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program, and if we relax the condition for 0=1 variables be simply positive the optimum value is notchanged. Therefore, Luby and Nisan's algorithm can be used to approximate the size of a largestmatching, and as indicated in [11], this is essentially the result of [2]. Also, Minimum Set Covercan be formulated as a 0=1 positive linear program [10]. In this case, relaxing the condition forthe integrality of variables decreases the optimum by a factor of ln �, where � is the maximumdegree in the set system. Therefore, the algorithm for PLP approximates the optimum size of theset cover within a factor of (1 + ") ln�. The use of PLP in the design of parallel approximationalgorithms has been further explored in [14]. Among other results, a PLP relaxation of MaximumSatis�ability (Max SAT) is presented whose optimum is at most 4/3 times the optimum of the MaxSAT problem. In combination with Luby and Nisan's algorithm and a proper rounding scheme,this gives an NC (3=4� ")-approximate algorithm for Max SAT.Unfortunately, Luby and Nisan's algorithm cannot be used to exactly solve an instance of PLPin NC. In this note we address the problem of the parallel complexity of PLP. We show thatthe problem of exactly solving PLP is P-complete. Our result is based on the observation thatthe Circuit Value Problem (CVP), which is P-complete [9], can be logspace reduced to PLP. Thereduction follows that of [7] but we take care of the linear constraints and the objective functionto have non-negative coe�cients. An important implication of our result is that, by using the LPtechnique, we cannot exactly compute in NC the cardinality of Maximum Matching in bipartitegraphs or �nding a (ln�)-approximation for Minimum Set Cover, or a 3=4-approximation of aninstance of Maximum SAT, unless P=NC.PreliminariesAn instance of CVP is: \Given an encoding of a Boolean circuit that consists of computationalgates NOT and OR2 together with an input assignment, determine whether the output gate evaluatesto 0 or 1." We assume that the reader is familiar with the notion of logspace reductions, and isreferred to [1, 7] for de�nitions. We denote by (A;b; c) an instance of PLP in the packing form.The corresponding decision version of this problem is: \Given an instance (A;b; c) and d 2 R+,is there any vector x 2 Rn+, such that Ax � b and cTx � d?" We will denote by (A;b; c; d) aninstance of this problem. We will use boldface character (e.g. t) to denote vectors; sometimes wewill use 1 to denote a vector all whose entries are equal to 1. Finally, for a set I , we denote by jI jits cardinality.2 The P-completeness of Fractional Packing ProblemsWe recall the standard reduction from the CVP to Linear Programming. Let g1; : : : ; gm be thegates of the circuit, we use a variable ti for any gate gi. The intended meaning of such variableswill be that ti 2 f0; 1g and that ti = 1 i� the output of gi is one. We associate one or more linearconstraints to any gate: the constraints will be such that only one feasible solution exists (namely,the solution in which the values of ti are consistent with their intended meaning). If gk is an inputgate whose value is zero (resp. one), then the corresponding constraint will be tk = 0 (resp. tk = 1).If gk is a NOT gate whose input comes from gate gj , then the constraint will be tk = 1� tj . Finally,if gk is an OR gate whose inputs come from gate gi and gj , then the constraints will be tk � ti,tk � tj , tk � ti + tj . For all the gate variables we also have 0 � xi � 1 [7]. It is easy to proveby induction on the depth of the circuit that such linear program has only one feasible solution,2This version of CVP has also been shown to be P-complete.2



namely the solution that corresponds to the correct settings of the gates. Thus, if we use tm asobjective function, the optimum value will be zero or one, and will be one i� the circuit outputsone.The above described linear program can be expressed asmax tmsubject to tk = 1 8k 2 In1tk = 0 8k 2 In0tk � ti 8(i; j; k) 2 ORtk � tj 8(i; j; k) 2 ORtk � ti + tj 8(i; j; k) 2 ORtk = 1� tj 8(j; k) 2 Neg0 � ti � 1 8i 2 f1; : : : ; mg (LP1)where we used the notation In0 (resp. In1) to denote the set of indices of input gates whose valueis zero (resp. one), the notation Neg to denote the set of pair of indices (j; k) such that gk is a NOTgate taking its input from gj, and OR to denote the set of triples (i; j; k) such that gk is an OR gatetaking its inputs from gates gi and gj .Clearly, the program (LP1) is not an instance of PLP. Notice that in (LP1) we have someconstraints which are equalities and also there are variables with negative coe�cients. We will dealwith both of them in two separate steps. We �rst introduce new variables f1; : : : ; fm such thatfi = 1� ti. The program becomesmax tmsubject to tk = 1 8k 2 In1fk = 1 8k 2 In0fk + ti � 1 8(i; j; k) 2 ORfk + tj � 1 8(i; j; k) 2 ORfi + fj + tk � 2 8(i; j; k) 2 ORtk + tj = 1 8(j; k) 2 Negti + fi = 1 8i 2 f1; : : : ; mgti; fi � 0 8i 2 f1; : : : ; mg (LP2)It should be clear that there is a correspondence between the unique feasible solution of (LP1)and the unique feasible solution of (LP2), more formally, we have the following result.Fact 1 If t is a feasible solution for (LP1), then (t; 1� t) is a feasible solution for (LP2), and thecost of the solutions are equal. If (t; f) is a feasible solution for (LP2), then t is a feasible solutionfor (LP1) and the cost of the solutions are equal.3



Note that (LP1) is not yet a packing problem, since there are equality constraints. The �nalstep will be to relax them into inequality constraints and to modify the objective function in sucha way that it will never be \convenient" to strictly satisfy the relaxed constraints. We note thatour technique bears some similarity to the method of Lagrangean relaxations.max tm +Pk2In1 tk +Pk2In0 fk +P(k;j)2Neg(tk + tj) +Pmi=1(ti + fi)subject to fk + ti � 1 8(i; j; k) 2 ORfk + tj � 1 8(i; j; k) 2 ORfi + fj + tk � 2 8(i; j; k) 2 ORtk + tj � 1 8(j; k) 2 Negti + fi � 1 8i 2 f1; : : : ; mgti; fi � 0 8i 2 f1; : : : ; mg (LP3)Lemma 1 There exists a solution for (LP3) of cost 1 + jIn1j+ jIn0j+ jNegj+m if and only ifthere exists a solution for (LP2) of cost 1.Proof: Let K = 1 + jIn1j+ jIn0j+ jNegj+m. It is immediate to verify that a feasible solutionfor (LP2) of cost 1 is feasible for (LP3) and its cost is K. Assume now that (t; f) is feasible for(LP3) and its cost is K; we claim that (t; f) is feasible for (LP2) and that tm = 1. Indeed, the costof a solution for (LP3) is the sum of K terms, and each one is constrained to be at most one. Ifthere exists a feasible solution whose cost is K, then it follows that all such terms are equal to one,and thus the solution is feasible for (LP2) and tm = 1. 2Theorem 2 PLP in packing form is P-complete.Proof: It is immediate to check that, given the description of a circuit, the PLP instance (LP3)can be constructed using logarithmic space. The theorem thus follows from Lemma 1. 2The P-hardness of optimally solving PLP covering problems immediately follows from the du-ality theorem of linear programming (covering problems are the duals of packing problems). TheP-completeness of the decision version can be established directly by minor changes to the aboveproof.Remark 3 Another consequence of our result is that the extension of PLP where equality con-straints are admitted is P-hard to approximate within any constant factor. This observation im-plies that, to a certain extent, PLP is the more general version of LP admitting NC approximationalgorithms.2.1 On FNCASs for PLPA Fully NC Approximation Scheme (FNCAS) for a combinatorial optimization problem is analgorithm that �nds (1+ ")-approximate solutions in time poly-logarithmic in n (size of the input)and 1=" and using a polynomial number of processors (in n and ").One would be tempted to conjecture the following stronger statement of Lemma 1: If we let Z�2(resp. Z�3) be the optimum solution of (LP2) (resp. (LP3)), then Z�3 = Z�2+jIn1j+jIn0j+jNegj+m.4



g1 g2g3 g4_ __ _g2k�1 g2k_ _g2k�3 g2k�2: : :nn nn nn
0 0@@ ��� @PPPPP�����@@ ###_n g2k+1 Figure 1: A patological case for our reduction.The stronger statement would imply that PLP admits no FNCAS unless P = NC. Unfortunately,there are counterexamples of such statement. Consider the circuit and the assignment depicted inFigure 1.Note that the assignment does not satisfy the circuit. The corresponding (LP3) formulation ismax t2k+1 + f1 + f2 +P2k+1i=1 (ti + fi)subject to fk + ti � 1 8(i; j; k) 2 ORfk + tj � 1 8(i; j; k) 2 ORfi + fj + tk � 2 8(i; j; k) 2 ORti + fi � 1 8i 2 f1; : : : ; mgti; fi � 0 8i 2 f1; : : : ; mg (LP3)Where m = 2k + 1. Consider the assignment such that t2i�1 = t2i = 1=2k+1�i for i = 1; : : : ; k (so,in particular, t2k = 1=2); t2k+1 = 1; and fi = 1� ti for i = 1; : : : ; 2k+ 1. It is easily seen that thisassignment satis�es all the constraints and that its cost is 1 + jIn1j+ jIn0j + jNegj+m � 21�k.Since k (the depth of the circuit) is linear in the size of the circuit, it follows that, in order toexactly solve the instance produced by our reduction, only an exponentially small approximationcan be admitted.3 ConclusionsOur result shows that Luby and Nisan's algorithm cannot be improved to the point of computingoptimum solutions in NC for fractional packing and covering problems. It is still an open questionwhether a FNCAS exists for PLP. 5
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