
USING A 0-1 INTEGER PROGRAMMING MODEL
FOR AUTOMATIC STATIC DATA DISTRIBUTION

JORDI GARCIA, EDUARD AYGUADÉ and JESÚS LABARTA
Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya

Gran Capità s/núm, Mòdul D6, 08034 - Barcelona, SPAIN
e-mail: {jordig | eduard | jesus}@ac.upc.es

Received 13 March 1995
Revised 15 June 1995

Accepted by Prof. H. Zima

ABSTRACT
This paper describes an automatic data distribution method which deal with both the alignment

and the distribution problems in a single optimization phase, as opposed to sequentially solving these
two inter-dependent approaches as done by previous work. The core of this work is called the
Communication-Parallelism Graph, which describes the relationships among array dimensions of the
same and different array references regarding communication and parallelism. The overall data
distribution problem is then formulated as a linear 0-1 integer programming problem, where the
objective function to be minimized is the total execution time. The solution is static in the sense that
the layout of the arrays does not change during the execution of the program. We also show the
feasibility of using this approach to solve the problem in terms of compilation time and quality of the
solutions generated.

Keywords: Automatic Data Distribution, Automatic Parallelization, Distributed-memory
Multiprocessors, Computation and Data Movement Costs, 0-1 Linear Programming.

1 Introduction

Data distribution is one of the key aspects that have to be considered in a parallelizing
environment for Massive Parallel Machines, in which each processor has direct access to a
local (or close) memory and indirect access to the remote memories of other processors.
The cost of accessing a local memory location can be more than one order of magnitude
faster than the cost of accessing a remote memory location. In these systems, the choice of
a good data distribution can dramatically affect performance because of the non-uniformity
of the memory system. However, the data distribution problem has been proved to be NP-
complete in [16, 18].

Several researchers have targeted their research efforts to this topic. For instance, the
Crystal compiler and language project [18], the implementation of PARADIGM [13] on
top of Parafrase-2 and its continuation on the PTRAN II compiler [12] at IBM, the
framework for the automatic determination of array alignment and distribution presented
in [6, 7], or the automatic data layout strategy [4, 17] for use in the D programming
environment currently under development at Rice University are examples of projects in

Electronic version of an article published as: "Parallel processing letters", vol. 6, num. 1, 1996, p. 159-171.
DOI 10.1142/S0129626496000169. ©World Scientific Publishing Company
https://www.worldscientific.com/doi/10.1142/S0129626496000169

https://www.researchgate.net/publication/2692064_NP-completeness_of_Dynamic_Remapping?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3504237_Index_domain_alignment_minimizing_cost_of_cross-referencing_between_distributed_arrays?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3504237_Index_domain_alignment_minimizing_cost_of_cross-referencing_between_distributed_arrays?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2258492_Automatic_Data_Layout_Using_0-1_Integer_Programming?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0

this area. Other groups have targetted their effort to the effective compilation of programs
containing the specification of the data distribution, such as the VFCS [5] for the Vienna
Fortran language [22], the Fortran-D compiler [10, 21].

All the automatic approaches to automatically distribute data perform the job in two
main independent steps: alignment and distribution. The alignment step tries to find
appropriate alignments between all arrays in a block of code, that is, to decide for each
array the dimensions that will be aligned into the dimensions of another array called the
template (interdimensional alignment), and for each aligned dimension, to decide whether
it is better to shift the array with respect to the template or not (intradimensional alignment).
A good alignment will minimize the overhead of interprocessor communication.

The distribution step decides which dimension or dimensions of the template are
distributed, and the number of processors assigned to each of them. The mapping of the
arrays is determined by their alignment with respect to the template and its distribution. A
good distribution maximizes the potential parallelism of the code, and offers the possibility
of further reducing communication by serializing. This goal could be trivially satisfied
assigning a datum to each processor, which maximizes parallelism.

This paper describes an automatic data distribution method which deal with both the
alignment and the distribution problems in a single optimization phase, as opposed to
sequentially solving these two inter-dependent approaches as done by previous work.

Our approach builds the Communication-Parallelism Graph (CPG), a directed weighted
graph that holds information about both the data movement and parallelism inherent in a
block of code. This information is used to formulate a minimal path problem with a set of
additional constraints, which is solved using a general purpose linear 0-1 integer
programming solver. This solver finds the optimal solution, in a small amount of time, to
the two problems in a single step. This allows us to minimize communication while
maximizing parallelism, avoiding the use of heuristics and possibly wrong assumptions
about distribution during the alignment phase. In the framework of automatic data
distribution, the use of linear 0-1 integer programming solvers was proposed by [4] when
looking for a dynamic solution for the data layout problem.

CHPF$ DECOMPOSITION TEMPLATE(N, N, N)
CHPF$ ALIGN A(I,J,K) WITH TEMPLATE(K,J,I)
CHPF$ ALIGN B(I,J,K) WITH TEMPLATE(I,J,K)
CHPF$ ALIGN C(I,J) WITH TEMPLATE(1,I,J)
CHPF$ ALIGN D(I,J,K) WITH TEMPLATE(I,J,K)
CHPF$ DISTRIBUTE TEMPLATE(:,BLOCK,:)

do i = 1, N
CAPR$ DO PAR ON B<:,1~1,:>

do j = 1, N
do k = 1, N

B (i, j, k) = C (j, k) + i
A (k, j, i) = B (i, j, k) + 1

enddo
do k = 2, N

D (i, j, k) = D (i, j, k - 1)
enddo

enddo
enddo

Figure 1: Working example with data mapping and loop parallelization directives.

https://www.researchgate.net/publication/2391612_Fortran_D_Language_Specification?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/24289682_Vienna_FORTRAN_A_language_specification_version_11?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/242355847_An_optimizing_Fortran_D_compiler_for_MIMD_distributed-memory_machines?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/221496980_Automatic_Support_for_Data_Distribution_on_Distributed_Memory_Multiprocessor_Systems?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2258492_Automatic_Data_Layout_Using_0-1_Integer_Programming?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0

This paper presents the method that finds the optimal solution for one-dimensional
array distributions. Figure 1 shows the code that will be used as working example along the
paper, and the corresponding HPF [14] data mapping directives that are selected by our
approach, after performing the corresponding analysis and finding the minimal cost
solution. The parallelization directive in loop j has been specified using the syntax defined
in [3].

The rest of this paper is organized as follows: in Section 2 we describe the
Communication-Parallelism Graph (CPG). Section 3 shows how the constraints in the CPG
can be formulated as a linear 0-1 integer programming problem, when a single array
dimension is distributed. Section 4 summarizes our implementation and shows our first
experimental results. Finally, a few concluding remarks are given in Section 5.

2 The Communication-Parallelism Graph

The main structure of our method is the Communication-Parallelism Graph (CPG). It is a
directed graph that contains all the information related to communication and parallelism
in a block of code. The CPG is created from the analysis of all assignment statements
within loops that contain one array in the left hand side of the assignment.

2.1 CPG Nodes

The nodes in the CPG are organized in columns. Each column represents an array, and it
contains as many nodes as the maximum dimensionality d of all arrays in the block of code.
Each node in a column, thus, represents one dimension of the array that will be mapped into
one of the dimensions of a common array called template with dimensionality d. If the array
has dimensionality d’ < d, then the column is padded with (d - d’) additional nodes. These
nodes are included to allow an embedding of the array on the template (sequentialization).
As seen in the example in Figure 1, array C is embedded into the first dimension of the
template. Since four arrays are used in our working example (three of them with
dimensionality three, and one with dimensionality two) the CPG consists of 12 nodes (four
columns with three nodes each). This is the basis of the CPG, over which the
communication and parallelism information will be added in terms of data movement
edges and parallelism hyperedges

2.2 CPG Data Movement Edges

Data movement information is obtained from the analysis of reference patterns. The
meaning of a reference patterns is defined in [18], and represents a collection of
dependences between the array in the left-hand side and each array in the right-hand side
of an assignment statement. When the same array is used in both sides, the reference pattern
is called self-reference pattern. For instance, consider our working example in Figure 1.
From the assignment statements inside the loop nest, two reference patterns can be
extracted:

B (i, j, k) ← C (j, k) and A (k, j, i) ← B (i, j, k)

and one self-reference pattern:

D (i, j, k) ← D (i, j, k - 1)

https://www.researchgate.net/publication/3504237_Index_domain_alignment_minimizing_cost_of_cross-referencing_between_distributed_arrays?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0

For each reference pattern between two different arrays, (d x d) directed edges are
added, where d is the maximum dimensionality of all arrays. The edges connect all nodes
of the array to be read (right hand side) to all nodes of the array to be updated (left hand
side), and represent all alignment possibilities between these two arrays. The weight that is
assigned to the edge is a symbolic expression that represents the cost of the data movement
that has to be performed when these two dimensions are aligned and distributed over a
generic number p of processors. This cost reflects the number of remote memory accesses
that have to be performed, and it is a function of p and the data movement timings in the
target machine. When a self reference pattern is found, d self edges are added in the column
of the referenced array, one in each node. As in the previous case, the weight is a symbolic
expression that represents the cost of the data movement that has to be performed when this
dimension is distributed. Several edges between a pair of nodes are replaced by a single
edge with a weight equal to the sum of the original ones. Details about the matching of
reference patterns to data movement routines and the estimation of their cost can be found
elsewhere [11, 18].

After adding the data movement information, the CPG (without weights) that is
obtained is shown in Figure 2.a. In this graph, the edges due to the assignment of array B
to array A, the assignment of array C to array B, and the self assignment of array D are
shown. The cost functions have been omitted. But for instance, the costs associated to the
self-edges for array D would correspond to the costs of performing local memory accesses
for edges D[1]-D[1] and D[2]-D[2] and the cost of performing shift-like data movements
for edge D[3]-D[3].

Note that the CPG at this point is not the Component Affinity Graph (CAG) used by
other authors [18, 13]. The meaning of the edges in the CAG is a preference for alignment,
that is, how good is to align two dimensions. The weight should reflect the extra
communication cost incurred if those dimensions are not aligned. The problem is that one
can not identify two unique alignment configurations under which the communication
costs may be estimated and compared to determine the penalty. In our approach, the

A B C D

A B C D

loop i

loop jloop k1

(a)

(b)
Figure 2: CPG with (a) data movement edges and (b) parallelism hyperedges.

https://www.researchgate.net/publication/3504237_Index_domain_alignment_minimizing_cost_of_cross-referencing_between_distributed_arrays?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3504237_Index_domain_alignment_minimizing_cost_of_cross-referencing_between_distributed_arrays?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/269031205_A_Novel_Approach_Towards_Automatic_Data_Distribution?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0

meaning of one edge in the CPG is just the opposite, that is, how costly is (in terms of data
movement) to align and distribute the two dimensions. This cost is independent of any
other alignment strategy, and it will be useful to determine the distribution strategy.

2.3 CPG Parallelism Hyperedges

Parallelism information is obtained from data dependence analysis. First, all loops that can
be executed in parallel are detected. In distributed memory machines you can fully
parallelize one loop when the loop does not carry any data flow dependence. When all
possible parallel loops have been marked, the analyzer must only look at the left hand side
of the assignments that are inside any parallel loop. According to the owner computes rule,
the processor that owns a data element is the one who performs all the computations to
update it. So if one loop is going to be parallelized, it must be ensured for the arrays that
appear in the left hand side of each assignment statement inside the loop, that the dimension
subscripted by the loop control variable of the parallel loop is the one that will be
distributed.

For each parallel loop, the analyzer searches for all the assignment statements inside it
with an array in the left hand side. If the array uses the loop control variable in any
dimension of its subscript, then the analyzer links the corresponding node to a hyperedge.
The hyperedge is a generalization of an edge, as it can connect more than two nodes, and
in this case, it is undirected. Each parallel loop has a hyperedge in the CPG. If all the nodes
connected by a hyperedge are aligned and distributed, then the corresponding loop can be
parallelized. But if one of the nodes connected by a hyperedge is not aligned, then the loop
can not be parallelized, and guard expressions must be inserted before each assignment in
that loop [21].

The weight of a hyperedge represents the execution time that is saved when the loop is
parallelized. This time is a function of the sequential execution time of the loop, and the
number of processors that will be assigned to that dimension.

In the example of Figure 1, after performing the data dependence analysis, one can see
that there is a single flow dependence carried by the second k-loop. This means that the i,
j, and the first k loops can be executed in parallel. So the parallelism information that the
analyzer will add to the CPG is shown in Figure 2.b. Three hyperedges have been added:
one linking B[1], A[3], and D[1]; this one is associated to loop i. Another hyperedge links
A[2], B[2] and D[2], and it is associated to loop j. The last one links A[1] and B[3], and it
is associated to the first loop k.

2.4 Problem Formulation

Once the CPG is built, it contains all the necessary information regarding data movement
and parallelism in the block of code analyzed. The weights in the CPG are expressed in a
symbolic form, function of the number of processors that will be assigned to that
dimension. If all symbolic expressions in the CPG are replaced for its constant value
assuming P processors, then the weights in the edges will represent the cost of aligning and
distributing the corresponding dimensions. In this section, the CPG can be considered as
an undirected graph, and all pairs of edges connecting two nodes in different direction, can
be replaced by a single undirected edge with weight sum of the original edges. So if one

https://www.researchgate.net/publication/2652395_Data_Partitioning_Methods_Implementation_and_Static_Evaluation_Reports?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2652395_Data_Partitioning_Methods_Implementation_and_Static_Evaluation_Reports?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2652395_Data_Partitioning_Methods_Implementation_and_Static_Evaluation_Reports?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/242355847_An_optimizing_Fortran_D_compiler_for_MIMD_distributed-memory_machines?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0

node (dimension) of each column (array) is selected, the sum of the weights of all data
movement edges that connect any two nodes inside the selection is the total data movement
cost of the block of code when distributing the selected dimensions. Similarly, the sum of
weights of all parallelism hyperedges whose nodes remain completely inside the selected
set is the total execution time saved when parallelizing and assigning P processors.

It can be assumed that there exists a path between any pair of columns in the CPG. If
any set of arrays is not connected, then this set will be analyzed independently, and
assigned a different template. The reason is that a relation (alignment) between two
unrelated sets of arrays should not be imposed. If an array is connected to the CPG but only
through a hyperedge, then all nodes of this array will be connected to all nodes of any other
array with a data movement edge, and assigned a null weight.

Now, it can be ensured that the CPG is an undirected connected graph, where every pair
of columns are connected by a path, and all edges and hyperedges have constant weights.
The problem to solve is to find the set of nodes (one for each column), that minimizes the
communication time, and maximizes the time saved due to parallelization. The total
execution time can be computed as the sequential execution time plus the overhead due to
data distribution and parallelization; according to the weights in the CPG, this overhead is
the data movement overhead minus the time saved due to the parallel execution of the
loops. The problem is formulated as a linear 0-1 integer programming problem, where the
objective function to minimize is the total execution time. The optimal solution can be
found fastly as explained in the next section.

3 One-dimensional Distribution

Linear integer programming is a tool for solving optimization problems. As stated by [4]
data layout problems can be very efficiently solved using linear integer programming. In
this case, the problem to solve is to find a path in the CPG that includes exactly one node
of each column, so that the sum of weights of the edges (data movement edges) minus the
sum of weights of the hyperedges (parallelism hyperedges) that connect nodes inside the
selected path, is minimized. This problem can be formulated as a linear 0-1 integer
programming problem, that is, a linear integer programming problem where each variable
has two possible values: 0 or 1.

The model that we have selected is a shortest path problem with a set of additional
constraints. When formulating it, two dummy nodes are considered: a source S and a sink
T. All edges going from the dummy source S to each node in the first column, and all edges
going from each node in the last column to the dummy sink T, must be defined. In addition,
all columns C with self-edges will be replaced by two columns named C and C’, and each
node in column C will be linked by an edge to each node in column C’. The weights of the
new edges will be the same of the self-edge if it links two nodes of the same level, or
infinite otherwise. This infinite weight prevents from selecting two nodes of different level
from the same column. Figure 3 shows the graph that finally will be considered to solve the
problem for the working example of Figure 1. Neither infinite weighted edges are present,
nor hyperedges.

https://www.researchgate.net/publication/2258492_Automatic_Data_Layout_Using_0-1_Integer_Programming?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0

As usual in this kind of problems, one 0-1 integer variable associated to each edge, plus
one 0-1 integer variable associated to each hyperedge are defined. Let YPQ denote the set

of edges connecting nodes in column P to nodes in column Q. When YPQ is not empty, it

contains (d x d) elements. If S denotes the column associated to the source, the sets YSP are

all empty, except when P denotes the first of the columns, and it has d elements. Similarly,
if T denotes the column associated to the sink, the sets YQT are all empty except when Q

denotes the last of the columns, and it has d elements. Let YPQ[i, j] be the variable

associated to the edge connecting node i in column P to node j in column Q. Its value will
be one if the corresponding edge belongs to the path, and zero otherwise. Note that, as the
graph is undirected, YPQ[i, j] is the same than YQP[j, i]. Finally, if an index is assigned to

each hyperedge, Zm will denote the 0-1 integer variable associated to the m-th hyperedge.

Similarly, its value will be one if the nodes it links belong to the path, and zero otherwise.
To ensure the correctness of the solution, some constraints must be defined. There are

four types of constraints:
C1: The solution is a path.
C2: The path goes through one node in each column.
C3: All edges connecting selected nodes, must be included as well.
C4: If a node of a hyperedge is not selected, neither it is.

Constraints C1 ensure that the solution is connected. That is, for each column Q
conected to more than one column P and R, if one edge leading to a node in Q is selected
in the set YPQ, one edge leaving this same node must be selected in the set YQR. This can

be graphically seen in the following two examples:

In terms of the variables and their values, it can be stated that at each node of each
column Q (except for S and T) connected to more than one column P and R, the sum of the
values of the edges that connect this node to column P, must be equal to the sum of the
values of the edges that connect this node to column R. This must be accomplished for each
pair of sets YPQ-YQR with a column in common.

A B C D D’

S T

Edges added to connect
column D linked only
by a hyperedge

Edges added to
replace a self-edge

SinkSource

Figure 3: CPG with all the data movement edges that fulfils the properties mentioned in Section 3.

P Q RP Q R

wrongcorrect

Constraints C2 and C3 can be specified together. They ensure that only one node can
be selected in each column, and that all edges connecting two selected nodes, must also be
included. These can be accomplished forcing that, for each non empty set of edges YPQ,

exactly one edge must be selected. Two examples are shown below:

This can be stated, in terms of variables and their values, that the summatory of a non
empty set of edges YPQ must equal one. This set of constraints, must be accomplished for

each non empty set of edges.

Applying these constraints may result in a path that is not simple; it may contain cycles, or
that the same node may be visited more than once in the path. Note that this is not
contradictory with the 2nd constraint, since exactly one different node in each column
belongs to the path.

Finally, constraints C4 ensure the correct behavior of the hyperedges. A hyperedge m
belongs to the selection if all nodes linked by it have been selected. One node n of column
P belongs to the selection, if the value of one of the edges that connects it to any other
column Q equals one. Or in other words, if the summatory of the values of the edges that
connect it to column Q equals one. This can be stated, in terms of variables and their values,
that the sum of the values of the edges that connect the node n of column P to any other
column Q, is greater or equal than Zm, where Zm is the 0-1 integer variable associated to

the m-th hyperedge.

This must be accomplished for each node linked by the hyperedge. For instance, in the CPG
corresponding to the example code of Figure 1, the hyperedge labeled i links nodes B[1],
A[3] and D[1]. Column A is connected to column B, column B is connected to column C,
and column C is connected to column D. This set of constraints, can be stated as:

YPQ j i,[]

j 1=

ncols

∑ YQR i j,[]

j 1=

ncols

∑= i; 1…ncols=

P Q P Q

correct wrong

YPQ i j,[]

j 1=

ncols

∑
i 1=

ncols

∑ 1 PQ; 1…nsets==

YPQ n j,()

j 1=

ncols

∑ Zm≥

YBC 1 j,()

j 1=

ncols

∑ Zi≥ YAB 3 j,()

j 1=

ncols

∑ Zi≥; YCD i 1,()

i 1=

ncols

∑ Zi≥;

The 0-1 integer variable associated to hyperedge labeled i is Zi. In this case, if any of

the three summatories is zero, then Zi will also be zero. This constraint must be formulated

for each hyperedge m in the graph.

Once all constraints have been formulated, the objective function to minimize must be
specified: the sum of the weights of all selected edges, minus the sum of the weights of all
selected hyperedges. Let r be the total number edges in the CPG. The sum of the weights

of all selected edges can be expressed as the scalar product in the space Rr of Y and C:

where Y represents the vector of all 0-1 integer variables associated to edges, and C
represents their respective weights.

Similarly, let m be the number of hyperedges in the CPG. The sum of the weights of all

selected hyperedges can be expressed as the scalar product in the space Rm of Z and T:

where Z represents the vector of all 0-1 integer variables associated to hyperedges, and T
represents their respective weights.

Finally, the objective function can be expressed as:

The objective function must be minimized. When all constraints and the objective function
have been specified, the integer linear programming solver finds the optimal solution
(minimum) subject to the specified constraints.

4 Some Experimental Results

The main elements of our tool are described next. The parsing of the code is performed
using the parser module of DDT [2], a tool that analyzes reference patterns in Fortran
programs; DDT has been developed on top of ParaScope [15]. It obtains all reference
patterns after performing some well known optimizations, like expression substitution,
subscript substitution, and induction variable detection [1] that improves the quality and
quantity of reference patterns analyzed. A profile of the sequential execution of the
program is used to estimate the costs of the parallel hyperedges in the CPG. Machine
specific information is used to estimate the costs of the data movement edges. The analyzer
creates a data file with the set of constraints and the objective function to minimize. This
file is the input of a general-purpose linear programming solver, which minimizes the
objective function, and generates an output file with the final value of each 0-1 integer
variable. The general-purpose solver used is LINGO, developed by LINDO Systems Inc
[20].

The solution file is used to annotate the original sequential Fortran file with the data
mapping and loop parallelization directives. This file is compiled using the xHPF [3]
compiler form APR Inc, which generates a message-passing Fortran parallelized program.
Finally, the Forge Performance Simulator is used to predict performance, and to validate
the solutions generated.

CostOfEdges Y C⋅=

CostOfHyper Z T⋅=

Cost CostOfEdges CostOfHyper−=

https://www.researchgate.net/publication/2652395_Data_Partitioning_Methods_Implementation_and_Static_Evaluation_Reports?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3299535_Interactive_Parallel_Programming_Using_the_ParaScope_Editor?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0

The set of programs and routines selected1 to evaluate this proposal is listed in Table 1.
Routineeflux has been extracted from the FLO52 program in the Perfect Club, andtred2
is a routine taken from the Eispack library. These have been analyzed in [13].rhs is the
more time consuming routine in the APPSP NAS benchmark, included in the xHPF
benchmark set. From program BARO, also in the xHPF benchmark set, routinesintba1 and
comp have been extracted. And finally, theerlebacher benchmark program is a three-
dimensional tridiagonal solver using the Alternating Direction Implicit integration (also
used in [4] to illustrate their dynamic layout techniques and selected here because of its
complexity).

The static characteristics of the set of programs analyzed are summarized in Table 1.
This includes the number of valid lines of code in each program (this is, the number of lines
once all comment and null lines have been removed), the number of loops that can be
executed in parallel in our model of architecture (this is, loops without any loop carried
flow dependence), the number of reference patterns between different pairs of arrays and
in brackets the total number of reference patterns, the number of arrays used in the
programs, and their maximal dimensionality.

The complexity of the method is a function of the 0-1 integer variables required in the
model, and this is a function of the number of different patterns, the maximal
dimensionality of the arrays, and the number of possible parallel loops in the program. The
last three columns in Table 1 summarize all these characterictics, and the time spent in
finding the optimal solution for each analyzed program in a Sun SuperSparc 20. As a
summary, one can see that the analysis of programerlebacher is the one that requires more
time, as it is also the one that defines more number of 0-1 integer variables. Routinecomp
spends 1.3 seconds, and all other analyses spend less than a second.

Finally, Table 2 summarizes the run-time behavior of the selected programs. In the
second column the sequential execution time is listed. The third column reflects the
simulated execution time, when parallelizing the programs and assuming a default
mapping. The default mapping for each program is the distribution of the first dimension
of all arrays, except for routinerhs, where the first dimension only contains five elements,
and the second one has been selected as default. The speed-up achieved with this

1. If the programs selected contain routine calls, these have been inlined. And if the code selected is a routine, it has
to be transformed into a program, replacing parameters and arguments by local variables.

Name lines
 parallel

loops
patterns arrays Dim

 0-1
variables

constraints
solver

time (sec.)

eflux 58 11 4 (161) 5 3 47 24 0.2

tred2 96 11 8 (38) 4 2 43 31 0.3

rhs 353 37 5 (346) 4 4 117 63 0.5

intba1 71 10 15 (30) 10 2 70 73 0.5

comp 174 18 43 (162) 24 2 190 180 1.3

erlebacher 288 72 56 (153) 25 3 576 318 3.4

Table 1: Characteristics of the selected programs.

https://www.researchgate.net/publication/2258492_Automatic_Data_Layout_Using_0-1_Integer_Programming?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0

distribution is listed in the fourth column. The fifth column shows the simulated execution
time when evaluating the solution suggested by our tool, and its respective speed-up can be
seen in the last column. All times are expressed in miliseconds and all parallel simulations
have been done assuming 8 processors.

From this table one can see that the selected mapping by the tool for the first routine is
the default one. The same was selected in [13]. For routinetred2, the selected mapping
achieves a poor speed-up of 1.3, although the simulated execution time for the default one
is more than 3 times the sequential execution time. In [13] the selected mapping was the
default one, but in a cyclic manner. Our tool does not yet generate cyclic distributions.
However, the simulated execution time for the cyclic distribution is very close to the
default one, as all loops that can be parallelized (without performing any kind of loop
transformation) just include one single statement, whereas the loops that can be parallelized
with our mapping strategy are outer, and the benefits of parallelizing are higher. Routine
rhs results in a speed-up of 4.2 with the suggested mapping, this is, distributing the third
dimension of all arrays; while a speed-up of 3.6 is achieved with the default one. The

parallel version of this routine given in the xHPF benchmark set2 suggests a distribution of
the fourth dimension of all arrays; the run-time behavior of these two alternatives is very
similar. Routinesintba1 andcomp also increase the simulated performance with respect to
the default mapping, doubling its speed-up. The selected parallelization strategy is the
same than the one suggested in the hand coded parallel version of these routines, also
included in the xHPF benchmark set. Finally, programerlebacher reduces 30% the
sequential execution time when distributing arrays as suggested by our tool, while the
simulated execution time of the default distribution is almost twice the sequential one. The
selected mapping strategy parallelizes almost all outer loops in the program. The reason for
the poor speed-up is that there is a lot of communication involved, in particular some
reductions not detected by the parser module of our tool.

5 Conclusions

This paper describes a novel strategy for finding a good data layout by applying an integer
programming method, which is used by related research as well. The work follows the main
stream in terms of automatic data distribution. The most interesting aspect of this solution

2. Source code for these benchmarks can be found via WWW to the URL http://www.infomall.org/apri/.

Name Sequential time
Parallel time
for Default

Speed-up
Parallel time
for Suggested

Speed-up

eflux 1727.6 282.6 6.1 282.6 6.1

tred2 707.3 2473.0 0.3 546.8 1.3

rhs 4371.6 1218.0 3.6 1053.0 4.2

intba1 400.9 138.7 2.9 81.3 4.9

comp 3618.6 1624.7 2.2 653.5 5.5

erlebacher 2571.1 4798.1 0.5 1795.5 1.4

Table 2: Run-time behavior of the selected programs.

is that both alignment and distribution problems are combined in a single optimization
phase. To do this, the Communication-Parallelism Graph (CPG) is defined, a data structure
able to hold all the information required to solve the two problems altogether. The CPG
contains edges that show communication constraints and edges that show parallelization
constraints in the program. Edges are weighted according to their cost, in terms of data
movement and computation time. Constraints in the graph are formulated using a linear 0-
1 integer programming model, where the problem to solve is to find a path in the CPG that
minimizes the overall execution time of the application. A general purpose linear
programming solver has been used in our experiments.

The preliminary experimental results show the quality of the data distributions
generated by the tool, and the feasibility of using linear 0-1 integer programming models
to solve these kind of problems. In addition, it allows us to find an optimal solution in a
small amount of time. We have compared the solution generated by the solver with a
default solution that would be generated by a naive data distribution tool, and with the
results of some other authors or hand coded parallel versions.

This approach is restricted to one-dimensional array distributions which is a severe
drawback in view of real applications. The extension to multi-dimensional array
distributions can be found elsewhere [11]. A lot of additional aspects should be considered
in the problem formulation in order to improve the quality of the solutions generated, such
as integrating communication optimizations (detection and elimination of redundant
communication, overlapping of computation and communication, or combination of
communication messages) or control flow analysis. A problem of this approach is the
absence of varying problem sizes in the optimization model, which would requiere a
symbolic solver.

Most of the ideas presented in this paper, can be also used to extend this approach to
dynamic data mappings, where a set of computational intensive phases are detected, the
mapping for each of them is obtained, and remapping actions (realignment and
redistribution) between phases are introduced. This topic is also investigated by other
research groups [4, 8, 9, 17].

6 Acknowledgements

We would like to thank the rest of the members of the DDTeam - Mercé Gironès, and M.
Luz Grande - for their support for the implementation of this work, and to Uli Kremer for
the fruitful discussions in the topic. The authors especially thank Elena Fernández for her
insight comments and suggestions in the specification of the linear programming model.
This work has been partially supported by the Ministry of Education of Spain under
contract TIC880/92, the CEPBA (European Center for Parallelism of Barcelona) and by
CONVEX Computer Corporation, that supports the development of the DDT tool.

7 References

1. E. Ayguadé, J. Garcia, M. Gironés, J. Labarta, J. Torres and M. Valero, “Detecting and Using
Affinity in an Automatic Data Distribution Tool”. Proc. of the 7th Annual Workshop on
Languages and Compilers for Parallel Computing, August 1994.

2. E. Ayguadé, J. Labarta, J. Garcia and M. Gironés, “Data Partitioning Methods: Implementation

https://www.researchgate.net/publication/239021297_An_Automatic_Data_Distribution_Generator_for_Distributed_Memory_MIMD_Machines?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2258492_Automatic_Data_Layout_Using_0-1_Integer_Programming?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/4054912_Mobile_and_replicated_alignment_of_arrays_in_data-parallel_programs?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/269031205_A_Novel_Approach_Towards_Automatic_Data_Distribution?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0

and Evaluation Reports”. Technical Report UPC-DAC-94/28 and UPC-CEPBA-94/18,
Computer Science Department, Universitat Politècnica de Catalunya, January 1994.

3. Applied Parallel Research Inc., “xHPF Version 1.2, User’s Guide”. May 1994 Release.
4. R. Bixby, K. Kennedy and U. Kremer, “Automatic Data Layout Using 0-1 Integer

Programming”. Proc. of the International Conference on Parallel Architectures and Compilation
Techniques, August 1994.

5. B. Chapman, T. Fahringer and H. Zima, “Automatic Support for Data Distribution on
Distributed Memory Multiprocessor Systems”, 6th Annual Workshop on Languages and
Compilers for Parallel Computing, Portland-Oregon, August 1993.

6. S. Chaterjee, J. R. Gilbert, R. Schreiber and S.-H. Teng, “Automatic Array Alignment in Data-
Parallel Programs”. Proc. of the 20th Annual ACM Symposium on Principles of Programming
Languages, January 1993.

7. S. Chaterjee, J. R. Gilbert, R. Schreiber and T. J. Sheffler, “Array Distribution in Data-Parallel
Programs”. Proc. of the 7th Annual Workshop on Languages and Compilers for Parallel
Computing, August 1994.

8. S. Chaterjee, J. R. Gilbert and R. Schreiber, “Mobile and Replicated Alignment of Arrays in
Data-Parallel Programs”. Proc. of Supercomputing’93, November 1993.

9. P. Crooks and R. Perrott, “An Automatic Data Distribution Generator for Distributed Memory
MIMD Machines”. 4th Int. Workshop on Compilers for Parallel Computers, December 1993.

10. G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng and M. Wu, “Fortran D
Language Specification”. Technical Report CRPC TR 90-141, Department of Computer
Science, Rice University, December 1990.

11. J. Garcia, E. Ayguadé, and J. Labarta, “A Novel Approach Towards Automatic Data
Distribution”, 2nd Workshop on Automatic Data Layout and Performance Prediction, April
1995 (also available as Research Report CEPBA/UPC RR95-04).

12. M. Gupta, S. Midkiff, E. Schonberg, P. Sweeney, K. Y. Wang and K. Burke, “PTRAN II - A
Compiler for High Performance Fortran”. 4th International Workshop on Compilers for Parallel
Computers, December 1993.

13. M. Gupta, “Automatic Data Partitioning on Distributed Memory Multicomputers”. PhD thesis,
University of Illinois at Urbana-Champaign, September 1992. Also available as technical report
UILU-ENG-92-2237 and CRHC-92-19.

14. High Performance Fortran Forum, “High Performance Fortran Language Specification. Version
1.0”. Scientific Programming, May 1993.

15. K. Kennedy, K. McKinley and C.-W. Tseng, “Interactive Parallel Programming Using the
ParaScope Editor”. Technical Report CRPC-TR90096, Center for Research on Parallel
Computation, Rice University, October 1990.

16. U. Kremer, “NP-completeness of Dynamic Remapping”. 4th International Workshop on
Compilers for Parallel Computers, December 1993.

17. U. Kremer, J. Mellor-Crummey, K. Kennedy and A. Carle, “Automatic Data Layout for
Distributed-Memory Machines in the D Programming Environment”. 1st International
Workshop on Automatic Distributed Memory Parallelization, Automatic Data Distribution and
Automatic Parallel Performance Prediction, January 1993.

18. J. Li and M. Chen, “Index Domain Alignment: Minimizing Cost of Cross-Referencing Between
Distributed Arrays”. Proc. of the 3rd Symposium on the Frontiers of Massively Parallel
Computation, October 1990.

19. J. Li and M. Chen, “Compiling Communication-efficient Programs for Massively Parallel
Machines”, IEEE Trans. on Parallel and Distributed Systems, vol. 2, no. 3, July 1991.

20. LINDO Systems Inc., “LINGO Optimization Modeling Language”. April 1994 by LINDO
Systems Inc.

21. C. Tseng, “An Optimizing Fortran D Compiler for MIMD Distributed-Memory Machines”. PhD
thesis, Rice University, January 1993. Rice COMP TR93-199.

22. H. Zima, P. Brezany, B. Chapman, P. Mehrotra and Schwald, “Vienna Fortran - A Language
Specification”. Technical Report, Austrian Center for Parallel Computation, University of
Vienna, 1991.

https://www.researchgate.net/publication/239021297_An_Automatic_Data_Distribution_Generator_for_Distributed_Memory_MIMD_Machines?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/239021297_An_Automatic_Data_Distribution_Generator_for_Distributed_Memory_MIMD_Machines?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2391612_Fortran_D_Language_Specification?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2391612_Fortran_D_Language_Specification?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2391612_Fortran_D_Language_Specification?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2692064_NP-completeness_of_Dynamic_Remapping?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2692064_NP-completeness_of_Dynamic_Remapping?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/24289682_Vienna_FORTRAN_A_language_specification_version_11?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/24289682_Vienna_FORTRAN_A_language_specification_version_11?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/24289682_Vienna_FORTRAN_A_language_specification_version_11?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3504237_Index_domain_alignment_minimizing_cost_of_cross-referencing_between_distributed_arrays?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3504237_Index_domain_alignment_minimizing_cost_of_cross-referencing_between_distributed_arrays?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3504237_Index_domain_alignment_minimizing_cost_of_cross-referencing_between_distributed_arrays?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/242355847_An_optimizing_Fortran_D_compiler_for_MIMD_distributed-memory_machines?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/242355847_An_optimizing_Fortran_D_compiler_for_MIMD_distributed-memory_machines?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/221496980_Automatic_Support_for_Data_Distribution_on_Distributed_Memory_Multiprocessor_Systems?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/221496980_Automatic_Support_for_Data_Distribution_on_Distributed_Memory_Multiprocessor_Systems?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/221496980_Automatic_Support_for_Data_Distribution_on_Distributed_Memory_Multiprocessor_Systems?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2258492_Automatic_Data_Layout_Using_0-1_Integer_Programming?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2258492_Automatic_Data_Layout_Using_0-1_Integer_Programming?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/2258492_Automatic_Data_Layout_Using_0-1_Integer_Programming?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3299535_Interactive_Parallel_Programming_Using_the_ParaScope_Editor?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3299535_Interactive_Parallel_Programming_Using_the_ParaScope_Editor?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3299535_Interactive_Parallel_Programming_Using_the_ParaScope_Editor?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3299537_Compiling_communication-efficient_programs_for_massively_parallel_machines?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/3299537_Compiling_communication-efficient_programs_for_massively_parallel_machines?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/4054912_Mobile_and_replicated_alignment_of_arrays_in_data-parallel_programs?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/4054912_Mobile_and_replicated_alignment_of_arrays_in_data-parallel_programs?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/269031205_A_Novel_Approach_Towards_Automatic_Data_Distribution?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/269031205_A_Novel_Approach_Towards_Automatic_Data_Distribution?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0
https://www.researchgate.net/publication/269031205_A_Novel_Approach_Towards_Automatic_Data_Distribution?el=1_x_8&enrichId=rgreq-277d6c3c-3757-4ba9-b273-4ea674a4f3b6&enrichSource=Y292ZXJQYWdlOzIyMDQzOTY5MjtBUzo5NzYyMjUwMTEwMTU4MUAxNDAwMjg2NDI2NjE0

