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Abstract In this paper, we study several NCP-functions for the nonlinear comple-

mentarity problem (NCP) which are indeed based on the generalized Fischer-Burmeister

function, φp(a, b) = ‖(a, b)‖p−(a+b). It is well known that the NCP can be reformulated

as an equivalent unconstrained minimization by means of merit functions involving NCP-

functions. Thus, we aim to investigate some important properties of these NCP-functions

that will be used in solving and analyzing the reformulation of the NCP.
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1 Introduction

The nonlinear complementarity problem (NCP) [13, 20] is to find a point x ∈ IRn such

that

x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0, (1)

where 〈·, ·〉 is the Euclidean inner product and F = (F1, F2, · · · , Fn)T maps from IRn to

IRn. We assume that F is continuously differentiable throughout this paper. The NCP

has attracted much attention due to its various applications in operations research, eco-

nomics, and engineering [9, 13, 20].

There have been many methods proposed for solving the NCP [13, 20]. Among

which, one of the most popular and powerful approaches that has been studied inten-

sively recently is to reformulate the NCP as a system of nonlinear equations [17] or as an

1E-mail: jschen@math.ntnu.edu.tw, TEL: 886-2-29325417, FAX: 886-2-29332342.
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unconstrained minimization problem [8, 10, 14]. Such a function that can constitute an

equivalent unconstrained minimization problem for the NCP is called a merit function.

In other words, a merit function is a function whose global minima are coincident with

the solutions of the original NCP. For constructing a merit function, the class of func-

tions, so-called NCP-functions and defined as below, serves an important role.

A function φ : IR2 → IR is called an NCP-function if it satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (2)

Many NCP-functions and merit functions have been explored during the past two decades

[6, 16, 25, 26]. Among which, a popular NCP-function intensively studied recently is the

well-known Fischer-Burmeister NCP-function [10, 11] defined as

φ
FB

(a, b) =
√

a2 + b2 − (a + b). (3)

With the above characterization of φ
FB

, the NCP is equivalent to a system of nonsmooth

equations:

Φ
FB

(x) =




φ
FB

(x1 , F1(x))

·
·
·

φ
FB

(xn , Fn(x))




= 0. (4)

For each NCP-function, there is a natural merit function, Ψ
FB

: IRn → IR+ given by

Ψ
FB

(x) :=
1

2
‖Φ

FB
(x)‖2 =

1

2

n∑

i=1

φ
FB

(xi , Fi(x))2, (5)

from which the NCP can be recast as an unconstrained minimization:

min
x∈IRn

Ψ
FB

(x). (6)

In this paper, we are particularly interested in the generalized Fischer-Burmeister

function, i.e., φp : IR2 → IR given by

φp(a, b) := ‖(a, b)‖p − (a + b), (7)

where p is a positive integer greater than one and ‖(a, b)‖p = p

√
|a|p + |b|p means the p-

norm of (a, b). Notice that φp reduces to the well known Fischer-Burmeister function φ
FB

when p = 2 and its related properties were recently presented in [3, 4]. Corresponding

to φp, we define ψp : IR2 → IR+ by

ψp(a, b) :=
1

2
|φp(a, b)|2. (8)
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Then both φp and ψp are NCP-functions and yield a merit function

Ψp(x) :=
n∑

i=1

ψp(xi , Fi(x)) =
1

2

n∑

i=1

φp(xi , Fi(x))2, (9)

from which the NCP can be reformulated as an unconstrained minimization:

min
x∈IRn

Ψp(x). (10)

However, there has some limitations for the (generalized) Fischer-Burmeister functions

and some of its variants when dealing with monotone complementarity problem. In

particular, its natural merit function Ψp does not guarantee bounded level sets for this

class of problem which is an important class (see page 4 of [1]). Some modifications to the

Fischer-Burmeister have been proposed to conquer the above problem, see [16, 25]. In

this paper, we extend these modifications to the generalized Fischer-Burmeister function

φp. More specifically, we study the following NCP-functions:

φ1(a, b) := φp(a, b)− αa+b+, α > 0,

φ2(a, b) := φp(a, b)− α(ab)+, α > 0,

φ3(a, b) :=
√

[φp(a, b)]2 + α(a+b+)2, α > 0,

φ4(a, b) :=
√

[φp(a, b)]2 + α[(ab)+]2, α > 0,

(11)

The function φ1 is called penalized Fischer-Burmeister function when p = 2 and was

studied in [1]. The functions φ2, φ3, φ4 generalize the merit functions of p = 2, which

were discussed in [25, 27]. Note that for i = 1, 2, 3, 4, we have

φi(a, b) ≡ φp(a, b) (12)

for all (a, b) ∈ N− (this notation is used in [25]) where

N− := {(a, b)| ab ≤ 0}. (13)

Thus, φi where i = 1, 2, 3, 4 are only different in the first or third quadrant.

Similarly, for each φi there is an associated ψi : IR2 → IR+ given by

ψi(a, b) :=
1

2
|φi(a, b)|2 i = 1, 2, 3, 4, (14)

which is also an NCP-function for every i. Moreover, for φ ∈ {φ1, φ2, φ3, φ4}, we can

define

Φ(x) =




φ(x1 , F1(x))

·
·
·

φ(xn , Fn(x))




, (15)
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from which the NCP is equivalent to the unconstrained minimization:

min
x∈IRn

Ψ(x) (16)

where

Ψ(x) :=
1

2
‖Φ(x)‖2 =

1

2

n∑

i=1

φ(xi , Fi(x))2 (17)

is the natural merit function corresponding to φ ∈ {φ1, φ2, φ3, φ4}.

The paper is organized as follows. In Sec. 2, we review some background definitions

including monotonicity, P0-function, semismoothness, e.t.c. and known results about Ψp

and its related properties. In Sec. 3, we show that all (φi)
2, i ∈ {1, 2, 3, 4} are continu-

ously differentiable and investigate properties of the merit function Ψ constructed via φi

with i ∈ {1, 2, 3, 4}. In particular, it provides bounded level sets for a monotone NCP

with a strictly feasible point. In addition, we give conditions under which a stationary

point of Ψ is a solution of the NCP. In general, the analytic techniques used in this paper

are similar to those in [1, 8, 25] since the work is somewhat considered the extensions of

NCP-functions studied in those literatures.

Throughout this paper, IRn denotes the space of n-dimensional real column vectors

and T denotes transpose. For any differentiable function f : IRn → IR, ∇f(x) denotes

the gradient of f at x. For any differentiable mapping F = (F1, ..., Fm)T : IRn → IRm,

∇F (x) = [∇F1(x) · · · ∇Fm(x)] denotes the transpose Jacobian of F at x. We denote

by ‖x‖p the p-norm of x and by ‖x‖ the Euclidean norm of x. In this whole paper, we

assume p is a positive integer greater than one.

2 Preliminaries

In this section, we recall some background concepts and materials which will play an

important role in the subsequent analysis. Let F : IRn → IRn. Then, (1) F is mono-

tone if 〈x − y, F (x) − F (y)〉 ≥ 0, for all x, y ∈ IRn. (2) F is strictly monotone if

〈x − y, F (x) − F (y)〉 > 0, for all x, y ∈ IRn and x 6= y. (3) F is strongly monotone

with modulus µ > 0 if 〈x − y, F (x) − F (y)〉 ≥ µ‖x − y‖2, for all x, y ∈ IRn. (4) F is a

P0-function if max
1≤i≤n
xi 6=yi

(xi − yi)(Fi(x) − Fi(y)) ≥ 0, for all x, y ∈ IRn and x 6= y. (5) F is a

P -function if max
1≤i≤n

(xi − yi)(Fi(x) − Fi(y)) > 0, for all x, y ∈ IRn and x 6= y. (6) F is a

uniform P -function with modulus µ > 0 if max
1≤i≤n

(xi − yi)(Fi(x)− Fi(y)) ≥ µ‖x− y‖2, for

all x, y ∈ IRn. (7) F is a R0-function if for every sequence {xk} satisfying {‖xk‖} → ∞,

lim inf
k→∞

mini x
k
i

‖x‖k
≥ 0, and lim inf

k→∞
mini Fi(x

k)

‖x‖k
≥ 0, there exists an index j such that
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{xk
j} → ∞ and {Fj(x

k)} → ∞.

It is clear that strongly monotone functions are strictly monotone, and strictly mono-

tone functions are monotone. Moreover, F is a P0-function if F is monotone and F

is a uniform P -function with modulus µ > 0 if F is strongly monotone with modulus

µ > 0. In addition, when F is continuously differentiable, we have the following: (i) F is

monotone if and only if ∇F (x) is positive semi-definite for all x ∈ IRn. (ii) F is strictly

monotone if ∇F (x) is positive definite for all x ∈ IRn. (iii) F is strongly monotone if

and only if ∇F (x) is uniformly positive definite. An R0-function can be viewed as a

generalization of a uniform P -function since every uniform P -function is an R0-function

(see [2, Prop. 3.11]).

A matrix M ∈ IRn×n is a P0-matrix if every of its principal minors is nonnegative,

and it is a P -matrix if every of its principal minors is positive. In addition, it is said to

be a R0-matrix if the following system has only zero solution:

x ≥ 0,

Mix = 0 if xi > 0,

Mix ≥ 0 if xi = 0,

It is obvious that every P -matrix is also a P0-matrix and it is known that the Jacobian of

every continuously differentiable P0-function is a P0-matrix. For more properties about

P -matrix and P0-matrix, please refer to [7]. It is also known that F is an R0-function if

and only if M is an R0-matrix when F is an affine function, see [2, Prop. 3.10].

Next, we recall the definition of semismoothness. First, we introduce that F is strictly

continuous (also called ‘locally Lipschitz continuous’) at x ∈ IRn [24, Chap. 9] if there

exist scalars κ > 0 and δ > 0 such that

‖F (y)− F (z)‖ ≤ κ‖y − z‖ ∀y, z ∈ IRn with ‖y − x‖ ≤ δ, ‖z − x‖ ≤ δ;

and F is strictly continuous if F is strictly continuous at every x ∈ IRn. If δ can be

taken to be ∞, then F is Lipschitz continuous with Lipschitz constant κ. We say F is

directionally differentiable at x ∈ IRn if

F ′(x; h) := lim
t→0+

F (x + th)− F (x)

t
exists ∀h ∈ IRn;

and F is directionally differentiable if F is directionally differentiable at every x ∈ IRn.

Assume F : IRn → IRm is strictly continuous. We say F is semismooth at x if F is

directionally differentiable at x and, for any V ∈ ∂F (x + h) (the generalized Jacobian),

we have

F (x + h)− F (x)− V h = o(‖h‖).
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We say F is ρ-order semismooth at x (0 < ρ < ∞) if F is semismooth at x and, for any

V ∈ ∂F (x + h), we have

F (x + h)− F (x)− V h = O(‖h‖1+ρ).

We say F is semismooth (respectively, ρ-order semismooth) if F is semismooth (respec-

tively, ρ-order semismooth) at every x ∈ IRk. We say F is strongly semismooth if it is

1-order semismooth. Convex functions and piecewise continuously differentiable func-

tions are examples of semismooth functions. Examples of strongly semismooth functions

include piecewise linear functions and LC1 functions meaning smooth functions with

gradients being locally Lipschitz continuous (strictly continuous) [7, 22]. The composi-

tion of two (respectively, ρ-order) semismooth functions is also a (respectively, ρ-order)

semismooth function. The property of semismoothness plays an important role in nons-

mooth Newton methods [21, 23] as well as in some smoothing methods mentioned in the

previous section. For extensive discussions of semismooth functions, see [11, 18, 23].

To end this section, we collect some useful properties of φp, ψp defined as in (7) and

(8), respectively, that will be used in the subsequent analysis. All the proofs can be found

in [3].

Property 2.1 ([3, Prop. 3.1, Lem. 3.1]) Let φp : IR2 → IR be defined as (7). Then

(a) φp is an NCP-function, i.e., it satisfies (2).

(b) φp is sub-additive, i.e., φp(w + w′) ≤ φp(w) + φ(w′) for all w,w′ ∈ IR2.

(c) φp is positive homogeneous, i.e., φp(αw) = αφp(w) for all w ∈ IR2 and α ≥ 0.

(d) φp is convex, i.e., φp(αw + (1− α)w′) ≤ αφp(w) + (1− α)φp(w
′) for all w, w′ ∈ IR2

and α ≥ 0.

(e) φp is Lipschitz continuous with L1 = 1 +
√

2, i.e., |φp(w) − φp(w
′)| ≤ L1‖w − w′‖;

or with L2 = 1 + 2(1−1/p), i.e., |φp(w)− φp(w
′)| ≤ L2‖w − w′‖p for all w, w′ ∈ IR2.

(f) φp is semismooth.

(g) If {(ak, bk)} ⊆ IR2 with (ak → −∞) or (bk → −∞) or (ak →∞ and bk →∞), then

we have |φp(a
k, bk)| → ∞ for k →∞.

Property 2.2 ([3, Prop. 3.2]) Let φp, ψp be defined as (7) and (8), respectively. Then

(a) ψp is an NCP-function, i.e., it satisfies (2).

(b) ψp(a, b) ≥ 0 for all (a, b) ∈ IR2.
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(c) ψp is continuously differentiable everywhere.

(d) ∇aψp(a, b) · ∇bψp(a, b) ≥ 0 for all (a, b) ∈ IR2. The equality holds ⇐⇒ φp(a, b) = 0.

(e) ∇aψp(a, b) = 0 ⇐⇒ ∇bψp(a, b) = 0 ⇐⇒ φp(a, b) = 0.

From these properties, it was proved in [3] that Ψp(x) ≥ 0 for all x ∈ IRn and

Ψp(x) = 0 if and only if x solves the NCP (1), where Ψp : IRn → IR is defined as (9).

Moreover, suppose that the NCP has at least one solution. Then x is a global minimizer

of Ψp if and only if x solves the NCP. In addition, it was also shown in [3] that if F is

either monotone or P0-function, then every stationary point of Ψp is a global minima of

(10); and therefore solves the original NCP. We will investigate the analogous results for

the merit function Ψ which is based on φi studied in this paper. On the other hand, as

mentioned the natural merit function induced from the generalized Fischer-Burmeister

(which behaves like the Fischer-Burmeister function) does not guarantee bounded level

sets under the assumption of F being monotone. Instead, there needs that F is strongly

monotone or uniform P -function to ensure that the property is held. Another main

purpose of this work is to obtain same results for the merit function Ψ studied in this

paper under the weaker assumption that F is monotone only (see Sec. 4).

3 Properties of φ and ψ

In this section, we investigate properties of φ ∈ {φ1, φ2, φ3, φ4} and ψ ∈ {ψ1, ψ2, ψ3, ψ4}
defined as in (11) and (14), respectively. These include strong semismoothness of φ and

continuous differentiability of ψ. First, we denote

Nφ := {(a, b)| a ≥ 0, b ≥ 0, ab = 0}. (18)

This notation is adopted from [1] and it is easy to see that (a, b) ∈ Nφ if and only if (a, b)

satisfies (2). Now we are ready to show the favorable properties of φ and ψ.

Proposition 3.1 Let φ ∈ {φ1, φ2, φ3, φ4} be defined as in (11). Then

(a) φ(a, b) = 0 ⇐⇒ (a, b) ∈ Nφ ⇐⇒ (a, b) satisfies (2).

(b) φ is strongly semismooth.

(c) Let {ak}, {bk} ⊆ IR be any two sequences such that either ak
+bk

+ → ∞ or ak → −∞
or bk → −∞. Then |φ(ak, bk)| → ∞ for k →∞.

Proof. (a) It is enough to prove the first equivalence. Suppose φ(a, b) = 0, for i = 2, 3, 4,

φi(a, b) = 0 yields φp(a, b) = 0 which says (a, b) ∈ Nφ by Property 2.1(a). For i = 1,

φ1(a, b) = 0 implies φp(a, b) = αa+b+. Since α could be any arbitrary positive number,
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the above leads to φp(a, b) = a+b+ = 0 which which says (a, b) ∈ Nφ by Property 2.1(a)

again.

On the other hand, suppose (a, b) ∈ Nφ then φp(a, b) = 0 by by Property 2.1(a). Since

a ≥ 0, b ≥ 0, we obtain a+b+ = ab = 0. Hence we see that all φi(a, b) = 0, i = 1, 2, 3, 4.

(b) The verification of strong semismoothness of φ is a routine work which can be done

as in [25, Lemma 1]. We omit it.

(c) This follows from Property 2.1(g) and definition of (·)+. 2

Proposition 3.2 Let Φ be defined as in (15) with φ ∈ {φ1, φ2, φ3, φ4}. Then

(a) Φ is semismooth.

(b) Φ is strongly semismooth if every Fi is LC1 function.

Proof. By using Prop. 3.1(b) and the fact that every LC1 function is strongly semis-

mooth, the results follow. 2

The following is a technical lemma which describes the generalized gradients of all

φi, i = 1, 2, 3, 4 defined as in (11). It will be used for proving Prop. 3.3.

Lemma 3.1 Let φ1, φ2, φ3, φ4 be defined as (11).

(a) The generalized gradient ∂φ1(a, b) of φ1 at a point (a, b) is equal to the set of all

(va, vb) such that

(va, vb) =





(
ap−1

‖(a,b)‖p−1
p

− 1, bp−1

‖(a,b)‖p−1
p

− 1
)
− α

(
b+∂a+, a+∂b+

)
,

if (a, b) 6= (0, 0) and p is even,(
sgn(a)·ap−1

‖(a,b)‖p−1
p

− 1, sgn(b)·bp−1

‖(a,b)‖p−1
p

− 1
)
− α

(
b+∂a+, a+∂b+

)
,

if (a, b) 6= (0, 0) and p is odd,

(ξ − 1, ζ − 1), if (a, b) = (0, 0),

(19)

where (ξ, ζ) is any vector satisfying |ξ| p
p−1 + |ζ| p

p−1 ≤ 1 and

∂z+ =





1, if z > 0,

[0, 1], if z = 0,

0, if z < 0.
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(b) The generalized gradient ∂φ2(a, b) of φ2 at a point (a, b) is equal to the set of all

(va, vb) such that

(va, vb) =
(

ap−1

‖(a, b)‖p−1
p

− 1,
bp−1

‖(a, b)‖p−1
p

− 1
)
− α(b, a),

if (a, b) 6= (0, 0), ab > 0 and p is even,

(va, vb) =
(

ap−1

‖(a, b)‖p−1
p

− 1,
bp−1

‖(a, b)‖p−1
p

− 1
)
− α(b, a) · [0, 1],

if (a, b) 6= (0, 0), ab = 0 and p is even,

(va, vb) =
(

ap−1

‖(a, b)‖p−1
p

− 1,
bp−1

‖(a, b)‖p−1
p

− 1
)
,

if (a, b) 6= (0, 0), ab < 0 and p is even,

(va, vb) =
(

sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1,
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1
)
− α(b, a),

if (a, b) 6= (0, 0), ab > 0 and p is odd, (20)

(va, vb) =
(

sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1,
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1
)
− α(b, a) · [0, 1],

if (a, b) 6= (0, 0), ab = 0 and p is odd,

(va, vb) =
(

sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1,
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1
)
,

if (a, b) 6= (0, 0), ab < 0 and p is odd,

(va, vb) = (ξ − 1, ζ − 1)− α(b, a) · [0, 1],

if (a, b) = (0, 0),

where (ξ, ζ) is any vector satisfying |ξ| p
p−1 + |ζ| p

p−1 ≤ 1.

(c) φ3 is continuously differentiable everywhere except at (0, 0) with

∇aφ3(a, b) =





φp(a,b)·
[

ap−1

‖(a,b)‖p−1
p

−1

]
+α(a+)(b+)2

φ3(a,b)
,

if (a, b) 6= (0, 0), and p is even,

φp(a,b)·
[

sgn(a)·ap−1

‖(a,b)‖p−1
p

−1

]
+α(a+)(b+)2

φ3(a,b)
,

if (a, b) 6= (0, 0), and p is odd,

(21)

∇bφ3(a, b) =





φp(a,b)·
[

bp−1

‖(a,b)‖p−1
p

−1

]
+α(a+)2(b+)

φ3(a,b)
,

if (a, b) 6= (0, 0), and p is even,

φp(a,b)·
[

sgn(b)·bp−1

‖(a,b)‖p−1
p

−1

]
+α(a+)2(b+)

φ3(a,b)
,

if (a, b) 6= (0, 0), and p is odd,

(22)
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and ∂φ3(0, 0) = (va, vb) where (va, vb) ∈ (−∞,∞).

(d) φ4 is continuously differentiable everywhere except at (0, 0) with

∇aφ4(a, b) =





φp(a,b)·
[

ap−1

‖(a,b)‖p−1
p

−1

]
+α(ab)+·b

φ4(a,b)
,

if (a, b) 6= (0, 0), and p is even,

φp(a,b)·
[

sgn(a)·ap−1

‖(a,b)‖p−1
p

−1

]
+α(ab)+·b

φ4(a,b)
,

if (a, b) 6= (0, 0), and p is odd,

(23)

∇bφ4(a, b) =





φp(a,b)·
[

bp−1

‖(a,b)‖p−1
p

−1

]
+α(ab)+·a

φ4(a,b)
,

if (a, b) 6= (0, 0), and p is even,

φp(a,b)·
[

sgn(b)·bp−1

‖(a,b)‖p−1
p

−1

]
+α(ab)+·a

φ4(a,b)
,

if (a, b) 6= (0, 0), and p is odd,

(24)

and ∂φ4(0, 0) = (va, vb) where (va, vb) ∈ (−∞,∞).

Proof. (a) First, we note that φp is continuously differentiable everywhere except at

(0, 0) (see [3]). Hence, by the Corollary to Prop. 2.2.1 in [5], φp is strictly differentiable

everywhere except at the origin. Let φ+(a, b) := a+b+. Then φ+ is strictly differentiable

at the origin as proved in [1, Prop. 2.1]. Both φ1 and φ+ are strongly semismooth

functions, we know that they are locally Lipschitz (strictly continuous) functions. Thus,

the Corollary 2 to Prop. 2.3.3 in [5] yields

∂φ1(a, b) = ∂φp(a, b)− α · ∂φ+(a, b).

On the other hand, the generalized gradient of φp can be verified as below (see [3]):

∂φp(a, b) =
(

ap−1

‖(a, b)‖p−1
p

− 1,
bp−1

‖(a, b)‖p−1
p

− 1
)
, if (a, b) 6= (0, 0) and p is even,

∂φp(a, b) =
(

sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1,
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1
)
, if (a, b) 6= (0, 0) and p is odd,

∂φp(a, b) = (ξ − 1, ζ − 1), if (a, b) = (0, 0), (25)

where (ξ, ζ) is any vector satisfying |ξ| p
p−1 + |ζ| p

p−1 ≤ 1. In addition, it was already shown

in [1, Prop. 2.1] that

∂φ+(a, b) = (b+∂a+, a+∂b+).

Thus, the desired results follow.
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(b) Following the same arguments as in part(a) and using the fact that

∂(ab)+ =





(b, a), if ab > 0,

(0, 0), if ab < 0,

(b, a) · [0, 1], if ab = 0,

the desired results hold.

(c) It is known that (φp)
2 and (a+b+)2 are continuously differentiable. Then the desired

results follow by direct computations using the chain rule and the fact that

∂(
√

z) =





1

2
√

z
, if z > 0,

(−∞, ∞), if z = 0.

(d) Same arguments as part(c). 2

Proposition 3.3 Let ψ ∈ {ψ1, ψ2, ψ3, ψ4} be defined as in (14). Then

(a) ψ(a, b) = 0 ⇐⇒ (a, b) ∈ Nφ ⇐⇒ (a, b) satisfies (2).

(b) ψ is continuously differentiable on IR2.

(c) ∇aψ(a, b) · ∇bψ(a, b) ≥ 0 for all (a, b) ∈ IR2.

(d) ψ(a, b) = 0 ⇐⇒ ∇ψ(a, b) = 0 ⇐⇒ ∇aψ(a, b) = 0 ⇐⇒ ∇bψ(a, b) = 0.

Proof. (a) The proof is straightforward by the same arguments as in Prop. 3.1(a).

(b) The ideas for the proof are indeed borrowed from [8, Prop. 3.4].

For i = 1 and p is even, ψ1(a, b) = 1
2
(φ1(a, b))2. By the chain rule (see [5, Theorem

2.2.4]), we obtain ∂ψ1(a, b) = ∂φ1(a, b)T φ1(a, b). We will show that ∂φ1(a, b)T φ1(a, b) is

single-valued for all (a, b) ∈ IR2 because the zero of φ1 cancels the multi-valued portion

of ∂φ1(a, b)T . To see this, we discuss several cases as below.

(i) If a > 0, b > 0, then (b+∂a+, a+∂b+) = (b, a) which is single-valued. Hence, by (19),

it is easy to see that ∂φ1(a, b)T φ1(a, b) is single-valued.

(ii) If a > 0, b < 0, then (b+∂a+, a+∂b+) = (0, a) which is single-valued. Hence, by (19),

∂φ1(a, b)T φ1(a, b) is single-valued.

(iii) If a > 0, b = 0, then (b+∂a+, a+∂b+) = (0, a · [0, 1]) which is multi-valued. However,

under this case, we observe that φ1(a, b) = ‖(a, b)‖p − (a + b) − αa+b+ = 0. Hence,

∂φ1(a, b)T φ1(a, b) is still single-valued.

(iv) If a < 0, b > 0 or a < 0, b < 0, or a < 0, b = 0, then (b+∂a+, a+∂b+) all equals (0, 0)

which is single-valued. Hence, by (19), ∂φ1(a, b)T φ1(a, b) is single-valued.

(v) If a = 0, b > 0, then (b+∂a+, a+∂b+) = (b · [0, 1], 0) which is multi-valued. However,
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under this case, we observe that φ1(a, b) = ‖(a, b)‖p − (a + b) − αa+b+ = 0. Hence,

∂φ1(a, b)T φ1(a, b) is still single-valued.

(vi) If a = 0, b < 0, then then (b+∂a+, a+∂b+) = (0, 0) which is single-valued. Hence, by

(19), ∂φ1(a, b)T φ1(a, b) is single-valued.

(vii) If a = 0, b = 0 then φ1(a, b) = 0. Hence, ∂φ1(a, b)T φ1(a, b) is single-valued.

Thus, by applying the Corollary to Theorem 2.2.4 in [5], the above facts yield that ψ1

is continuously differentiable everywhere. For p is odd, going over the same cases, the

proof follows.

For i = 2, ψ2(a, b) = 1
2
(φ2(a, b))2. We discuss the following cases : (i) (a, b) 6= (0, 0) and

ab > 0, (ii) (a, b) 6= (0, 0) and ab = 0, (iii) (a, b) 6= (0, 0) and ab < 0, (iv) (a, b) = (0, 0).

From (20), we know that ∂φ2(a, b) becomes multi-valued when ab = 0 or (a, b) = (0, 0).

However, φ2(a, b) = 0 under these two cases which implies that ∂φ2(a, b)T φ2(a, b) is still

single-valued. Hence, ψ2 is continuously differentiable everywhere by the Corollary to

Theorem 2.2.4 in [5] again.

For i = 3, 4, from (21)-(24), it is trivial that ∂φ3(a, b), ∂φ4(a, b) are single-valued when

(a, b) 6= (0, 0). When (a, b) = (0, 0), we observe that φ3(a, b) = φ4(a, b) = 0. Hence,

∂φ3(a, b)T φ3(a, b) and ∂φ4(a, b)T φ4(a, b) are still single-valued, which yield that ψ3, ψ4

are continuously differentiable everywhere by the same reason as above.

(c) For i = 1, ψ1 = 1
2
(φ1)

2, we employ and go over the cases discussed as in part (b).

(i) If a > 0, b > 0, then (b+∂a+, a+∂b+) = (b, a). Hence, from (19), we obtain that

∇aψ1(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1− αb

)
φ1(a, b), ∇bψ1(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1− αa

)
φ1(a, b),

for both p are even and odd. Then, ∇aψ1(a, b) · ∇bψ1(a, b) equals

(
ap−1

‖(a, b)‖p−1
p

− 1− αb
)(

bp−1

‖(a, b)‖p−1
p

− 1− αa
)
φ2

1(a, b).

Since,
∣∣∣∣ ap−1

‖(a,b)‖p−1
p

∣∣∣∣ ≤ 1,
∣∣∣∣ bp−1

‖(a,b)‖p−1
p

∣∣∣∣ ≤ 1, and αa > 0, αb > 0, we know

(
ap−1

‖(a, b)‖p−1
p

− 1− αb
)

< 0 and
(

bp−1

‖(a, b)‖p−1
p

− 1− αa
)

< 0,

which implies that ∇aψ1(a, b) · ∇bψ1(a, b) ≥ 0.

(ii) If a > 0, b < 0, then (b+∂a+, a+∂b+) = (0, a). Hence, from (19), we have

∇aψ1(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b), ∇bψ1(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1− αa

)
φ1(a, b),

for p is even; and

∇aψ1(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b), ∇bψ1(a, b) =

( −bp−1

‖(a, b)‖p−1
p

− 1− αa

)
φ1(a, b),
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for p is odd. Again, since
∣∣∣∣ ap−1

‖(a,b)‖p−1
p

∣∣∣∣ ≤ 1,
∣∣∣∣ bp−1

‖(a,b)‖p−1
p

∣∣∣∣ ≤ 1, and αa > 0, it can be easily

verified that ∇aψ1(a, b) · ∇bψ1(a, b) ≥ 0.

(iii) If a > 0, b = 0, then φ1(a, b) = 0 which says ∇aψ1(a, b) = 0 = ∇bψ1(a, b). Hence,

∇aψ1(a, b) · ∇bψ1(a, b) = 0.

(iv) If a < 0, b > 0 or a < 0, b < 0, or a < 0, b = 0, then (b+∂a+, a+∂b+) = (0, 0). Hence,

from (19), we have

∇aψ1(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b), ∇bψ1(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

for p is even; and

∇aψ1(a, b) =

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b), ∇bψ1(a, b) =

(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

for p is odd. Again, by
∣∣∣∣ ap−1

‖(a,b)‖p−1
p

∣∣∣∣ ≤ 1, and
∣∣∣∣ bp−1

‖(a,b)‖p−1
p

∣∣∣∣ ≤ 1, the desired inequality holds.

(v) If a = 0, b > 0, then φ1(a, b) = 0 which says ∇aψ1(a, b) = 0 = ∇bψ1(a, b). Hence,

∇aψ1(a, b) · ∇bψ1(a, b) = 0.

(vi) If a = 0, b < 0, then then (b+∂a+, a+∂b+) = (0, 0). Hence, from (19), we have

∇aψ1(a, b) = −φ1(a, b), ∇bψ1(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

for p is even; and

∇aψ1(a, b) = −φ1(a, b), ∇bψ1(a, b) =

( −bp−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

for p is odd. By the same reasons as in previous discussions, we obtain that ∇aψ1(a, b) ·
∇bψ1(a, b) ≥ 0.

(vii) If a = 0, b = 0, then φ1(a, b) = 0. Hence, ∇aψ1(a, b) = 0 = ∇bψ1(a, b) and

∇aψ1(a, b) · ∇bψ1(a, b) = 0.

For i = 2, ψ2 = 1
2
(φ2)

2, we discuss discuss four cases as in part (b).

(i) If (a, b) 6= (0, 0) and ab > 0, from (20), we have

∇aψ2(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1− αb

)
φ2(a, b), ∇bψ2(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1− αa

)
φ2(a, b),

for p is even; and

∇aψ2(a, b) =

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1− αb

)
φ2(a, b), ∇bψ2(a, b) =

(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1− αa

)
φ2(a, b),

for p is odd. By the same reasons as in previous discussions, it can be easily verified that

∇aψ1(a, b) · ∇bψ1(a, b) ≥ 0.
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(ii) If (a, b) 6= (0, 0) and ab = 0, then φ2(a, b) = 0. Hence, ∇aψ2(a, b) = 0 = ∇bψ2(a, b)

and ∇aψ2(a, b) · ∇bψ2(a, b) = 0.

(iii) If (a, b) 6= (0, 0) and ab < 0, the arguments are the same as case (iv) for i = 1 except

that φ1 is replaced by φ2.

(iv) If (a, b) = (0, 0), then φ2(a, b) = 0. Hence, ∇aψ2(a, b) = 0 = ∇bψ2(a, b) and

∇aψ2(a, b) · ∇bψ2(a, b) = 0.

For i = 3, ψ3 = 1
2
(φ3)

2, we have two cases as below.

(i) If (a, b) 6= (0, 0), from (21)-(22), we have

∇aψ3(a, b) = φp(a, b)
(

ap−1

‖(a, b)‖p−1
p

− 1
)

+ α(a+)(b+)2,

∇bψ3(a, b) = φp(a, b)
(

bp−1

‖(a, b)‖p−1
p

− 1
)

+ α(a+)2(b+),

for p is even; and

∇aψ3(a, b) = φp(a, b)
(

sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1
)

+ α(a+)(b+)2,

∇bψ3(a, b) = φp(a, b)
(

sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1
)

+ α(a+)2(b+),

for p is odd. Thus, ∇aψ3(a, b) · ∇bψ3(a, b) equals

φ2
p(a, b)

(
ap−1

‖(a,b)‖p−1
p

− 1
)(

bp−1

‖(a,b)‖p−1
p

− 1
)

+ α2(a+)3(b+)3

+ φp(a, b)
(

ap−1

‖(a,b)‖p−1
p

− 1
)
α(a+)2(b+) + φp(a, b)

(
bp−1

‖(a,b)‖p−1
p

− 1
)
α(a+)(b+)2

or

φ2
p(a, b)

(
sgn(a)·ap−1

‖(a,b)‖p−1
p

− 1
)(

sgn(b)·bp−1

‖(a,b)‖p−1
p

− 1
)

+ α2(a+)3(b+)3

+ φp(a, b)
(

sgn(a)·ap−1

‖(a,b)‖p−1
p

− 1
)
α(a+)2(b+) + φp(a, b)

(
sgn(b)·bp−1

‖(a,b)‖p−1
p

− 1
)
α(a+)(b+)2.

Note that in the above expressions, it is trivial that the first and second terms are

nonnegative. We also notice that

(a+)(b+) =

{
ab, if a > 0, b > 0

0, else.

Therefore, we only need to consider the subcase of a > 0, b > 0 for the third and fourth

terms. In fact, summing up the third and fourth term under this subcase gives

αab · φp(a, b)

[(
ap−1

‖(a, b)‖p−1
p

− 1
)
a +

(
bp−1

‖(a, b)‖p−1
p

− 1
)
b

]
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= αab · φp(a, b)
[

ap + bp

‖(a, b)‖p−1
p

− (a + b)
]

= αab · φp(a, b)[‖(a, b)‖p − (a + b)]

= αab · φ2
p(a, b)

≥ 0.

Thus, we proved ∇aψ2(a, b) · ∇bψ2(a, b) ≥ 0.

For i = 4, ψ4 = 1
2
(φ4)

2, we also have two cases as below.

(i) If (a, b) 6= (0, 0), from (23)-(24), we have

∇aψ4(a, b) = φp(a, b)
(

ap−1

‖(a, b)‖p−1
p

− 1
)

+ α(ab)+ · b,

∇bψ4(a, b) = φp(a, b)
(

bp−1

‖(a, b)‖p−1
p

− 1
)

+ α(ab)+ · a,

for p is even; and

∇aψ4(a, b) = φp(a, b)
(

sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1
)

+ α(ab)+ · b,

∇bψ4(a, b) = φp(a, b)
(

sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1
)

+ α(ab)+ · a,

for p is odd. Thus, ∇aψ4(a, b) · ∇bψ4(a, b) equals

φ2
p(a, b)

(
ap−1

‖(a,b)‖p−1
p

− 1
)(

bp−1

‖(a,b)‖p−1
p

− 1
)

+ α2(ab)2
+ · (ab)

+ φp(a, b)
(

ap−1

‖(a,b)‖p−1
p

− 1
)
α(ab)+ · a + φp(a, b)

(
bp−1

‖(a,b)‖p−1
p

− 1
)
α(ab)+ · b

or

φ2
p(a, b)

(
sgn(a)·ap−1

‖(a,b)‖p−1
p

− 1
)(

sgn(b)·bp−1

‖(a,b)‖p−1
p

− 1
)

+ α2(ab)2
+ · (ab)

+ φp(a, b)
(

sgn(a)·ap−1

‖(a,b)‖p−1
p

− 1
)
α(ab)+ · a + φp(a, b)

(
sgn(b)·bp−1

‖(a,b)‖p−1
p

− 1
)
α(ab)+ · b.

The first and second terms are nonnegative by the same reasons in previous discussions.

We notice that

(ab)+ =

{
ab, if ab > 0

0, else.

Thus, we only need to consider the subcase of ab > 0 for the third and fourth terms. In

fact, summing up the third and fourth term under this subcase gives

α(ab)+ · φp(a, b)

[(
ap−1

‖(a, b)‖p−1
p

− 1
)
a +

(
bp−1

‖(a, b)‖p−1
p

− 1
)
b

]
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= α(ab)+ · φp(a, b)
[

ap + bp

‖(a, b)‖p−1
p

− (a + b)
]

= α(ab)+ · φp(a, b)[‖(a, b)‖p − (a + b)]

= α(ab)+ · φ2
p(a, b)

≥ 0.

The arguments hold as well for p is odd. Hence, we proved ∇aψ2(a, b) · ∇bψ2(a, b) ≥ 0.

(d) Going over exactly the same cases for each i discussed as in part (c) where ∇aψ(a, b)

and ∇bψ(a, b) are formed, it is not hard to verify that the desired result is satisfied. We

omit the details. 2

Based on the properties of ψ stated as in Prop. 3.3 and using the same proof tech-

niques developed in [6, 15, 16], we have the following condition for a stationary point to

be a solution of the NCP. We omit the details.

Proposition 3.4 Assume that x∗ ∈ IRn is a stationary point of Ψ defined as (15)-(17)

(except for Ψ induced from ψ2) such that the Jacobian ∇F (x∗) is a P0-matrix. Then x∗

is a solution of the NCP.

As pointed out in Prop. 3.4, if Ψ is induced from ψ2 then Prop. 3.4 does not nec-

essary hold for such a Ψ. The reason is that there needs ∇aψ(a, b) · ∇bψ(a, b) > 0

when ψ(a, b) 6= 0 in the proof. However, this is not always true (we proved that

∇aψ(a, b) · ∇bψ(a, b) ≥ 0) for ψ2. A counterexample for p = 2 was given in [25, pp.

206-207]. Hence, due to this reason, the merit function induced from ψ2 may not be

recommended even though it is continuously differentiable.

4 Bounded level sets

As mentioned earlier, the merit function Ψp defined as in (9) does not guarantee bounded

level sets for monotone NCP. In fact, it needs that F is either strongly monotone or uni-

form P -function to obtain property of bounded level sets, see Prop. 3.5 of [3]. In this

section, we establish that if F is either a monotone function with strictly feasible solu-

tion or a R0-function, the merit function Ψ defined as in (17) provides the bounded level

sets. This results indicates that Ψ may be a better choice of merit function for the NCP

than Ψp in certain sense. The motivation is from [1] where a condition, under which a

penalized Fischer-Burmeister function is guaranteed to have bounded level sets property,

was proposed. We also adopt the condition for our merit functions studied in this paper.
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Now, we begin to see under what condition the level sets

L(γ) := {x ∈ IRn| Ψ(x) ≤ γ} (26)

are to be bounded for all γ ≥ 0. When p = 2 and ψ = ψ1, as shown in [1], it turns out

that the following condition on F is sufficient. We employ it for our ψ’s and extend the

existing results as for p = 2 to general p ≥ 2.

Condition A For any sequence {xk} such that

‖xk‖ → ∞, [−xk]+ < ∞, [−F (xk)]+ < ∞, (27)

it holds

max
i

[xk
i ]+[Fi(x

k)]+ →∞. (28)

Proposition 4.1 If F satisfies Condition A, then the level sets L(γ) are bounded for all

γ ≥ 0.

Proof. Suppose not, then there exists an unbounded sequence {xk} ⊆ L(γ) for some

γ ≥ 0. Since Ψ(xk) ≤ γ for all k ∈ N and Ψ(x) =
1

2

n∑

i=1

φ2(xi, Fi(x)), there is no index

i such that xk
i → −∞ or Fi(x

k) → −∞ by Prop. 3.1(c). Hence, (27) in condition A is

held, which says max
i

(xk
i )+(Fi(x

k))+ → ∞. In other words, there is a j and at least a

subsequence {xk
j} where k ∈ K ⊆ N such that

(xk
j )+(Fj(x

k))+ →∞ k ∈ K.

However, this implies Ψ(xk) is unbounded by definition of φ as in (11) and Prop. 3.1(c)

again which leads to a contradiction to the level sets assumption. 2

In fact, condition A is satisfied if F is either a monotone function with a strictly

feasible point or a R0-function ([1, Prop. 3.10]) which indicates that the condition A

on F may be the weakest assumption to guarantee bounded level sets for the nonlinear

complementarity problem since both F is monotone with a strictly feasible point and

a R0-function are sufficient to condition A. By the way, it is also known that if F is

a P0-function and the NCP has a nonempty and bounded solution set, then there is a

strictly feasible solution for the NCP (see [1, Prop. 3.12]).
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5 Final Remarks

In this paper, we have studied several new NCP-functions based on the generalized

Fischer-Burmeister function and have shown that each of them enjoys all the properties

possessed by their counterparts when p = 2. The property of error bounds is not included

in this paper though we also wished to investigate conditions under which the merit func-

tions Ψ derived from ψi, i = 1, 2, 3, 4 provide error bounds for the NCP. In fact, it was

shown in [1] that if F is a uniform P -function then the aforementioned property holds for

p = 2 and ψ1. However, we have not established the parallel results for general p ≥ 2 and

the other ψis. The main reason is that we could not yet derive analogous inequalities as

in [26, Lem. 3.1] for φp, p ≥ 2 which plays an important role in proving the error bounds

property. We will keep an eye on this topic. On the other hand, according to the the

theoretical part built in this paper (not taking it for granted before we prove it even

though we think it should be true), the numerical implementation of related algorithms

may be interesting for future research.

We want to point something out. During the reviewing, [3] relaxes the condition of

p being positive integer greater than one to more general condition of p > 1. Moreover,

Lemma 3.1(a) is improved in [19] where the condition p > 1 is considered.
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