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ABSTRACT

In this paper, we present a scheme where a (d— 1)—dimensi0nal subcube is allocated

in a faulty d-dimensional circuit-switched hypercube in the presence of up to 2(d—1)

faulty nodes. The scheme is then extended to allocate a (d — 1)—dimensiona.l subcube in
the presence of a combination of faulty nodes and faulty links. Theoretical proofs and
simulation results are presented to analyze the performance of the scheme.
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1. Introduction

M ultiprocessors based on d-dimensional hypercubes have been widely used for arange
of applications. Research efforts have been undertaken to keep the multiprocessor func-
tional in the presence of faulty components. One of the approachesis finding the maximum
dimensional fault-free subcube of a faulty hypercube 123, However, two faulty nodes in
antipodal positions can destroy every fault-free (d — 1)-dimensional subcube and thus de-
grade the performance of the hypercube by a factor of 4. To overcome this, Chang and
Bhuyan * have proposed a scheme that utilizes the properties of circuit-switched commu-
nication to maintain a (d — 1)-dimensional subcube in the presence of up to [g] faulty
nodes. In this paper, we present ascheme for circuit-switched hypercubeswherea (d — 1)-
dimensional subcube is allocated in a faulty d-dimensional hypercube in the presence of
up to 2(?~1) faulty nodes and extend the scheme so that a functional (d — 1)-subcube is
maintained in the presence of a combination of faulty nodes and faulty links.

2. Construction of a Functional (d — 1)-Dimensional Subcube

We assume that faulty nodes retain their ability to communicate. If the distribution
of faulty nodesis such that every fault-free (d — 1)-dimensional subcube is destroyed, we
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Figure 1: Construction of a 3-cube in a faulty 4-cube

use the following procedure to construct a functionil( 1)-dimensional subcube. We
partition the hypercube into two faulty - 1)-dimensional subcubes along a dimensjon

(0 < j < d—-1)and label the subcube with the fewer number of faulty ndaléd and

the other subcub8ub2; Sub1 and Sub2 form a2(?—1) matching along dimensiof In

our schemeSubl becomes a function@l — 1)-dimensional subcube by replacing each of
its faulty nodes with a healthy node $ub2 via edge-disjoint paths along dimensipand
other possible edges 8ub2. Fig. 1 illustrates a case indadimensional hypercube. Setting

j = 3, the subcube 0XXX is maintained by establishing edge-disjoint paths between the
faulty nodes 0000, 0001, 0101 and 011l and the healthy nodes 1000, 1100, 1101
and 1111 respectively iBub2. Each of the edge-disjoint paths then becomes an extension
of the communication module of the faulty nodeSabl and the healthy node iBub2
functionally replaces the faulty one $ubl.

Given a faulty nodex € Subl, let's denoten’s neighbor along dimensighasg €
ub2. If 8 is a healthy node, it can replaee If 3 is faulty, then a path through to a
healthy nodey eSub2, that has not been assigned as a replacement, must be established.
Since the communication modules of faulty nodes are assumed to be healthy, this path can
go through faulty nodes as well as other assigned healthy nodes. TrEpath 1001 —

1000 — 1100 in Fig. 1 is an example of such a path. Note that 1000 which is part of this
path also replaces faulty node 0000 via pa@h0 — 1000. However, the two paths use
disjoint edges.

In the discussion and the algorithm that follow, the set of nodeSub2 are called
source nodes (Sg) if both the nodes and their neighborsSubl are faulty. All other faulty
nodes inSub2 and the assigned healthy nodes are referred to as thesstafodes (Sy)).
Nodes in & can be intermediate nodes of a path. Finally, non-allocated healthy nodes in
Sub2 constitute the set dfrget nodes (Sr). For example, in Fig. 1, ${1001, 1110},
Sr={1100,1111} and $={1000,1010,1011,1101}. In the algorithm to be presented,
nodes are assigned to these sets dynamically, as paths are established.

We next show that a functioné&l — 1)-subcube can always be found in a hypercube
with up to2(?=1 faulty nodes. If every faulty node iBubl is matched with a healthy node
in ub2 along dimensiory, the recofiguration can be accomplished by simply assigning
the matched healthy nodes to the faulty nodes. In the worst case, each faulty node in
bl is matched with a faulty node iBub2 along dimensiory and Subl and Sub2 each
contain2(?=2) faulty nodes. Therefor@(¢—2) edge-disjoint paths from the source nodes
to the target nodes iBub2 have to be constructed. All other cases require fewer number of
edge-disjoint paths igub2. We will prove for the worst case; other cases can similarly be
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proven® using Mengess theoren?.

Lemmal Inad-dimensional hypercube, let a set of nodesbe assigned to P and therest be
grouped under (. The minimum number of links that connects P to @ ismin(|P|, |Q|).”®

Theorem 1 In a d-dimensional hypercube, let half of the nodes be labeled source nodes
and the remaining nodes be called target nodes. Wthin such a hypercube, there exists
2(4-1) edge-disjoint paths to connect each source to a distinct target node.

Proof. Given ad-dimensional hypercube gragh(V, E), let's partitionV into two
subsetsP and@Q = V — P such thatP = Ss and@Q = Sy (|P| = |Q| = 24 V).
Moreover, lets construct a new graph’ by adding two nodes andt to G such that they

be connected to every node in the £eand( via a single edge respectively (Fig. 2). The
number of edge-disjoint paths betweeandt in G', according to Mengés theoren?, is
equal to the mincut of7’. The theorem is proven by showing that there always exists an
(s,t) mincut inG’ whose cutsize is greater than or equatté ).

Figure 2: An(s,t) cutinG’

An (s,t) mincut inG' may exist at, t, G, or some combination of them. By construc-
tion, the cutsize at andt is equal to2(¢—1). Consider a general cut ifi’ as depicted in
Fig. 2, crossing of the edges connectingo the nodes within §, k of the edges of7, and
j of the edges connecting the nodes gf®¢ (0 < i,j < 2(4=1). Only the case where
i+ j < 2(4=1 needs to be investigated since the other meets the minimum cutsize on its
own. The cut in Fig. 2 splits the nodes into two sésand@’. The number of source
nodes in the se)’ is i. The number of target nodes in the same setis?) — j. Hence,
the total number of source and target node@Iris i + 2(“~1) — j. Following the same
reasoning, the total number of source and target nodB$isj 4 2(?~1) —i. Either|P'| or
|Q’'| is less than or equal ¢~ 1), Without loss of generality, let it b®’. From Lemma 1,
the minimum number of links connecting’ and @' is k¥ = min(|P’'],|Q’'|). Thus, the
above cut must cross at ledst= j 4+ 2(?~1) — i links in G. The size of thé P’, Q') cut is
then given by|(P',Q")| > i+ j + j +2(4=Y —ior |(P',Q")| > 2j + 2471 > 2(d=1),

A similar inequality results ifQ'| < 21, |(P',Q")| > 2i + 2(¢~1) > 2(d=1),

From the above inequalities it follows that there always exi$fs®) edge-disjoint
paths froms to ¢. Since by construction, there always exté 1) edges froms to 2(¢—1)
source nodes ari—1) edges front to 2(¢~1) target nodes, each of tR&—1) paths must
connect a source node to a target ndde

An optimal reconfiguration algorithm, to establish edge-disjoint paths between the
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nodes in § and the nodes inSwithin ub2, can be developed by utilizing the maxflow

/ mincut algorithm®. To apply the maxflow/mincut algorithm, a digraph representation

of Fig. 2 (digraphG') needs to be constructed. To avoid construction of digi@phwe
implemented a near optimal reconfiguration algorithm. The algorithm is near optimal since
there can be cases where the reconfiguration fails even though Menger’s theorem holds.
The algorithm utilizes Lee’s path-finding algoritfirto find a set of candidate target nodes.

It begins by constructing a breadth-first search of minimum dep8ulid from each node

in Sg. If a target node is found, a path is formed between the source and the target node.
The algorithm guarantees that a path to a target node will be found, if there exists one, and
the path will be the shortest possil§leOnce a path is formed, the algorithm removes the
links associated with that path froBab2. It also marks both the source node and the target
node as used nodes and assigns them;toThe process is repeated on the new resultant
structure for a higher depth The reconfiguration is completed ifs$ecomes an empty

set. Reconfiguration fails if distané&ecomes greater thaf’—1) — 1 which is the longest
acyclic path inSub2.

3. Simulation Results

We implemented the near optimal algorithm for various dimensions of the hypercube
(up tod = 10). 10000 simulation runs were performed for randomly placéé") faulty
nodes. Our simulations resulted 100% reconfiguration. To find a fault-fre@l — 1)-
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Figure 3: Percentag@ — 1)-subcubes in presence of faulty (a) links (b) links and nodes

dimensional subcube in the presence of a combination of faulty nodes and faulty links,
our algorithm first checks whether(d — 1)-dimensional subcube without any faulty link
exists. If there exists one, it is label&dbl. Next, Lee’s path-finding algorithm is used to
find edge-disjoint paths from the faulty nodes3ib1 to the healthy nodes ifub2 via the
healthy edges frorBubl to Sub2 and the healthy edges with8ub2. The simulation results

for a hypercube of dimensiat) under randomly placed faulty links and combination of
faulty nodes and faulty links are given in Fig. 3. In our simulation we have assumed that
the probability of having a node failure is the same as having a link failure. From Fig. 3,
it follows that a functional(d — 1)-dimensional subcube can exist provided the number of
faulty links is relatively small.
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