculated and latched, so that the temporal distri-
bution of all subsequences is the same.

The ideas have been presented using an address mapping based on linear transforma-
tions. However, the same results can be achieved with interleaving or with skewing. For
this, it is necessary to select in a suitable manner the bits that determine the module number
in the interleaved case, and the number of rows to rotate for skewing. The difference be-
tween these schemes will be the behavior for vectors of length smaller than L.

Acknowledgements

This work has been supported by the Ministry of Education of Spain with contract TIC-
299/89 and by the CEPBA (European Center for Parallelism of Barcelona).

References

1. P. Budnik and D. J. Kuck, The Organization and Use of Parallel Memories, IEEE Trans. Com-
put., vol. C-20, no. 12 (1971) 1566-1569.

2. J. Frailong, W. Jalby and J. Lenfant, XOR-schemes: A Flexible Data Organization in Parallel
Memories, in Proc. Int. Conf. Parallel Processing (1985) 276-283.

3. A. Norton, E. Melton, A Class of Boolean Linear Transformations for Conflict-Free Power-of-
Two Stride Access, in Proc. Int. Conf. Parallel Processing (1987) 247-254.

4. D.T. Harper III and J.R. Jump, Vector Access Performance in Parallel Memories Using a
Skewed Storage Scheme, IEEE Trans. Comput., vol. C-36 no. 12 (1987) 1440-1449.

5. D.T. Harper III, Block, Multistride Vector and FFT Accesses in Parallel Memory Systems,
IEEE Trans. Parallel and Distributed Systems, vol. 2 no. 1, (1991) 43-51.

6. B. R. Rau, M. S. Schlansker and D. W. L. Yen, The Cydra 5 Stride-Insensitive Memory Sys-
tem, in Proc. Int. Conf. Parallel Processing (1989) 242-246.

7. D.T. Harper III and D. A. Linebarger, A Dynamic Storage Scheme for Conflict-Free Vector
Access, in Proc. Int. Symp. Computer Architecture (1989) 72-77.

8. S. Weiss, An Aperiodic Storage Scheme to Reduce Memory Conflicts in Vector Processors, in
Proc. Int. Symp. Computer Architecture (1989) 380-386.

9. B.R. Rau, Pseudo-Randomly Interleaved Memory, in Proc. Int. Symp. Computer Architecture
(1991) 74-83.

10. D.T. Harper III and Y. Costa, Analytical Estimation of Vector Access Performance in Parallel
Memory Architectures, Internal Report, Dept. of Electrical Engineering. The University of
Texas at Dallas (1991).

11. D.T. Harper III and D. A. Linebarger, Conflict-Free Vector Access Using a Dynamic Storage
Scheme, IEEE Trans. Comput. vol. 40 no. 3 (1991) 276-283.

12. M. Valero, T. Lang et al., Acceso Libre de Conflicto a Vectores, Research Report RR-91/22,
Dept. d’Arquitectura de Computadors. Univ. Politècnica de Catalunya. (1991).

