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Abstract: We present an implementation of Global-Flush Primitives using counters.
This implementation costs comparable to the most lightweight implementation of
causal ordering. Thus, at a comparable cost, the presented implementation enriches
functionality compared to causal ordering; as Global-Flush Primitives permit making
an assertion about messages sent in the past of sending m, in the future of sending
m, about both, or neither, where the past and the future of an event is defined using
the relation “happened before.” Using Global-Flush Primitives, a message can be
sent to any subset of processes specified as a parameter.
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Une mise en oeuvre des primitives global flush
fondée sur les compteurs

Résumé : Cet article présente une mise en oeuvre de ’ensemble de primitives
connues sous le nom de global flush. Ces primitives permettent de faire des assertions
sur le passé et le futur des messages. Elles incluent comme cas particulier ’ordre
causal. L’implémentation proposée est fondée sur les compteurs.

Mots-clé : efficacité, machines paralleles, synchronisation, systémes répartis asyn-
chrones.
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0 Introduction

Asynchronous distributed systems research, in the past, has been mainly motivated
by the need to improve fault tolerance. Asynchronous distributed systems, however,
can also be used to improve performance or reduce distributed-program execution
time. Towards this, waits by processes for receiving messages become important.
Clearly, a program will have higher-performance if at execution time processes have
to wait lesser for receiving messages. To aim at higher-performance, i.e a reduction in
process waits for receiving messages, reference [2] proposed Global-Flush Primitives
for a broadcast environment, and reference [4] presented Global-Flush Primitives
for sending a message to any subset of processes specified as a parameter. Global-
Flush Primitives is a suite of four primitives for sending message m such that each
specifies one of the following: (0) there is no restriction on the order of receipt of m
and messages sent in the past/future of sending m unless specified by the options
used for other messages; (1) messages sent in the past of sending m must be received
before m; (2) messages sent in the future of sending m must be received after m; and
(3) messages sent in the past/future of sending m must be received before/after m.
The past and the future of an event is defined using the relation “happened before”
[13], as is also done in other relevant studies [5, 9, 14, 15, 16]. These primitives reduce
waits by a receiver process (and reduce the resequencing delay) by increasing the
number of possible orders in which messages can be received compared to message
receipt in the order of sending. This reduction has been shown [6] to be significant
when the past and the future of an event is defined using the relation “local before;”
and this reduction is expected to increase, when the past and the future of an event
is defined using the relation “happened before,” as we do. Other researchers [8] have
also pointed to the need for reduction in the resequencing delay.

In addition to the higher performance, these primitives offer another advantage
that is particularly useful for system design. Using first three of these primitives,
we should be able to design algorithms that, when superimposed on an underlying
computation, do not interfere with the computation®.

For a broadcast environment, reference [2] gave applications of GFPs for algo-
rithms for termination detection; identifying consistent cuts [7]; recording snapshots
(global snapshots without channels states); recording global snapshots; implemen-
ting a shared token; and accessing replicated data using mutual exclusion. Primi-

9That is, if sending or receipt of a message of the underlying computation is not inhibited
when the algorithm is not superimposed, then it would not be inhibited when the algorithm is
superimposed. This property is useful for many applications, e.g. algorithms for program correction
tools (debugger) or monitoring of systems.
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2 M. Ahuja and M. Raynal

tives implemented here can be used for these applications in a general environment
in which a message is sent to a subset of processes.

Clearly, the issue of efficiency of implementation determines viability of these pri-
mitives. For a broadcast environment, reference [2] addresses this issue successfully
and presents an implementation using counters that has costs comparable to the
most light weight implementation of causal broadcast (CBCAST) [5]. In this paper
we extend this implementation to Global-Flush Primitives for sending a message to
a subset of processes. In the process we also extend definition of flush-vector-time
[2] from a broadcast environment to an environment in which a message can be sent
to a subset of processes. This extension involves maintaining in flush-vector-time
two counters per channel in the system as opposed to two counters per process p in
the broadcast environment [2] (in a broadcast environment, since each message is
sent to every other process, for p there must be an outgoing channel to every other
process and the counters for each of these channels will always have the same value
and so all such counters can be merged in to one for p; so the implementation of [2]
can be seen as a particular case of the one presented in this paper.)

Compared to causal ordering [5] which involves maintaining vector time which
is one counter per channel in the system this implementation involves maintaining
flush-vector-time, which as we mentioned requires two counters per channel. This
increase in the cost, we think, is marginal and is worth the resulting gains, i.e. an
ability to implement Global-Flush Primitives which increase the number of orders in
which message can be received compared to causal ordering. This implementation
is an improvement over the implementation presented in [10] because this uses only
two counters per channel, has a natural reinitialization of counters, uses a vector as
opposed to a matrix, and is simpler.

1 The System Model

The asynchronous distributed system comprises a finite number N of processes (each
of which is viewed as a sequence of events) that communicate with each other by
asynchronous sending and receipt of messages along any of the finite number of
unidirectional channels. We use p, ¢, r, and s to refer to processes, and use ¢, 4 to
refer to a channel from p to ¢. We use S(Q,m) to denote event of sending m to a
specified set of processes Q; whenever Q is not relevant, we use S(m) to denote the
send event. The event S(Q,m) or S(m) is atomic. We use R, to denote a receipt
event at ¢; and use R,(m') to denote ¢ receiving m’. A receipt event is atomic. For
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Global Flush Primitives 3

a message m', we refer to a message sent in the past of S(m’) by m and a message
sent in the future of S(m') by m”.

A process ¢ receives m’ by executing command receive(m’.se, m'.ty, m'.co),
where m'.se, m’.ty, and m'.co are variables to which are assigned the identifier of
the sender of m/, the type of m’ (defined by the primitive used to send m’), and the
contents of m/, respectively. After issuing the command, ¢ waits until m’ is delivered
to it.

Let &€ be the set of send and receipt events that happen in the system. We assume
that no spurious messages are added and message transmission takes finite time. We
assume that each message is sent using our primitives. We make no assumptions
about the relative speed of processes.

The system has four primitives o-send, f-send, b-send, and t-send, and we refer
to a message m’ sent using them by o, f’, b, and ¢/, respectively. We refer to the
four primitives collectively as GFPs and give their definitions from [4].

Definition 0 (Relation “Happened Before” [13]) Happened Before, denoted by
—, is the smallest relation on & such that e—e" if (0) e and " happened on the
same process and e happened locally before € with respect to the process’s clock, or
(1) e is an S(m) and €" is the receipt of m, or (2) there exists an €' in & such that
e—e' and ' —e". | |

Definition 1 (Past of an event ¢')

P(e') = {e | e=€'}. n

Definition 2 (Future of an event ¢')

f(el) — {6// | e/_>€//}. .

Definition 3 (g-overtake) m' is said to g-overtake (read as ‘globally overtakes’) m
if S(Q,m) € P(5(Q",m')) and there exists q such thatq € @ N Q" and R,(m) € F(R,(m')).
| |

Definition 4 (o') An o' is sent using primitive o-send. It does not specify any res-
triction on o g-overtaking any other message or any other message g-overtaking o'.

Definition 5 (f') An f' is an m' sent using primitive f-send. It does not g-overtake
any message, that is, (Ym,q,Q,Q" : S(Q,m) e P(S(Q'm')) A ¢qe adn Q :
R,(m) € P(Ry,(m'))). | |
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4 M. Ahuja and M. Raynal

Definition 6 (b') A b is an m’ sent using primitive b-send. No message g-overtakes
it, that is, (Vm", ¢, Q', Q" : S(Q".m") € F(S(Q' ,m'))A¢g € Q' n Q" Rq/(m”) € ]—"(Rq/(m’))).
| |

Definition 7 (¢') A t' is an m’' sent using primilive t-send. Il does nol g-overtake
any message and no message g-overtakes it:

(v m7 m//7 Q7 q” Q7 Ql7 Q// :

S5(Qm) € P(S(Q,m')) A qe Qn &

A S(Q",m”) = f(S(Q’,m’)) A q/ = Ql N Q”:

R,(m) € P(R,(m')) A Rq/(m”) € ]:(Rq/(m’))). ||

Note that the function of a { cannot be achieved using fs and bs. Also, note that
the order in which an o can be received is restricted due to restrictions specified by
other messages.

In the sequel, we use bt to refer to an m that is either b or ¢, of to refer to an
m that is either o or f, ob to refer to an m that is either o or b, and ft to refer to
an m that is either f or ¢.

GFPs can be implemented using F-channels[1]. F-channels can be implemen-
ted using any one mechanism among, e.g selective flooding [3], counters [12, 17], or
acknowledgments, or a combination of the three. So GFPs can also be implemen-
ted using any one mechanism among, e.g selective flooding, counters, or acknow-
ledgments, or a combination of the three. An implementation using any of these
mechanisms, if specifically designed for GFPs can be more efficient than an imple-
mentation of GFPs using F-channels which are implemented using that mechanism.
In this paper we demonstrate this using counters.

2 The flush-vector-time

To lead us to a simple presentation of the implementation, here, we extend definition
of flush-vector-time [2] from a broadcast environment to an environment in which a
message can be sent to a subset of processes. We denote the resulting timestamp by
7, which is assigned values using flush-vector-clock. Flush-vector-clock of p, p.cis a
vector of elements one (element) per unidirectional channel. Elements of this vector
are arranged in the lexicographic order among channels using pairs jsender, receiver;,
for channels. Element of p.c or 7 for channel ¢, , will be referred to as p.c[r, s| or
as 7[r,s]. The same 7 is assigned to S(m') and m’ and is denoted by S(m').7 and
m’.7. By design, a receive event is not assigned a 7. Flush-vector-time is of general
use with respect to potential causality of all S(m') in £ and is preferable to vector
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Global Flush Primitives 5

time [9, 14] since, at a comparable cost, it provides more reasoning power and richer
functionality, e.g. use in implementing GFBCASTs which increase the number of
possible orders in which messages can be received compared to CBCASTSs [5].

We design a Global Flush Manager (GFMan) for a p, which executes at the
same site as p, executes p, maintains p.c as we shall discuss, assigns S(m’).7 and
m!.T, receives messages for p sent by any process, and delivers messages to p.! The
transmission of an m’ to GFMan for a receiver entails transmission of the identifier
of the sender of m’, the type of m’, the m'.7, and the contents of m'.

Central to the design of p.c is the idea of batching messages sent by a process
to another process such that on sending of a bt? the current batch closes and a new
batch opens. Using this idea, two counters are maintained by GFMan for every ¢, 4,
which together form p.¢[p, ¢]. The first counter is p.c[p, g].btp, which is the number of
bts (or closed batches) sent in the past along ¢, ,. The second counter is p.c[p, ¢].sbt,
which is the number of messages sent since the last bt was sent (or the current batch
was opened) along ¢, ,. Each element p.c[r,s] is a pair of two integers. We note a
relationship between two integers of such a pair; p.¢[p, ¢].sbt is reinitialized to 0 when
p.c[p, q].btpis incremented by one. This suggests that such a pair can be implemented
using one word®. For pairs of integers, let < denote the lexicographic ordering. We
define < and < relations on two flush-vector-clock values or two timestamps 7s, as
follows:

Definition 8 (Relations < and < on two flush-vector-clock valuesor two timestamps 7s)

For any two flush-vector-clock values or two timestamps 1s, say 7 and Ty:
X 13 iff for each ¢, s T[r,s] < mlr, s];
and 71 < T3 iff 1 < T2 and there exists ¢, 4 such that T1[p,q] < T2[p, q]. [ |

!Deliverability of a message depends on the communication architecture and will be discussed
later; messages may be delivered in an order different from the order of their arrival at GFMan for
the receiver, which may be different from the order of their sending.

?Recall first that bt denotes a message that may be either a b or a t and second that no message
can g-overtake a bt.

®p.c[p, g]-sbt can be represented by the first wy (least significant) bits and p.c[p, ].btp by the next
wy bits of a word of we + wi bits. Assigning such semantics reduces the cost of our implementation
for all practical purposes and may not cause any overflow compared to use of two words if w; is
carefully selected. For example, for wa + w1 = 64 and w1 = 32, as long as 1) the number of sends
along a channel between two successive bts, and 2) the number of bts sent along the channel, each, is
not more than 222 (about 4 billions), this representation does not lead to an overflow. Further, more
flexibility in avoiding overflow can be achieved by providing an ability to change w: by associating
with each element a variable that gives its value.
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6 M. Ahuja and M. Raynal

Using definition 8 we write rules for updating p.c for the GFMan for p presented
next.* At any time, arrived-set has messages that have arrived at the GFMan for p
but have not been put in to deliverable-set; deliverable-set has all messages that are
currently deliverable to p.

GFMan(p)::
1: x [ true — [ Execute p until p issues an S(Q',m’) or an R,;
1.1: if p issued an S(Q’,m’) then
1.1.1: for each ¢ € Q' do p.c[p, q].sbt := p.c[p, ¢].sbt + 1 od;
1.1.2: S(m'). :=p.c; m'.T:=p.c; execute S(Q',m’) of p;
1.1.3: if m' is a bt then
for each ¢ € Q' do p.c[p, ¢].btp := p.c[p, q].bip + 1; p.c[p, q].sbt := 0;0d
1.2: if p issued an R, and deliverable-set#( then
1.2.1: choose any m' from deliverable-set;
1.2.2: r:=m'.7; if m’ is a bt from r then 7[r, p]:=<bt.7[r, p].bip+1,0>;
1.2.3: p.c := sup(7,p.c); /* Where sup denotes the elementwise maximum using < /*
1.2.4: deliver m/ to p; execute R, of p; delete m' from deliverable-set fi]

[| The network has a message for p — add it to arrived-set for p;
[| [ arrived-set #0 — non-deterministically select an m from arrived-set;
if deliverable(m) then add m to deliverable-set and delete m from arrived-set;
[*deliverable(m) is defined for the given communication abstractions /* | |
The initialization is: deliverable-set, arrived-set:=0, for each r and s p.c[r, s].btp, p.c[r, s].sbt := 0, 0;

The following loop invariants follow from definitions.

10: p.c|p, s].sbt = the number of messages sent so far by p to s after sending the
last bt to s.

I1: p.clp, s].btp = the number of bts sent so far by p to s.

12: p.c[r,s] is the highest value (using <) that r.¢[r,s] has taken, as per data
structures maintained by p.

13: After the iteration that lead to sending of message number 7 (which can be
maintained as an auxiliary variable) by p to s and given that the last b¢ that p sent
to s was send number i by p to s, j = i + p.c[p, s].sbt.

Theorem 0 For all m, m': S(m) € P(S(m')) = S(m).T < S(m').T.
Proof: Follows from invariants and an inductive argument. | |

*We use CSP [11] syntax (i.e. ‘** for a loop, ‘]|’ for an alternate command, and ‘=’ for a guard.)
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3 An Implementation of Global-Flush Primitives

Our task is to constrain message receipts by processes such that messages are re-
ceived without violating any of the restrictions. We do so by designing a boolean
function deliverable(m') which GFMan for p uses to determine deliverability of m/
in the arrived-set of GFMan.

deliverable(m')::

[ For an ft' /* Recall that an ft’ cannot g-overtake any other message. */
if all ms such that S(Q,m)is in P(S(Q', ft')) and p belongs to Q@ N Q" have been delivered
x /* All such bts can be identified using rule 0 and all such ofs can be identified using rule 1. */
then return true (i.e. ft' is deliverable to p)
else return false;

For an ob’  /* Recall that an ob’ cannot g-overtakes a bt (but may g-overtake an of). */

if all bts such that S(Q,bt) is in P(S(Q’,0b")) and p belongs to Q N Q' have been delivered

/* Such bts can be identified using rule 0. */
then return true (i.e. ob’ is deliverable to p)
else return false;

]

Rule 0 (for identification of bt messages) Given an m' and r,

S5(Q,bt) is in P(S(Q',m')) and p € Q N Q" for exactly m'.7[r,p].btp (number of)
bts,

each with unique bt.7[r,p|.btp such that 0 < bt.7[r,p|.btp < m'.7[r, p].bip,

and only for these bits. [ |

Rule 1 (for identification of of messages) Given an m' and r,

S(Q,0f) is in P(S(Q',m')) and p € @ N Q' for exactly the following ofs sent by r:
(0)5 For each bt such that 0 < bt.t[r, p].btp < m'.7[r, p].blp, bt.7[r, p].sbt —1 (number
of ) ofs with unique

of.t[r, p] such that of.T[r,p].btp=>bt.7[r,p].bip and 0 < of.7[r,q].sbt < bt.T[r,q].sbt.
(1)¢ If r #m’.se then m'.7[r, q].sbt (number of ) ofs with of.7[r, q].btp=m'.7[r,q].bip
and unique of.T[r, ql.sbt

such that 0 < of.t[r, q].sbt < m'.7[r,q].sbt

else m'.7[r,q|.sbt—1 (number of ) ofs with of.7[r,q).bip=m'.7[r,¢].btp and unique of

®These ofs are sent by r before the last bt sent by r to p.
SThese ofs are sent by r after the last bt sent by r to p.
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8 M. Ahuja and M. Raynal

.T[r, q].sbt
such that 0 < of.t[r,q].sbt < m'.T[r,q].sbt. [ |

Theorem 1 (Safety) GFMan implements GFPs.

Proof: Fora bt and any m” such that S(m")isin F(S(bt')), S(bt') is in P(S(m")).
Hence, by function deliverable(m') and rule 0, no message g-overtakes bt'. By function
deliverable(m') and rules 0 and 1, an ft’ does not g-overtake any message. [ |

Theorem 2 (Liveness) GFMan for p will deliver to p each sent message.

Proof : Each message sent to p will be received by the GFMan of p as message
transmission to the GFMan is reliable. At a given time all messages sent to p that
have been received by GFMan of p and that have minimal timestamps according
to < will be deliverable. By induction on timestamps and since a GFMan does
not indefinitely delay delivery of a message that is deliverable, each message will
eventually become deliverable. [ |

Acknowledgments : We thank anonymous referees for their helpful comments.
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