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Abstract

The implicit Lagrangian was first proposed by Mangasarian and Solodov as a smooth merit
function for the nonnegative orthant complementarity problem. It has attracted much atten-
tion in the past ten years because of its utility in reformulating complementarity problems
as unconstrained minimization problems. In this paper, exploiting the Jordan-algebraic
structure, we extend it to the vector-valued implicit Lagrangian for symmetric cone comple-
mentary problem (SCCP), and show that it is a continuously differentiable complementarity
function for SCCP and whose Jacobian is strongly semismooth. As an application, we de-
velop the real-valued implicit Lagrangian and the corresponding smooth merit function for
SCCP, and give a necessary and sufficient condition for the stationary point of the merit
function to be a solution of SCCP. Finally, we show that this merit function can provide a
global error bound for SCCP with the uniform Cartesian P-property.
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1 Introduction

Let J be a Euclidean Jordan algebra with the inner product 〈·, ·〉, K be the symmetric cone in
J , and F : J → J be a continuous function. The symmetric cone complementarity problem
(SCCP for short) is to find a vector x ∈ J such that

x ∈ K, y ∈ K, 〈x, y〉 = 0, y = F (x). (1.1)

This model provides a simple, natural, and unified framework for various existing complemen-
tarity problems, such as the nonnegative orthant nonlinear complementarity problem (NCP),
the second-order cone complementarity problem (SOCCP), the semi-definite complementarity
problem (SDCP). It has wide applications in engineering, economics, management science, and
other fields; we refer the readers to the excellent monographs (Facchinei and Pang 2003, Isac
2000, Luo, Pang and Ralph 1996). Although there exist only several papers addressing the
SCCP up-to date (Gowda, Sznajder and Tao 2004, Gowda and Sznajder 2006, Gowda and Tao
2007, Kong and Xiu 2007, Lin and Yoshise 2005, Liu, Zhang and Wang 2006, Malik and Mohan
2003, Malik and Mohan 2006, Sun and Sun 2008, Tao and Gowda 2005, Yoshise 2006), there is
a growing trend in the study of SCCP. This paper is mainly concerned with the extension of the
implicit Lagrangian for NCP to the setting of SCCP.

The implicit Lagrangian was first proposed by Mangasarian and Solodov (1993) as a smooth
merit function for the nonlinear complementarity problem over nonnegative orthant, which is to
find a vector x ∈ Rn such that

x ∈ Rn
+, y ∈ Rn

+, 〈x, y〉 = 0, y = F (x). (1.2)

It has the following form:

Mα(x) =
n
∑

i=1

φM (xi, Fi(x)) (1.3)

with φM : R2 → R being defined by

φM (a, b) = ab +
1

2α

{

[(a − αb)+]2 − a2 + [(b − αa)+]2 − b2
}

, (1.4)

where α > 1 is any fixed parameter and (·)+ denotes the projection onto Rn
+. It has at-

tracted much attention because of its utility in reformulating complementarity and variational
inequality problems as unconstrained minimization problems, see, e.g., Chen and Qi (2006),
Facchinei and Kanzow (1997), Fukushima (1996), Kanzow and Fukushima (1998), Luo, Man-
gasarian, Ren and Solodov (1994), Peng (1997), Peng and Fukushima (1999), Solodov and Tseng
(2000), Sun, Fukushima and Qi (1997), Tseng (1998), Tseng, Yamashita and Fukushima (1996),
Yamashita and Fukushima (1995), Yamashita, Taji and Fukushima (1997). Mangasarian and
Solodov (1993) showed that if the mapping F is differentiable, so is the implicit Lagrangian.
Yamashita and Fukushima (1995) showed that the implicit Lagrangian’s gradient vanishes at
each solution of NCP when the Jacobian is positive definite at this solution. Facchinei and
Kanzow (1997) improved the result in (Yamashita and Fukushima 1995) and gave a necessary
and sufficient condition for the stationary point of the implicit Lagrangian to be a solution of
NCP. Peng (1997) extended the implicit Lagrangian to the variational inequality problem (VIP)
and showed that the implicit Lagrangian can be represented as the difference of two regularized
gap functions proposed by Fukushima (1992) and Auchmuty (1989) independently. Yamashita,
Taji and Fukushima (1997) extended the results of Peng (1997) and studied various properties
of the D-gap function

gαβ := fα(x) − fβ(x) (1.5)
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where α and β are arbitrary positive parameters with α < β, and fα is the regularized gap
function defined by

fα(x) := 〈αF (x), x − yα(x)〉 − 1

2
‖x − yα(x)‖2 (1.6)

with yα(x) =
∏

X(x − αF (x)) and
∏

X(·) being the projection operator onto the constraint set
X of VIP. Tseng (1998) and Tseng, Yamashita and Fukushima (1996) extended the implicit La-
grangian for NCP to the semi-definite and the generalized nonlinear complementarity problems,
respectively. They also showed that the extended functions retain most of the nice properties
of the implicit Lagrangian for NCP. In addition, several solution methods based on the D-gap
function have been proposed; see, e.g., (Kanzow and Fukushima 1998, Peng and Fukushima
1999, Solodov and Tseng 2000, Sun, Fukushima and Qi 1997).

Motivated by these developments, we establish in this paper a vector-valued implicit La-
grangian for SCCP by utilizing the Jordan-algebraic structure. It not only provides a unified
formula for the existing implicit Lagrange functions (Mangasarian and Solodov 1993, Tseng
1998), but also is of the vector-valued form which allows us to establish a reformulation of prob-
lem (1.1) as a smooth system of nonlinear equations. In particular, in Section 3 we show that
it is a continuously differentiable complementarity function (C-function) for SCCP and whose
Jacobian is strongly semismooth, and hence it certainly can be combined with nonsmooth C-
functions to obtain algorithms with fast convergent rates. Here, a function Φ : J × J → J is
said to be a C-function for SCCP (see, e.g., Facchinei and Pang 2003, Isac 2000) if it satisfies

Φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0. (1.7)

In this case, Φ(x, y) = 0 is called the reformulation equation of the complementarity condition
of problem (1.1). The concept of C-function for SCCP is in essence different from the one of the
merit function for SCCP, where a function Ψ : J × J → R is said to be a merit function for
SCCP (see, e.g., Fukushima 1996) if Ψ(x, y) ≥ 0 for any (x, y) ∈ J × J , and Ψ(x, y) = 0 if and
only if (x, y) is a solution to the complementarity condition of problem (1.1). In this case, the
complementarity condition is equivalent to the unconstrained minimization problem

min
(x,y)∈J×J

Ψ(x, y) (1.8)

with zero optimal value. The concept of C-function for SCCP is also different from the one for
NCP, because a C-function φ (R2 → R) for NCP, which is also called the NCP function (see,
e.g., Sun and Qi 1999), is a real-valued function which satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (1.9)

By using the proposed vector-valued implicit Lagrangian, in Section 4 we introduce a real-
valued implicit Lagrangian which can be regarded as a direct extension of those presented
in (Mangasarian and Solodov 1993, Tseng 1998), and show that it possesses some interesting
properties. In Section 5, we develop a merit function based on the real-valued implicit Lagrangian
for problem (1.1), and give a necessary and sufficient condition for the stationary point of the
merit function to be a solution of problem (1.1), which is weaker than requiring monotonicity. In
Section 6, we introduce and give a characterization for the Cartesian P -property of the function
F , and show the GUS-property (i.e., globally unique solvability) and a global error bound
based on the implicit Lagrangian merit function for problem (1.1) with the uniform Cartesian
P-property. Finally, we make some concluding remarks in Section 7.
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Notation: For a vector-valued function E, if it is differentiable, we let E′(x) denote the
Jacobian operator of E at a point x. Let I be the identity operator from J into itself, i.e.,
Ix = x for all x ∈ J . We say that a linear operator A from J into itself is invertible (or
nonsingular) if the equation Ax = 0 has a unique solution x = 0. For a linear operator A from
J into itself, AT denotes the adjoint operator of A in the sense of 〈y,AT z〉 = 〈Ay, z〉 for all
y, z ∈ J .

2 Preliminaries

In this section, we first mention some basic concepts and results on Euclidean Jordan algebras.
Koecher (1999) and Faraut and Korányi (1994) provided comprehensive treatments of Euclidean
Jordan algebras. Excellent summaries can be found in the articles (Faybusovich 1997, Gowda,
Sznajder and Tao 2004, Schmieta and Alizadeh 2003, Tao and Gowda 2005). We then introduce
the concept of cone of a point, based on the convex hull and positive cone of a set, which will
play an important role in the stationary point analysis in Section 5 of this paper.

A Euclidean Jordan algebra is a triple (J , 〈·, ·〉, ◦), where (J , 〈·, ·〉) is a finite-dimensional
inner product space over real field R and (x, y) → x ◦ y : J × J → J is a bilinear mapping
which satisfies the following conditions:

(1) x ◦ y = y ◦ x for all x, y ∈ J ,
(2) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J where x2 := x ◦ x and
(3) 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ J .

We call x ◦ y the Jordan product of x and y. In addition, we assume that there is an element e
such that x ◦ e = e ◦ x = x for all x ∈ J , which is called the identity element in J . Define the
set of squares as K := {x2 : x ∈ J }. It is well known that K is a symmetric cone. That is, K
is a self-dual closed convex cone with nonempty interior and for any two elements belonging to
its interior x, y ∈ int(K), there exists an invertible linear transformation Γ : J → J such that
Γ(K) = K and Γ(x) = y.

An element c ∈ J is idempotent if c2 = c 6= 0. It is also primitive if it cannot be written
as the sum of two idempotents. A complete system of orthogonal idempotents is a finite set
{c1, c2, · · · , ck} of idempotents with ci ◦ cj = 0 (i 6= j) and

∑k
i=1 ci = e. A complete system of

orthogonal primitive idempotents is called a Jordan frame of J .

A classical example of Euclidean Jordan algebras is Rn with the (usual) inner product and
Jordan product defined respectively by

〈x, y〉 :=
n
∑

i=1

xiyi and x ◦ y := x ∗ y,

where xi denotes the ith component of x, and x∗y denotes the componentwise product of vectors
x and y. The identity element is the all ones vector, i.e., e = (1, · · · , 1)T . The set {e1, · · · , en} is
a unique Jordan frame in Rn where ei is the ith unit vector. A popular example of Euclidean
Jordan algebras is Sn, where Sn denotes the set of all n × n real symmetric matrices with the
inner product and Jordan product defined respectively by

〈X,Y 〉 := Trace(XY ) and X ◦ Y := (XY + Y X)/2.

In this setting, the cone of squares Sn
+ is the set of all positive semidefinite matrices in Sn,

and the identity element is the identity matrix I. The set {E1, · · · , En} is a Jordan frame in
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Sn where Ei is the diagonal matrix with 1 in the (i, i)-slot and zeros everywhere else for every
i ∈ {1, 2, · · · , n}. There are uncountably many Jordan frames for this example (any orthogonal
system of n elements of Sn will do).

We below state the important spectral decomposition theorem for Euclidean Jordan algebras.

Theorem 2.1 (Spectral Decomposition Type II (Faraut and Korányi 1994, Theorem III.1.2))
Let J be a Euclidean Jordan algebra of rank r. Then for every vector x ∈ J there exists a Jordan
frame {c1, c2, · · · , cr} and real numbers λ1(x), λ2(x), · · · , λr(x), the eigenvalues of x, such that

x = λ1(x)c1 + λ2(x)c2 + · · · + λr(x)cr. (2.1)

We call (2.1) the spectral decomposition of x.

Letting q : R → R be a real-valued function, we define a vector-valued function associated
with the Euclidean Jordan algebra, which is called the Löwner function (operator) by Sun and
Sun (2008):

Q(x) :=
r
∑

j=1

q(λj(x))cj = q(λ1(x))c1 + q(λ2(x))c2 + · · · + q(λr(x))cr . (2.2)

When q(t) is taken as t+ := max{0, t}, t− := min{0, t}, or |t| := t+ − t− (t ∈ R), the Löwner
function becomes the metric projection function

x+ :=
r
∑

i=1

(λi(x))+ci, x− :=
r
∑

i=1

(λi(x))−ci, or |x| :=
r
∑

i=1

|λi(x)|ci.

Note that x ∈ K if and only if λi(x) ≥ 0 (i = 1, 2, · · · , r). It is easy to verify that

x+ ∈ K, x− = −(−x)+ ∈ (−K). (2.3)

In other words, x+ is the projection of x onto K, x− is the projection of x onto (−K). Moreover,
we can easily observe that

x+ ◦ x− = 0, x = x+ + x−, and |x| = x+ − x−. (2.4)

An important concept in the theory of Euclidean Jordan algebras is the Peirce decomposition
which is stated as follows. Let {c1, c2, · · · , cr} be a Jordan frame of J . For i, j ∈ {1, 2, · · · , r},
define the subspaces

Jii := {y ∈ J : y ◦ ci = y}, and Jij := {y ∈ J : y ◦ ci =
1

2
y = y ◦ cj}, i 6= j.

Then from Theorem IV.2.1 in Faraut and Korányi (1994), we have the following result.

Theorem 2.2 Let J be a Euclidean Jordan algebra of rank r and {c1, c2, · · · , cr} be a given
Jordan frame in J . Then space J is the orthogonal direct sum of spaces Jij (i ≤ j). Furthermore,

(1) Jij ◦ Jij ⊆ Jii + Jjj;

(2) Jij ◦ Jjk ⊆ Jik, if i 6= k;

(3) Jij ◦ Jkl = {0}, if {i, j}⋂{k, l} = Ø.
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In the Euclidean Jordan algebra J , for x ∈ J , we define the corresponding Lyapunov
transformation L(x) : J → J by L(x)y = x ◦ y for all y ∈ J . We say two elements x, y ∈ J
operator commute if L(x)L(y) = L(y)L(x). Lemma X.2.2 in Faraut and Korányi (1994) shows
that the elements x, y ∈ J operator commute if and only if they share a common Jordan frame.
Therefore, for a given Jordan frame {c1, c2, · · · , cr}, we have that ci, cj operator commute, that
is, L(ci)L(cj) = L(cj)L(ci) for any i, j ∈ {1, 2, · · · , r}. Note that this is a generalization of a
well-known fact for symmetric matrices.

The following proposition summarizes some equivalent reformulations related to the comple-
mentarity condition of problem (1.1).

Proposition 2.3 (Gowda, Sznajder and Tao 2004, Proposition 6) Let K be the symmetric cone
in J . For x, y ∈ J and µ ∈ R, the following conditions are equivalent:

(a) x ∈ K, y ∈ K, and 〈x, y〉 = 0;

(b) x ∈ K, y ∈ K, and x ◦ y = 0;

(c) x + y ∈ K, and x ◦ y = 0;

(d) x − (x − µy)+ = 0 for any fixed µ > 0;

(e) x + y −
√

x2 + y2 = 0, where
√

z is the function given by (2.2) with q(t) =
√

t.

In each case, the elements x and y operator commute.

For any x ∈ J , from Theorem 2.1 we have x = λ1(x)c1(x) + λ2(x)c2(x) + · · · + λr(x)cr(x),
where {c1(x), c2(x), · · · , cr(x)} is a Jordan frame of J . Define the subspaces

Jii(x) := {z : z ◦ ci(x) = z}, Jij(x) := {z : z ◦ ci(x) =
1

2
z = z ◦ cj(x)}, i 6= j. (2.5)

We obtain from Theorem 2.2 that λi(x)ci(x) ∈ Jii(x) and for any z ∈ Jij(x)(i 6= j),

〈x, z〉 = 0. (2.6)

Let us define a set C := {λ1(x)c1(x), λ2(x)c2(x), · · · , λr(x)cr(x)}. Similar to the definition of
convex hull convC specified by

convC :=

{

r
∑

i=1

θiλi(x)ci(x) :
r
∑

i=1

θi = 1, θi ≥ 0, i = 1, 2, · · · , r
}

,

we can define the cone of a point x with respect to {c1(x), c2(x), · · · , cr(x)} as

Cone{c1(x),c2(x),···,cr(x)}(x) :=

{

r
∑

i=1

θiλi(x)ci(x) : θi ≥ 0, i = 1, 2, · · · , r
}

. (2.7)

Thus, we define the cone of a point x as

Cone(x) := conv
{

Cone{c1(x),c2(x),···,cr(x)}(x) : {c1(x), c2(x), · · · , cr(x)} ∈ C(x)
}

, (2.8)

where C(x) is the set consisting of all Jordan frames in the spectral decomposition of x.

This concept possesses the following features.

Proposition 2.4 The cone Cone(x) is convex. Moreover, for any w ∈ Cone(x), we have

〈w, x〉 ≥ 0.
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Proof. It is clear that the cone Cone(x) is convex. By Carathéodory Theorem in Rockafellar

and Wets (2004), for any w ∈ Cone(x), there exist elements wi ∈ Cone{c
i

1(x),ci

2(x),···,ci
r
(x)}(x) (i ∈

{1, · · · , n}) such that

w =
n
∑

i=0

µiwi, with µi ≥ 0,
n
∑

i=0

µi = 1,

where {ci
1(x), ci

2(x), · · · , ci
r(x)} ∈ C(x) and n = dim(J ). It is enough to only verify that 〈wi, x〉 ≥

0 for any i ∈ {1, · · · , n}. In fact, by (2.7) and taking wi =
∑r

j=1 θjλ
i
j(x)cj(x) with θj ≥ 0, we

have

〈wi, x〉 =
r
∑

j=1

θj(λ
i
j(x))2〈ci

j(x), ci
j(x)〉 ≥ 0,

where the equality and inequality follow from the definition of the Jordan frame and the fact
that {ci

1(x), ci
2(x), · · · , ci

r(x)} forms a Jordan frame of J . 2

When the set C(x) is singleton, i.e. the Jordan frame in the spectral decomposition of x is
unique, we have the following result.

Proposition 2.5 For x ∈ J , suppose that x = λ1(x)c1(x) + λ2(x)c2(x) + · · · + λr(x)cr(x) with
C(x) = {c1(x), c2(x), · · · , cr(x)}, and let Jij(x) be given by (2.5). Then Cone(x) is a polyhedral
cone in J , and for any w ∈ Cone(x), z ∈ Jij(x) with i 6= j, we have

〈w, x〉 ≥ 0, 〈w, z〉 = 0.

Furthermore, 〈w, v〉 ≥ 0 for all w, v ∈ Cone(x).

Proof. It is obvious from Theorem 3.52 in Rockafellar and Wets (2004) that Cone(x) is
a polyhedral cone. At the same time, it follows from (2.6) and the definition of Cone(x) that
〈w, z〉 = 0 for any w ∈ Cone(x) and z ∈ Jij(x)(i 6= j). Finally, it follows from Proposition 2.4
that 〈w, x〉 ≥ 0 for any w ∈ Cone(x). 2

We end this section with two fundamental concepts related to the mapping F : J → J . In
the sequel, we say that F is monotone if

〈x − y, F (x) − F (y)〉 ≥ 0, ∀ (x, y) ∈ J × J ,

and F is strongly monotone with modulus µ > 0 if

〈x − y, F (x) − F (y)〉 ≥ µ‖x − y‖2, ∀ (x, y) ∈ J × J .

3 Vector-Valued Implicit Lagrangian

In this section, we shall introduce the vector-valued implicit Lagrangian for complementarity
condition x ∈ K, y ∈ K, 〈x, y〉 = 0 of problem (1.1), and show mainly that it is a continuously
differentiable C-function for SCCP and whose Jacobian is strongly semismooth.

For any fixed α > 0 and α 6= 1, define the vector-valued implicit Lagrangian Φα : J ×J → J
as

Φα(x, y) := x ◦ y +
1

2α

{

[(x − αy)+]2 − x2 + [(y − αx)+]2 − y2
}

. (3.1)
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Notice that in the above definition, we do not let α = 1. This is because when α = 1, one has
for any x, y ∈ J ,

Φα(x, y) = x ◦ y +
1

2

{

[(x − y)+]2 − x2 + [(y − x)+]2 − y2
}

= x ◦ y +
1

2

{

[(x − y)+]2 − x2 + [(x − y)−]2 − y2
}

= x ◦ y +
1

2

{

(x − y)2 − x2 − y2
}

= 0,

where the second and third equalities come from (2.3) and (2.4).

It is clear that when J=Rn and K = Rn
+, the function Φα becomes the implicit Lagrangian

for NCP by Mangasarian and Solodov (1993) in the vector-valued form. So, the proposed
function is an extension of the previous one. To the best of our knowledge, this extension is
significant, since Φα also provide the first vector-valued implicit Lagrangian for SOCCP as well
as SDCP.

In order to built towards our main result, we first give some notations and lemmas. For any
fixed α > 0 and α 6= 1, let us define the function

Hα(x, y) := (x − αy)+, (x, y) ∈ J × J , (3.2)

i.e., Hα(x, y) is the closest point in K to the point (x − αy). Hence, it is the unique solution of
the following problem:

min
z∈K

〈αy, z − x〉 +
1

2
〈z − x, z − x〉. (3.3)

By using (3.2), we can define the vector-valued function

G(x, y, α) := −αy ◦ (Hα(x, y) − x) − 1

2
(Hα(x, y) − x)2. (3.4)

It is easy to observe that the function G generalizes fα given by (1.6) in the sense that fα(x) =
〈e,G(x, y, α)〉 for x, y ∈ Rn. So, we call it the vector-valued regularized gap function for SCCP.
The following proposition shows that the vector-valued implicit Lagrangian can be represented
as the difference of two vector-valued regularized gap functions, and has nice symmetry with
respect to α.

Proposition 3.1 Let 1 6= α > 0 and Φα(x, y), G(x, y, α) be given by (3.1) and (3.4) respectively.
Then,

Φα(x, y) =
1

α
G(x, y, α) − αG(x, y,

1

α
). (3.5)

Moreover, Φα(x, y) = −Φ 1
α

(x, y),∀x, y ∈ J .

We also call Φα the vector-valued D-gap function for SCCP.

Proof. By properties (2.3) and (2.4) of the projection,

(y − αx)+ + (y − αx)− = y − αx.

Hence, we have
(αx − y)+ = −(y − αx)− = (y − αx)+ − y + αx. (3.6)
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Combining (3.1)-(3.4) and (3.6), for any fixed α > 0 and α 6= 1, we obtain

1

α
G(x, y, α) − αG(x, y,

1

α
)

= −y ◦ [Hα(x, y) − x] − 1

2α
[Hα(x, y) − x]2

+y ◦ [H 1
α

(x, y) − x] +
α

2
[H 1

α

(x, y) − x]2

= −y ◦ [(x − αy)+ − x] − 1

2α
[(x − αy)+ − x]2

+y ◦ [
1

α
(αx − y)+ − x] +

α

2
[
1

α
(αx − y)+ − x]2

= −y ◦ [(x − αy)+ − x] − 1

2α
[(x − αy)+ − x]2

+y ◦
{

1

α
[(y − αx)+ − y + αx] − x

}

+
α

2

{

1

α
[(y − αx)+ − y + αx] − x

}2

= −y ◦ [(x − αy)+ − x] − 1

2α
[(x − αy)+ − x]2

+
1

α
y ◦ [(y − αx)+ − y] +

1

2α
[(y − αx)+ − y]2

= x ◦ y − y ◦ (x − αy)+ − 1

2α

[

(x − αy)2+ + x2 − 2x ◦ (x − αy)+
]

+
1

α
y ◦ (y − αx)+ − 1

α
y2 +

1

2α

[

(y − αx)2+ + y2 − 2y ◦ (y − αx)+
]

= x ◦ y +
1

2α

{

[(x − αy)+]2 − x2 + [(y − αx)+]2 − y2
}

= Φα(x, y),

where the first equality follows from (3.4); the second equality follows from (3.2) and (x− 1
α
y)+ =

1
α
(αx−y)+; the third equality holds by (3.6); the fourth and fifth equalities hold immediately by

direct calculation; finally, the second to last equality follows from the fact (x−αy)◦(x−αy)+ =
[(x − αy)+]2 by (2.4).

The second conclusion of the proposition is an obvious consequence of (3.5). 2

The following theorem tells us that the vector-valued implicit Lagrangian is a C-function for
SCCP.

Theorem 3.2 Let J be a Euclidean Jordan algebra of rank r, and K be the symmetric cone in
J . For x, y ∈ J , the following statements are equivalent:

(a) x ∈ K, y ∈ K, and x ◦ y = 0.

(b) Φα(x, y) = x ◦ y + 1
2α
{[(x − αy)+]2 − x2 + [(y − αx)+]2 − y2} = 0 for any 1 6= α > 0.

Proof “(a) ⇒ (b)”. Since (a) holds, the elements x, y operator commute by Proposition 2.3.
Thus, there is a Jordan frame {e1, e2, · · · , er} such that

x =
r
∑

i=1

xiei, y =
r
∑

i=1

yiei. (3.7)
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So, x ◦ y =
∑r

i=1 xiyiei, and (a) implies that xi ≥ 0, yi ≥ 0 and xiyi = 0 for all i = 1, 2, · · · , r.
Then for any fixed α > 0 and all i = 1, 2, · · · , r, we have (xi −αyi)+ = xi, (yi −αxi)+ = yi. This
implies from (3.7) that

(x − αy)+ =
r
∑

i=1

(xi − αyi)+ei =
r
∑

i=1

xiei = x, (3.8)

and

(y − αx)+ =
r
∑

i=1

(yi − αxi)+ei =
r
∑

i=1

yiei = y. (3.9)

Hence for any fixed α > 0,

Φα(x, y) = x ◦ y +
1

2α
{x2 − x2 + y2 − y2} = 0,

and (b) holds.

“(b) ⇒ (a)”. Suppose that Φα(x, y) = 0 for x, y ∈ J . Let us define g(x, y, α) to be the
negative of the optimal value of problem (3.3), i.e.,

g(x, y, α) := −〈αy,Hα(x, y) − x〉 − 1

2
〈Hα(x, y) − x,Hα(x, y) − x〉. (3.10)

By using (3.10), (3.4) and the properties of the Jordan product (see Section 2), we conclude

g(x, y, α) = −〈e, αy ◦ (Hα(x, y) − x)〉 − 1

2
〈e, (Hα(x, y) − x)2〉

= −〈e, αy ◦ (Hα(x, y) − x) +
1

2
(Hα(x, y) − x)2〉

= 〈e,G(x, y, α)〉. (3.11)

To proceed with the verification, we below discuss two cases.

Case 1: α > 1. In this case, since H 1
α

(x, y) ∈ K is a feasible solution of the closest point problem

(3.3), we have

g(x, y, α) ≥ −〈αy,H 1
α

(x, y) − x〉 − 1

2
〈H 1

α

(x, y) − x,H 1
α

(x, y) − x〉. (3.12)

By using (3.5), (3.11) and (3.12), direct calculation yields that for any fixed α > 1,

0 = 〈e,Φα(x, y)〉
= 〈e, 1

α
G(x, y, α) − αG(x, y, 1

α
)〉

= 1
α
g(x, y, α) − αg(x, y, 1

α
)

≥ 1
α

[

−〈αy,H 1
α

(x, y) − x〉 − 1
2〈H 1

α

(x, y) − x,H 1
α

(x, y) − x〉
]

+ α
[

〈 1
α
y,H 1

α

(x, y) − x〉 + 1
2〈H 1

α

(x, y) − x,H 1
α

(x, y) − x〉
]

= α2−1
2α

〈H 1
α

(x, y) − x,H 1
α

(x, y) − x〉
≥ 0.

(3.13)

This implies that for any fixed α > 1,

〈H 1
α

(x, y) − x,H 1
α

(x, y) − x〉 = 0.
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The desired conclusion follows immediately from (3.2) and Proposition 2.3 (d).

Case 2: 0 < α < 1. Similar to the proof of (3.12), we have for Hα(x, y) ∈ K,

g(x, y,
1

α
) ≥ −〈 1

α
y,Hα(x, y) − x〉 − 1

2
〈Hα(x, y) − x,Hα(x, y) − x〉,

from which we directly derive that for any fixed 0 < α < 1,

0 = 〈e,Φα(x, y)〉
= 1

α
g(x, y, α) − αg(x, y, 1

α
)

≤ 1
α

[

−〈αy,Hα(x, y) − x〉 − 1
2 〈Hα(x, y) − x,Hα(x, y) − x〉

]

+ α
[

〈 1
α
y,Hα(x, y) − x〉 + 1

2〈Hα(x, y) − x,Hα(x, y) − x〉
]

= α2−1
2α

〈Hα(x, y) − x,Hα(x, y) − x〉
≤ 0.

(3.14)

This implies that for any fixed α ∈ (0, 1),

〈Hα(x, y) − x,Hα(x, y) − x〉 = 0.

The desired conclusion follows.

Combining the above two cases, we complete the proof. 2

The function g given by (3.10) is actually a special case of the (real-valued) regularized gap
function in the setting of variational inequalities Fukushima (1992), and can be regarded as a
consequence of the vector-valued regularized gap function G given by (3.4).

It is well known that the implicit Lagrangian with α > 1 is nonnegative in the context of
NCP. So, it is natural to ask whether the vector-valued implicit Lagrangian Φα is in K or not.
Unfortunately, it fails to preserve this property, which is illustrated by the following example in
the setting of the 3-dimensional second-order cone (this also proves that such property does not
hold for Sn

+ with n ≥ 2).

Example. For any x = (x1, x2) and y = (y1, y2) in Rn (n > 1) with x1, y1 ∈ R, we define
the Jordan product of x and y as

x ◦ y =

(

x1

x2

)

◦
(

y1

y2

)

:=

(

〈x, y〉
x1y2 + y1x2

)

. (3.15)

As we know, (Rn, 〈·, ·〉, ◦) forms a Euclidean Jordan algebra denoted by Λn. In this algebra, the
second-order cone (SOC) Λn

+ is the cone of squares, i.e., Λn
+ = {x2 : x ∈ Λn} (see, e.g., Faraut

and Korányi 1994).

Let x = (1, 1, 0)T ∈ Λ3
+ and y = (1, 0, 1)T ∈ Λ3

+. Then direct calculation yields

x2 =







2
2
0






, y2 =







2
0
2






, x ◦ y =







1
1
1






, x − αy =







1 − α
1
−α






, y − αx =







1 − α
−α
1






.

By the spectral factorization and the definition of the projection (·)+, we have

(x − αy)+ =
1

2
(1 − α +

√

1 + α2)







1
1√

1+α2

−α√
1+α2






, (y − αx)+ =

1

2
(1 − α +

√

1 + α2)







1
−α√
1+α2

1√
1+α2







11



for any fixed α > 0 and α 6= 1. Therefore,

(x − αy)2+ + (y − αx)2+ = (α2 + 1 − α +
√

1 + α2(1 − α))







2
1−α√
1+α2

1−α√
1+α2






.

Taking α = 2, we obtain that

2αΦα = 2αx ◦ y + [(x − αy)+]2 + [(y − αx)+]2 − (x2 + y2)

=







4
4
4






+ (3 −

√
5)







2
− 1√

5

− 1√
5






−







4
2
2







=











6
√

5−10√
5

3
√

5−3√
5

3
√

5−3√
5











.

Obviously, Φα 6∈ Λ3
+ with α = 2 because (6

√
5 − 10)2 < 2(3

√
5 − 3)2. 2

In the rest of this section, we address the continuous differentiability of the vector-valued
implicit Lagrangian. The following lemma can be easily proved using the results on differen-
tiability and semismoothness of Löwner’s operator by Sun and Sun (2008); hence its proof is
omitted.

Lemma 3.3 Let x, y ∈ J . Then the functions x, x2, xµ(µ ≥ 3), x2
+ and x ◦ y are continuously

differentiable. Moreover,

(1) (x)′ = L(e);

(2) (x ◦ x)′ = 2L(x);

(3) (x ◦ y)′ = (L(y) L(x));

(4) (x+ ◦ x+)′e = 2L(x+)e;

(5) (xk)′e = kL(xk−1)e for k ∈ R, where x0 := e.

Remark. It is appropriate to point out that in general, (i) (x+ ◦ x+)′ 6= 2L(x+); (ii)
(xµ)′ 6= µL(xµ−1) for µ ≥ 3. They are verified as follows.

Part (i): Consider the second-order cone Λ3
+. Let x̄ = (0, 0,

√
2)T ∈ Λ3. By the spectral

factorization and the definition of the projection (·)+, we have

x̄ =

√
2

2







1
0
1






+ (−

√
2

2
)







1
0
−1






, x̄+ =

√
2

2







1
0
1






. (3.16)

That is, the eigenvalues of x̄ are λ1 =
√

2 and λ2 = −
√

2, and the corresponding Jordan frame
is {c1, c2} with c1 = 1

2(1, 0, 1)T , c2 = 1
2(1, 0,−1)T . Note that for x = (x1, x2, x3)

T ∈ Λ3, the
corresponding Lyapunov transformation is

L(x) =







x1 x2 x3

x2 x1 0
x3 0 x1






.
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Thus, we have

L(x̄+) =









√
2

2 0
√

2
2

0
√

2
2 0√

2
2 0

√
2

2









.

Taking h̄ = (1, 1, 0)T , we obtain

2L(x̄+)h̄ = 2









√
2

2 0
√

2
2

0
√

2
2 0√

2
2 0

√
2

2















1
1
0






=







√
2√
2√
2






. (3.17)

At the same time, for h̄ = (1, 1, 0)T , using Theorem 13 in Sun and Sun (2008) with q(t) = t2+
we compute

(x+ ◦ x+)′h̄ =
2
∑

j=1

(q[1](λ(x)))jj
〈cj , h̄〉
‖cj‖2

cj +
∑

1≤j<l≤2

4(q[1](λ(x)))jlcj ◦ (cl ◦ h̄)

= 2(λ1)+
〈c1, h̄〉
‖c1‖2

c1 + 4(q[1](λ(x)))1,2 c1 ◦ (c2 ◦ h̄)

= 2(
√

2)
1

2







1
0
1






+ 4

(
√

2)2 − 0√
2 − (−

√
2)

1

2







1
0
1






◦







1

2







1
0
−1






◦







1
1
0













=
√

2







1
0
1






+

1√
2







1
0
1






◦







1
1
−1






=







√
2

1√
2√
2






.

This together with (3.17) shows that (x+ ◦ x+)′h̄ 6= 2L(x+)h̄.

Part (ii): We first claim that generally

L(x)L(x) 6= L(x2), for x ∈ J . (3.18)

In the same setting as Part (i), we have h̄2 = (2, 2, 0)T and then

L(h̄) =







1 1 0
1 1 0
0 0 1






, L(h̄2) =







2 2 0
2 2 0
0 0 2






.

Therefore, direct calculation yields

L(h̄)L(h̄) =







1 1 0
1 1 0
0 0 1













1 1 0
1 1 0
0 0 1






=







2 2 0
2 2 0
0 0 1






6= L(h̄2).

When µ = 3, we compute

(x + ∆x)3 − x3 = (x2 + 2x ◦ ∆x + (∆x)2) ◦ (x + ∆x) − x3

= x2 ◦ ∆x + 2(x ◦ ∆x) ◦ x + 2(x ◦ ∆x) ◦ ∆x + (∆x)2 ◦ (x + ∆x)

= L(x2)∆x + 2L(x)L(x)∆x + o(‖∆x‖).

This along with (3.18) means that in general, (x3)′ = L(x2) + 2L(x)L(x) 6= 3L(x2).
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Theorem 3.4 Let Φα(x, y) be defined by (3.1). Then Φα(x, y) is continuously differentiable at
any (x, y) ∈ J × J and has the following strongly semismooth Jacobian:

Φ′
α(x, y) = (∇T

x Φα(x, y),∇T
y Φα(x, y)), (3.19)

where

∇T
x Φα(x, y)e =

{

L(y) +
1

α
[L((x − αy)+) − L(x) − αL((y − αx)+)]

}

e

= y +
1

α
[(x − αy)+ − x − α(y − αx)+]

and

∇T
y Φα(x, y)e =

{

L(x) +
1

α
[L((y − αx)+) − L(y) − αL((x − αy)+)]

}

e

= x +
1

α
[(y − αx)+ − y − α(x − αy)+].

Proof. The desired result follows immediately from Lemma 3.3 and the strong semismooth-
ness of (x)+ (see Sun and Sun 2008). 2

Replacing the complementarity condition by Φα(x, y) = 0, we can obtain a smooth equation
reformulation of problem (1.1):

Θ(x, y) :=

[

Φα(x, y)
y − F (x)

]

= 0. (3.20)

It has the following Jacobian operator:

Θ′(x, y) =

(

∇T
x Φα(x, y) ∇T

y Φα(x, y)

−F ′(x) I

)

.

Note that the Jacobian Θ′(x, y) may be singular at each solution of problem (1.1). Therefore, a
direct application of Newton’s method for the equation (3.20) might have serious difficulties near
a solution. However, we may use other numerical methods for (3.20), such as the Gauss-Newton
method, the hybrid Newton-type method etc.. These methods all need a proper function to
measure how far Φα(x, y) is away from the origin. So, it is necessary to develop a real-valued
implicit Lagrangian induced by the vector-valued implicit Lagrangian for SCCP.

4 Real-Valued Implicit Lagrangian

As an application of the proposed vector-valued implicit Lagrangian, we construct in this section
a real-valued implicit Lagrangian for the complementarity condition of problem (1.1), and show
that it is a continuously differentiable merit function for SCCP. Although some results (Theorems
4.1 and 4.3 below) are the special cases of Proposition 2.2 in Tseng, Yamashita and Fukushima
(1996), here we take advantage of the Jordan algebra structure. For completeness, we have
included the proofs.

For any fixed α > 0 and α 6= 1, by using the D-gap function Φα given by (3.1), we define
the real-valued implicit Lagrangian ϕα : J × J → R by

ϕα(x, y) := 〈e,Φα(x, y)〉, (4.1)
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which, by simple Jordan product operation, can be rewritten as

ϕα(x, y) = 〈x, y〉 +
1

2α
{||(x − αy)+||2 − ||x||2 + ||(y − αx)+||2 − ||y||2}. (4.1)′

From (3.5) and (3.11), we also conclude that

ϕα(x, y) = 〈e, 1

α
G(x, y, α) − αG(x, y,

1

α
)〉 =

1

α
g(x, y, α) − αg(x, y,

1

α
). (4.2)

Observing the proof of Theorem 3.2, we know from (3.13) and (3.14) that the following theorem
has been proved.

Theorem 4.1 Let J be a Euclidean Jordan algebra of rank r, K be the symmetric cone in J .
Then for x, y ∈ J , ϕα(x, y) ≥ 0 if α > 1; ϕα(x, y) ≤ 0 if 0 < α < 1. Moreover, the following
statements are equivalent:

(a) x ∈ K, y ∈ K, and x ◦ y = 0.

(b) ϕα(x, y) = 〈e,Φα(x, y)〉 = 0, α > 0, α 6= 1.

Thus, ϕα is a merit function for SCCP, which is also called the real-valued D-gap function
for SCCP. It is easily seen from (4.1) and (4.2) that when J=Rn and K = Rn

+, the proposed
function becomes the well-known implicit Lagrangian introduced by Mangasarian and Solodov
(1993) as a merit function for NCP. When J=Sn and K = Sn

+, the proposed function becomes
the well-known implicit Lagrangian proposed by Tseng (1998) as a merit function for SDCP.
So, our function gives a unified generalization for such a class of merit functions.

The following lemma shows that the differentiability of the real-valued implicit Lagrangian
depends on that of the vector-valued implicit Lagrangian.

Lemma 4.2 Let ϕα : J × J → R be defined by (4.1). Then, it is a continuously differentiable
function, and its gradient is given by

∇ϕα(x, y) = Φ′
α(x, y)T e. (4.3)

Proof. Noting that ϕα(x, y) is a composition of two functions 〈e, z〉 and z := Φα(x, y), the
desired result follows immediately from Theorem 3.4. 2

Combining this lemma with (3.19), we have

∇ϕα(x, y) :=

(

∇xϕα(x, y)
∇yϕα(x, y)

)

=

(

y + 1
α
[(x − αy)+ − x − α(y − αx)+]

x + 1
α
[(y − αx)+ − y − α(x − αy)+]

)

. (4.3)′

Employing the gradient of ϕα, we now present another equivalent reformulation of the comple-
mentarity condition.

Theorem 4.3 Let ϕα : J × J → R be given by (4.1). Then, the following statements are
equivalent:

(a) x ∈ K, y ∈ K, and x ◦ y = 0.

(b) ∇ϕα(x, y) = 0.
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Proof. “(a) ⇒ (b)” As in the proof of Theorem 3.2, we have (3.8) and (3.9), and hence from
(4.3)′,

∇ϕα(x, y) =

(

y + 1
α
[x − x − αy]

x + 1
α
[y − y − αx]

)

= 0.

“(b) ⇒ (a)” Since ∇ϕα(x, y) = 0, by using (4.3)′ we have

y +
1

α
[(x − αy)+ − x − α(y − αx)+] = 0,

x +
1

α
[(y − αx)+ − y − α(x − αy)+] = 0.

That is,
(x − αy)+ − x + αy = α(y − αx)+, (4.4)

−α(x − αy)+ + αx − y = −(y − αx)+. (4.5)

Combining (4.4) with (4.5), we obtain that (1− α2)[(x − αy)+ − x] = 0. Noting that α > 0 and
α 6= 1, we have x − (x − αy)+ = 0. The desired conclusion follows from Proposition 2.3 (d). 2

Furthermore, we can obtain the following interesting properties of the real-valued implicit
Lagrangian. They will be used in the unconstrained stationary point analysis in the next section.

Proposition 4.4 For all x, y ∈ J , we have the following:

(1) 〈∇xϕα(x, y),∇yϕα(x, y)〉 ≥ 0;

(2) 〈∇xϕα(x, y),∇yϕα(x, y)〉 = 0 ⇔ ∇ϕα(x, y) ◦ ∇yϕα(x, y) = 0;

(3) ∇xϕα(0, y) = 0;

(4) ∇yϕα(0, y) ∈ (−K) if α > 1; ∇yϕα(0, y) ∈ K if 0 < α < 1.

Proof. Part (1): By (4.3)′, direct calculation yields

〈∇xϕα(x, y),∇yϕα(x, y)〉

=
1

α2
〈(x − αy)+ − x + αy − α(y − αx)+,−α(x − αy)+ + αx − y + (y − αx)+〉

=
1

α2
〈−(x − αy)− − α(y − αx)+,−α(x − αy)+ − (y − αx)−〉

=
1

α2
[〈−(x − αy)−,−(y − αx)−〉] + 〈(y − αx)+, (x − αy)+〉

≥ 0,

where the first equality follows from (4.3)′; the second equality follows from x − αy = (x −
αy)+ + (x−αy)− and y −αx = (y −αx)+ + (y −αx)− by (2.4); the third equality follows from
〈(x − αy)+, (x − αy)−〉 = 0 and 〈(y − αx)+, (y − αx)−〉 = 0; finally, the inequality follows from
the definition of the symmetric cone.

Part (2): Suppose that ∇ϕα(x, y) ◦ ∇yϕα(x, y) = 0. Then taking the inner product of both
sides with the identity element e gives

0 = 〈e,∇xϕα(x, y) ◦ ∇yϕα(x, y)〉 = 〈∇xϕα(x, y),∇yϕα(x, y)〉.

Conversely, suppose that 〈∇xϕα(x, y),∇yϕα(x, y)〉 = 0. Then from the proof of Part (1), we
obtain

〈−(x − αy)−,−(y − αx)−〉 = 0, 〈(y − αx)+, (x − αy)+〉 = 0.
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Since −(x− αy)− ∈ K, −(y − αx)− ∈ K, (y − αx)+ ∈ K, (x − αy)+ ∈ K, from Proposition 2.3
we derive immediately that

[−(x − αy)−] ◦ [−(y − αx)−] = 0, (y − αx)+ ◦ (x − αy)+ = 0.

Thus, the direct calculation yields ∇ϕα(x, y) ◦ ∇yϕα(x, y) = 0.

Part (3): It follows from (4.3)′ that

∇xϕα(0, y) = y +
1

α
[(−αy)+ − αy+]

= y + [(−y)+ − y+]

= y + [−y− − y+]

= 0,

where the second equality follows from α > 0 and (2.3); the third equality follows from (−y)+ =
−y−; and the last equality follows from (2.4).

Part (4): Using a similar way as in Part (3), we obtain

∇yϕα(0, y) = 0 +
1

α
[y+ − y − α(−αy)+]

=
1

α
[−y− + α2y−]

=
1

α
(α2 − 1)y−.

The desired result follows immediately from y− ∈ (−K) by (2.3), and α > 1 or 0 < α < 1. 2

In the setting of NCP, from Lemma 2.2 in Facchinei and Kanzow (1997) we know that
∇ϕα(x, y) ◦∇yϕα(x, y) ≥ 0. However, the following example shows that this statement can not
be generalized to the setting of SCCP.

Consider the 4-dimensional second-order cone Λ4
+. Let x = (2, 1, 1, 1)T ∈ Λ4

+ and y =
(2, 1, 1, 0)T ∈ Λ4

+ and α = 2. Then direct calculation yields

x − 2y =











−2
−1
−1
1











∈ (−Λ4
+),

y − 2x =











−2
−1
−1
−2











=
1

2
(−2 +

√
6)













1
−1√

6
−1√

6
−2√

6













+
1

2
(−2 −

√
6)













1
1√
6

1√
6

2√
6













.

Furthermore, modelling on the proof of Part (2) in Proposition 4.4 we compute

(α∇xϕα) ◦ (α∇yϕα) = α2∇xϕα ◦ ∇yϕα

= (x − αy)− ◦ (y − αx)− + α2(x − αy)+ ◦ (y − αx)+

=











−2
−1
−1
1











◦ 1

2
(−2 −

√
6)













1
1√
6

1√
6

2√
6













+ 0
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=
2 +

√
6

2
√

6











2
√

6

2 +
√

6

2 +
√

6

4 −
√

6











.

Clearly, ∇xϕα ◦ ∇yϕα 6∈ Λ4
+. The desired claim follows. 2

In view of Theorem 4.3 and Proposition 4.4, we can derive a further equivalence result for
the complementarity condition of problem (1.1).

Theorem 4.5 Let ϕα : J × J → R be given by (4.1). Then, the following statements are
equivalent:

(a) x ∈ K, y ∈ K, and x ◦ y = 0.

(b) ∇xϕα(x, y) + ∇yϕα(x, y) = 0.

Proof. “(a) ⇒ (b)” It is obvious from Theorem 4.3.

“(b) ⇒ (a)” Given (b). Suppose on the contrary that ∇xϕα(x, y) 6= 0. From (b) and
Proposition 4.4 (1), we have

0 = 〈∇xϕα(x, y),∇xϕα(x, y)〉 + 〈∇xϕα(x, y),∇yϕα(x, y)〉
≥ 〈∇xϕα(x, y),∇xϕα(x, y)〉 + 0

> 0,

a contradiction. So,∇xϕα(x, y) = 0, and hence ∇yϕα(x, y) = 0. 2

Define the function L(x, y) := ∇xϕα(x, y) + ∇yϕα(x, y). Then from Theorem 4.5 we know
that L(x, y) is a nonsmooth C-function for SCCP. Letting L(x, y) equal zero and replacing y by
F (x) with LC1 property (i.e., F is continuously differentiable and the Jacobian of F is locally
Lipschitz), by a simple calculation and Proposition 15 of Sun and Sun (2008), we obtain a
strongly semismooth equation:

[

(x − αF (x))+ − (x − 1

α
F (x))+

]

+

[

(F (x) − αx)+ − (F (x) − 1

α
x)+

]

= 0 (4.6)

for α ∈ (0, 1) or α ∈ (1,∞). It is an equivalent reformulation of problem (1.1), and has elegant
symmetry with respect to α, x and F (x). By using this equation we can design some iterative
methods of the form

xnew := x −
{[

(x − αF (x))+ − (x − 1

α
F (x))+

]

+

[

(F (x) − αx)+ − (F (x) − 1

α
x)+

]}

,

where α ∈ (0, 1) or α ∈ (1,∞) is some suitably chosen stepsize. Generally, such methods are
first-order methods and may be appropriate for solving large-scale problems.

5 Unconstrained Stationary Points

In this section, for simplicity we always assume that α > 1 is arbitrary but fixed. If y is replaced
by F (x) in the function ϕα, then we get a composed function

M(x, α) := ϕα(x, F (x)), x ∈ J .
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From Theorem 4.1, we know that M(x, α) ≥ 0 for any x ∈ J , and x∗ solves problem (1.1) if
and only if M(x∗, α) = 0. In other words, M(x, α) is a merit function for problem (1.1). Based
on this, we have an unconstrained reformulation of problem (1.1)

min
x∈J

M(x, α), (5.1)

where α > 1 is a parameter. Of course, α may be treated as a variable in (1,∞) if necessary. In
general, we are only able to find the stationary points of problem (5.1). An interesting question
is the following: Under what assumptions is a stationary point of M(x, α) a solution of problem
(1.1)? In this section, we address the issue by giving a necessary and sufficient condition for a
stationary point of M(x, α) to be a global solution of problem (5.1), and hence a solution of
problem (1.1). We also show that this new condition easily allows us to establish some sufficient
conditions.

We suppose in this section that F is continuously differentiable at any x ∈ J . In this case,
the function M(x, α) is also continuously differentiable and its gradient at x ∈ J can be written
as

∇M(x, α) = ∇xϕα(x, F (x)) + F ′(x)T∇yϕα(x, F (x)). (5.2)

From Theorems 4.1 and 4.3, we readily derive the following theorem.

Theorem 5.1 Let F be continuously differentiable and x∗ ∈ J be a stationary point of M(x, α).
Then, x∗ is a solution of problem (1.1) if and only if

∇yϕα(x∗, F (x∗)) = 0.

Proof. Assume that x∗ solves problem (1.1). It is immediate from Theorems 4.1 and 4.3
that ∇yϕα(x∗, F (x∗)) = 0.

Conversely, suppose that ∇yϕα(x∗, F (x∗)) = 0. Since x∗ is a stationary point of M(x, α), we
get from (5.2):

∇xϕα(x∗, F (x∗)) + F ′(x∗)T∇yϕα(x∗, F (x∗)) = 0.

Thus, ∇xϕα(x∗, F (x∗)) = 0. Furthermore, we have

∇ϕα(x∗, F (x∗)) =

(

∇xϕα(x∗, F (x∗))
∇yϕα(x∗, F (x∗))

)

= 0.

This implies by Theorem 4.3 that x∗ is a solution of problem (1.1). 2

As done in Facchinei and Kanzow (1997) for NCP, we next give the definition of a regular
point with respect to the merit function M(x, α), which needs to apply the properties of cone
of a point given by Section 2, and will be central in the subsequent analysis.

Definition 5.2 A point x∗ ∈ J is called a regular point with respect to the merit function
M(x, α) if, for every nonzero vector z ∈ ri(Cone(∇yϕα(x∗, F (x∗))))

⋂

(∇xϕα(x∗, F (x∗)))∗, there
exists a nonzero vector

ω ∈ Cone(∇yϕα(x∗, F (x∗)))
⋂

(∇xϕα(x∗, F (x∗)))∗

such that
〈ω,F ′(x∗)T z〉 > 0, (5.3)

where ri(C) denotes the relative interior of a set C in J , and (∇xϕα(x∗, F (x∗)))∗ = {z ∈ J :
〈z,∇xϕα(x∗, F (x∗))〉 ≥ 0} is the dual cone.
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When J=Rn and K = Rn
+, this definition is consistent with that of a regular point for

NCP introduced by Facchinei and Kanzow (1997). It follows from Lemma 2.2 in Facchinei and
Kanzow (1997) that

Cone(∇yϕα(x∗, F (x∗)))
⋂

(∇xϕα(x∗, F (x∗)))∗ = Cone(∇yϕα(x∗, F (x∗)))

= {z ∈ Rn : zℓ = 0, z℘ ≥ 0, zℑ ≤ 0},

where the index sets ℓ, ℘,ℑ are a partition of the index set {1, · · · , n} as in Facchinei and Kanzow
(1997). Thus,

ri(Cone(∇yϕα(x∗, F (x∗))))
⋂

(∇xϕα(x∗, F (x∗)))∗ = ri(Cone(∇yϕα(x∗, F (x∗))))

= {z ∈ Rn : zℓ = 0, z℘ > 0, zℑ < 0}.

These conditions are the same as in Definition 3.1 of Facchinei and Kanzow (1997). So, ours is
a generalization of the previous one.

In the context of second-order cone Λn
+, the set Cone(∇yϕα(x∗, F (x∗)))

⋂

(∇xϕα(x∗, F (x∗)))∗

can be specified as follows (we partition the cases with respect to the signs of the eigenvalues of
∇yϕα(x∗, F (x∗)), without loss of generality, λ1 ≥ λ2):

Case 1:

λ (∇yϕα(x∗, F (x∗))) ∈
{(

−
−

)

,

(

+
+

)}

. Then ∇yϕα(x∗, F (x∗)) ∈ intΛn
+

⋃

(−intΛn
+).

Without loss of generality, let ∇yϕα(x∗, F (x∗)) ∈ intΛn
+. By (4.3)′,

∇yϕα(x∗, F (x∗)) =
1

α
(αx∗ − F (x∗))+ − (x∗ − αF (x∗))+.

Thus
1

α
(αx∗ − F (x∗))+ = ∇yϕα(x∗, F (x∗)) + (x∗ − αF (x∗))+ ∈ intΛn

+.

This implies αx∗ − F (x∗) ∈ intΛn
+. Hence (αx∗ − F (x∗))− = (F (x∗) − αx∗)+ = 0. By (4.3)′,

∇xϕα(x∗, F (x∗)) =
1

α
(αF (x∗) − x∗)+ − (F (x∗) − αx∗)+ =

1

α
(αF (x∗) − x∗)+ ∈ Λn

+.

Then Λn
+ ⊆ (∇xϕα(x∗, F (x∗)))∗. Also, in this case, we have Cone(∇yϕα(x∗, F (x∗))) ⊆ Λn

+. So,
we obtain Cone(∇yϕα(x∗, F (x∗)))

⋂

(∇xϕα(x∗, F (x∗)))∗ = Cone(∇yϕα(x∗, F (x∗))).

Case 2:

λ (∇yϕα(x∗, F (x∗))) ∈
{(

0
−

)

,

(

0
0

)

,

(

+
0

)}

. Then ∇yϕα(x∗, F (x∗)) ∈ ∂Λn
+

⋃

(−∂Λn
+).

Clearly, Cone(∇yϕα(x∗, F (x∗))) is either a closed half-line, {δ∇yϕα(x∗, F (x∗)) : δ ≥ 0}, if
∇yϕα(x∗, F (x∗)) 6= 0 or a singleton, {0}, if ∇yϕα(x∗, F (x∗)) = 0. Therefore, by Proposition 4.4,
part (1), we obtain that Cone(∇yϕα(x∗, F (x∗)))

⋂

(∇xϕα(x∗, F (x∗)))∗ = Cone(∇yϕα(x∗, F (x∗))).

Case 3:

λ (∇yϕα(x∗, F (x∗))) ∈
{(

+
−

)}

. Then we have ∇yϕα(x∗, F (x∗)) 6∈ Λn
+

⋃

(−Λn
+).
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We apply a spectral decomposition and write

∇yϕα(x∗, F (x∗)) = λ1e1 + λ2e2,

where two eigenvalues λ1 > 0 > λ2 are unique and {e1, e2} is the corresponding unique Jordan
frame. It is easy to see that

Cone(∇yϕα(x∗, F (x∗))) = {θ1e1 − θ2e2 : θ1, θ2 ≥ 0}.

Note that

〈∇yϕα(x∗, F (x∗)),∇xϕα(x∗, F (x∗))〉 = λ1〈e1,∇yϕα(x∗, F (x∗))〉 + λ2〈e2,∇xϕα(x∗, F (x∗))〉 ≥ 0.

We need only to consider the following three subcases:

Subcase 3.1: 〈∇xϕα(x∗, F (x∗)), e1〉 ≥ 0 and 〈∇xϕα(x∗, F (x∗)), e2〉 ≤ 0. Clearly, for any
θ1, θ2 ≥ 0 we have 〈∇xϕα(x∗, F (x∗)), θ1e1 − θ2e2〉 ≥ 0. Thus, we have

Cone(∇yϕα(x∗, F (x∗)))
⋂

(∇xϕα(x∗, F (x∗)))∗ = Cone(∇yϕα(x∗, F (x∗))).

Subcase 3.2: 〈∇xϕα(x∗, F (x∗)), e1〉 > 0 and 〈∇xϕα(x∗, F (x∗)), e2〉 > 0. Clearly, letting

λ0 :=
〈∇xϕα(x∗, F (x∗)), e1〉
〈∇xϕα(x∗, F (x∗)), e2〉

(5.4)

we easily verify that λ0 > 0 and 〈∇xϕα(x∗, F (x∗)), e1 − λ0e2〉 = 0. Thus, we obtain that in this
subcase

Cone(∇yϕα(x∗, F (x∗)))
⋂

(∇xϕα(x∗, F (x∗)))∗ = {θ1e1 + θ2(e1 − λ0e2) : θ1, θ2 ≥ 0}.

Subcase 3.3: 〈∇xϕα(x∗, F (x∗)), e1〉 < 0 and 〈∇xϕα(x∗, F (x∗)), e2〉 < 0. Similar to Subcase
3.2, letting λ0 be specified by (5.4), we obtain that λ0 > 0 and

Cone(∇yϕα(x∗, F (x∗)))
⋂

(∇xϕα(x∗, F (x∗)))∗ = {θ1e2 + θ2(e1 − λ0e2) : θ1, θ2 ≥ 0}.

Furthermore, for the multiple SOCs Kn
+ ⊂ Rn as Kn := Λn1 × Λn2 × · · · × Λnm and Kn

+ :=
Λn1

+ × Λn2
+ × · · · × Λnm

+ with n = n1 + n2 + · · · + nm, we have

x ◦ F (x) = (x(1) ◦ F (1)(x), x(2) ◦ F (2)(x), · · · , x(m) ◦ F (m)(x))T , 〈x, F (x)〉 =
m
∑

ν=1

〈x(ν), F (ν)(x)〉

where x = (x(1), x(2), · · · , x(m))T and F (x) = (F (1)(x), F (2)(x), · · · , F (m)(x))T with x(ν) ∈ Λnν

and F (ν)(x) ∈ Λnν for ν ∈ {1, 2, · · · ,m}. The function ϕα(x, F (x)) can be written as

ϕα(x, F (x)) =
m
∑

ν=1

ϕ(ν)
α (x(ν), F (ν)(x)).

The gradients of ϕα become respectively

∇xϕα(x, F (x)) = (∇x(1)ϕ(1)
α (x(1), F (1)(x)), · · · ,∇x(m)ϕ(m)

α (x(m), F (m)(x)))T

and
∇yϕα(x, F (x)) = (∇y(1)ϕ(1)

α (x(1), F (1)(x)), · · · ,∇y(m)ϕ(m)
α (x(m), F (m)(x)))T .
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Thus we have

Cone(∇yϕα(x∗, F (x∗))) = Cone(∇y(1)ϕα(x∗(1), F (1)(x∗)))×· · ·×Cone(∇y(m)ϕα(x∗(m), F (m)(x∗))),

and

(∇xϕα(x∗, F (x∗)))∗ = (∇x(1)ϕα(x∗(1), F (1)(x∗)))∗ × · · · × (∇x(m)ϕα(x∗(m), F (m)(x∗)))∗.

Therefore, we obtain that

Cone(∇yϕα(x∗, F (x∗)))
⋂

(∇xϕα(x∗, F (x∗)))∗

= Cone(∇y(1)ϕα(x∗(1), F (1)(x∗)))
⋂

(∇x(1)ϕα(x∗(1), F (1)(x∗)))∗

× · · · × Cone(∇y(m)ϕα(x∗(m), F (m)(x∗)))
⋂

(∇x(m)ϕα(x∗(m), F (m)(x∗)))∗.

From the same arguments as in the single SOC (Cases 1-3), we easily obtain that for ν ∈
{1, 2, · · · ,m}, the set Cone(∇y(ν)ϕα(x∗(ν), F (ν)(x∗)))

⋂

(∇x(ν)ϕα(x∗(ν), F (ν)(x∗)))∗ has the similar

form corresponding to the signs of eigenvalues of ∇y(ν)ϕα(x∗(ν), F (ν)(x∗)) in Λnν .

We are now in position to prove the main result of this section.

Theorem 5.3 Let F be continuously differentiable and x∗ ∈ J be a stationary point of M(x, α).
Then, x∗ solves problem (1.1) if and only if x∗ is regular.

Proof. Suppose that x∗ ∈ J is a solution of problem (1.1). Then by Theorem 5.1,
we have Cone(∇yϕα(x∗, F (x∗))) = {0}. Therefore, there is no nonzero vector satisfying z ∈
ri(Cone(∇yϕα(x∗, F (x∗))))

⋂

(∇xϕα(x∗, F (x∗)))∗.

Conversely, we observe that (5.2) holds since x∗ is a stationary point of M(x, α). So, for any
ω ∈ J ,

〈ω,∇xϕα(x∗, F (x∗)) + F ′(x∗)T∇yϕα(x∗, F (x∗)〉 = 0. (5.5)

Suppose that x∗ is not a solution of problem (1.1). Then by Theorem 5.1, ∇yϕα(x∗, F (x∗))
is a nonzero vector. Setting z := ∇yϕα(x∗, F (x∗)), by Propositions 2.4 and 4.4, we have z ∈
ri(Cone(∇yϕα(x∗, F (x∗))))

⋂

(∇xϕα(x∗, F (x∗)))∗. Since x∗ is regular, by Definition 5.2, there is
a nonzero vector

ω∗ ∈ Cone(∇yϕα(x∗, F (x∗)))
⋂

(∇xϕα(x∗, F (x∗)))∗

such that
〈ω∗, F ′(x∗)T∇yϕα(x∗, F (x∗)〉 = 〈ω∗, F ′(x∗)T z〉 > 0.

In addition, from the definition of dual cone, we obtain

〈ω∗,∇xϕα(x∗, F (x∗))〉 ≥ 0.

Thus,

〈ω∗,∇xϕα(x∗, F (x∗)) + F ′(x∗)T∇yϕα(x∗, F (x∗)〉
= 〈ω∗,∇xϕα(x∗, F (x∗))〉 + 〈ω∗, F ′(x∗)T∇yϕα(x∗, F (x∗)〉
> 0.

This is a contradiction to (5.5), and hence x∗ solves problem (1.1). 2
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We end this section with the following corollary which gives a sufficient condition for a
stationary point to be a solution of problem (1.1).

Corollary 5.4 Let F be continuously differentiable and x∗ ∈ J be a stationary point of M(x, α).
If the Jacobian F ′(x∗) is positive definite, then x∗ is a regular solution of problem (1.1).

Proof. In view of Theorem 5.3, it suffices to show that x∗ is regular. Let z ∈ J be
any nonzero vector in the set ri(Cone(∇yϕα(x∗, F (x∗))))

⋂

(∇xϕα(x∗, F (x∗)))∗, then by taking
ω = z, one has

ω ∈ Cone(∇yϕα(x∗, F (x∗)))
⋂

(∇xϕα(x∗, F (x∗)))∗

Since, by assumption, F ′(x∗) and therefore also F ′(x∗)T is positive definite, we have

〈ω,F ′(x∗)T z〉 = 〈z, F ′(x∗)T z〉 > 0.

So, x∗ is a regular point. 2

In the setting of NCP, this corollary reduces to the result by Yamashita and Fukushima
(1995). In next section we shall develop another sufficient condition which generalizes Corollary
5.4.

6 Cartesian P-property and Error Bound

We first recall the structure theorems of a Euclidean Jordan algebra, i.e., Propositions III.4.4
and III.4.5, Theorem V.3.7 in Faraut and Korányi (1994). From these results we know that for
a given Euclidean Jordan algebra J and the corresponding symmetric cone K, we have

J = J1 × J2 × · · · × Jm and K = K1 × K2 × · · · × Km,

where each nν-dimensional space Jν is a simple Jordan algebra (which is not the direct sum of
two Euclidean Jordan algebras) with the corresponding symmetric cone Kν , and n =

∑m
ν=1 nν .

Moreover, for x = (x(1), x(2), · · · , x(m))T and y = (y(1), y(2), · · · , y(m))T in J with x(ν), y(ν) ∈ Jν ,
one also has

x ◦ y = (x(1) ◦ y(1), x(2) ◦ y(2), · · · , x(m) ◦ y(m))T

and

〈x, y〉 =
m
∑

ν=1

〈x(ν), y(ν)〉.

Therefore, the complementarity condition of problem (1.1) is equivalent to

x(ν) ∈ Kν , y(ν) ∈ Kν , x(ν) ◦ y(ν) = 0 (6.1)

for each ν ∈ {1, 2, · · · ,m}. The functions Φα(x, y) and ϕα(x, y) can be written as

Φα(x, y) = (Φ(1)
α (x(1), y(1)),Φ(2)

α (x(2), y(2)), · · · ,Φ(m)
α (x(m), y(m)))T

and

ϕα(x, y) =
m
∑

ν=1

ϕ(ν)
α (x(ν), y(ν)) =

m
∑

ν=1

〈e(ν),Φ(ν)
α (x(ν), y(ν))〉,
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respectively. The gradients of ϕα with respect to x and y become respectively

∇xϕα(x, y) = (∇x(1)ϕ(1)
α (x(1), y(1)), · · · ,∇x(m)ϕ(m)

α (x(m), y(m)))T

and
∇yϕα(x, y) = (∇y(1)ϕ(1)

α (x(1), y(1)), · · · ,∇y(m)ϕ(m)
α (x(m), y(m)))T .

It is easy to verify that all the results in Sections 3 and 4 hold in the setting of Jordan algebra
Jν , such as the inequality

〈∇x(ν)ϕ(ν)
α (x(ν), y(ν)),∇y(ν)ϕ(ν)

α (x(ν), y(ν))〉 ≥ 0 (6.2)

holds for each ν ∈ {1, 2, · · · ,m}; see Proposition 4.4(1).

Motivated by P -properties on Cartesian products in Rn established by Facchinei and Pang
(2003) and Cartesian P -properties in the setting of Sn developed by Chen and Qi (2006), we
introduce the concept of Cartesian P-property for the nonlinear transformation F in the setting
of Jordan algebra.

Definition 6.1 For a mapping F : J → J with J given by the form of Cartesian products, we
say that it has

(i) the Cartesian P -property if for any pair x, y ∈ J (x 6= y), there exists an index ν ∈
{1, 2, · · · ,m} such that

〈(x − y)(ν), (F (x) − F (y))(ν)〉 > 0;

(ii) the uniform Cartesian P -property if for any pair x, y ∈ J (x 6= y), there exist an index
ν ∈ {1, 2, · · · ,m} and a positive scalar ρ such that

〈(x − y)(ν), (F (x) − F (y))(ν)〉 ≥ ρ‖x − y‖2;

(iii) the Cartesian P0-property if for any pair x, y ∈ J (x 6= y), there exists an index
ν ∈ {1, 2, · · · ,m} such that

x(ν) 6= y(ν) and 〈(x − y)(ν), (F (x) − F (y))(ν)〉 ≥ 0.

It is easy to observe that when m = 1, the (uniform) Cartesian (P )P0-property becomes the
(strong) monotonicity of F , and when m = n with J = Rn, it becomes the (P )P0-property
in the context of NCP. Especially, when F (x) is continuously differentiable, the Jacobian F ′(x)
and its adjoint operator F ′(x)T at x ∈ J have the Cartesian P -property, i.e., for any vector
z ∈ J , there is an index ν ∈ {1, 2, · · · ,m} such that

〈z(ν), (F ′(x)z)(ν)〉 ≥ ρ||z||2 and 〈z(ν), (F ′(x)T z)(ν)〉 ≥ ρ||z||2

if F has the uniform Cartesian P -property on J . Similarly, we can define the Cartesian P0-
property of F ′(x) at x ∈ J .

Tao and Gowda (2005) introduced the concept of uniform Jordan P-property in the setting
of Jordan algebra, and showed that in this case, problem (1.1) has a nonempty and bounded
solution set. From the related definitions, we readily verify the following one-way implication of
the properties for nonlinear transformation F :

Strong Monotonicity ⇒ Uniform Cartesian P-property ⇒ Uniform Jordan P-property.
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Our Cartesian P-property strengthens the uniform Jordan P-property, and allows us to attain
globally unique solvability (GUS-property) of the problem and an error bound result which
does not require F to be Lipschitz continuous and can be regarded as an extension of the
corresponding result for box-constrained variational inequality given by Theorem 1 in Solodov
and Tseng (2000).

Theorem 6.2 Let F : J → J be a continuous function. If F has the uniform Cartesian
P -property on J with modulus ρ > 0, then

(i) the problem (1.1) has a unique solution, say x∗;
(ii) moreover, for every α > max{1, 1

2ρ
},

||x − x∗||2 ≤ c · g(x, F (x), α), ∀x ∈ K, (6.3)

where c := 1/(αρ− 1
2) is a positive scalar, and g(x, y, α) is the regularized gap function given by

(3.10).

Proof. (i) We only prove the uniqueness of the solution to problem (1.1), since the existence
of the solution is obtained in Proposition 3.2 and Corollary 3.1 by Tao and Gowda (2005).
Assume that problem (1.1) admits two solutions, say x, y ∈ J with x 6= y. Then by the
assumptions and Definition 6.1, there exists an index v ∈ {1, 2, · · · ,m} such that

〈(x − y)(ν), (F (x) − F (y))(ν)〉 > 0.

On the other hand, direct computation yields

〈(x − y)(ν), (F (x) − F (y))(ν)〉 = 〈x(ν) − y(ν), F (x)(ν) − F (y)(ν)〉
= −〈x(ν), F (y)(ν)〉 − 〈y(ν), F (x)(ν)〉
≤ 0,

where the second equality follows from 〈x(ν), F (x)(ν)〉 = 〈y(ν), F (y)(ν)〉 = 0, because x and y
solve problem (1.1); and the inequality follows from x(ν), y(ν), F (x)(ν) and F (y)(ν) belonging to
Kν . This is a contradiction.

(ii) Since F has the uniform Cartesian P-property on J , for any fixed x ∈ K there exists an
index ν ∈ {1, 2, · · · ,m} such that

ρ||x − x∗||2 ≤ 〈x(ν) − x∗(ν), F (x)(ν) − F (x∗)(ν)〉
= 〈x(ν) − x∗(ν), F (x)(ν)〉 − 〈x(ν), F (x∗)(ν)〉 + 〈x∗(ν), F (x∗)(ν)〉
≤ 〈x(ν) − x∗(ν), F (x)(ν)〉,

(6.4)

where the last inequality is due to x(ν) ∈ Kν , F (x∗)(ν) ∈ Kν , and 〈x∗(ν), F (x∗)(ν)〉 = 0.

For g(x, y, α) given by (3.10), by the structure of Cartesian products it can be written as

g(x, F (x), α) =
m
∑

i=1

g(i)(x(i), F (x)(i), α)

with g(i)(x(i), F (x)(i), α) ≥ 0 for x(i) ∈ Ki, i = 1, 2, · · · ,m, because x ∈ K is a feasible solution
of the closest point problem (3.3). Thus, from (6.4) we obtain that

g(x, F (x), α) ≥ g(ν)(x(ν), F (x)(ν), α)

= maxz∈Kν

{

〈αF (x)(ν), x(ν) − z〉 − 1
2 ||x(ν) − z||2

}

≥ 〈αF (x)(ν), x(ν) − x∗(ν)〉 − 1
2 ||x(ν) − x∗(ν)||2

≥ αρ||x − x∗||2 − 1
2 ||x − x∗||2

= (αρ − 1
2)||x − x∗||2
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for x ∈ K. This completes the proof. 2

Now we discuss how the merit function M(x, α) provides a global error bound for problem
(1.1) with the uniform Cartesian P-property.

Theorem 6.3 Suppose that F has the uniform Cartesian P -property with modulus ρ > 0 and
is Lipschitz continuous with constant L > 0. Then for any fixed α > 1, there exist two positive

scalars c1 = 1
(α−1)(2+L)2 and c2 = α(1+L)2

(α−1)ρ2 such that

c1 · M(x, α) ≤ ||x − x∗||2 ≤ c2 · M(x, α), ∀x ∈ J , (6.5)

where x∗ is the unique solution of problem (1.1).

Proof. Applying Theorem 3.2 in Tseng, Yamashita and Fukushima (1996) (or Theorem 4.2
in Peng 1997), we immediately obtain for any fixed α > 1 that

α − 1

α
||R1(x)||2 ≤ M(x, α) ≤ (α − 1)||R1(x)||2, ∀x ∈ J , (6.6)

where R1(x) := x − (x − F (x))+. So, under the given assumptions, it suffices to prove the
inequality

1

2 + L
||R1(x)|| ≤ ‖x − x∗‖ ≤ 1 + L

ρ
‖R1(x)‖, ∀x ∈ J . (6.7)

In fact, by the definition of R1, for every x ∈ J we have

F (x) − R1(x) = −(x − F (x))− ∈ K, x − R1(x) = (x − F (x))+ ∈ K.

Clearly, (F (x) − R1(x)) ◦ (x − R1(x)) = 0 and 〈F (x) − R1(x), x − R1(x)〉 = 0. Thus, for any
υ = 1, 2, · · · ,m, we obtain

0 = 〈[F (x) − R1(x)](ν), [x − R1(x)](ν)〉

≥ 〈[F (x) − R1(x)](ν) − [F (x∗) − R1(x
∗)](ν), [x − R1(x)](ν) − [x∗ − R1(x

∗)](ν)〉

= 〈F (x)(ν) − F (x∗)(ν) − R1(x)(ν) + R1(x
∗)(ν), x(ν) − x∗(ν) − R1(x)(ν) + R1(x

∗)(ν)〉

≥ 〈F (x)(ν) − F (x∗)(ν), x(ν) − x∗(ν)〉 − 〈R1(x)(ν) + R1(x
∗)(ν), F (x)(ν) − F (x∗)(ν)

+x(ν) − x∗(ν)〉

≥ 〈F (x)(ν) − F (x∗)(ν), x(ν) − x∗(ν)〉 − ‖R1(x)‖ · (1 + L)‖x − x∗‖,

where the first inequality is due to [F (x) − R1(x)](ν) ∈ Kν , [x − R1(x)](ν) ∈ Kν , [F (x∗) −
R1(x

∗)](ν) ∈ Kν , [x∗ − R1(x
∗)](ν) ∈ Kν , and 〈[F (x∗) − R1(x

∗)](ν), [x∗ − R1(x
∗)](ν)〉 = 0; the last

inequality follows from ‖x‖ =
√

∑m
ν=1 ‖x(ν)‖2 ≥ ‖x(ν)‖ and the Lipschitz continuity of F . Thus,

we conclude from the above inequality and the uniform Cartesian P -property of F ,

(1 + L)‖R1(x)‖‖x − x∗‖ ≥ max
1≤ν≤m

〈F (x)(ν) − F (x∗)(ν), x(ν) − x∗(ν)〉

≥ ρ‖x − x∗‖2.

This leads to the right-hand side of inequality (6.7).
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Note that ‖y+ − z+‖ ≤ ‖y − z‖ for any y, z ∈ J by the property of projection. From the
Lipschitz continuity of F , we obtain by direct manipulation that

‖R1(x)‖ = ‖[x − (x − F (x))+] − [x∗ − (x∗ − F (x∗))+]‖
= ‖[x − x∗] − [(x − F (x))+ − (x∗ − F (x∗))+]‖
≤ ‖x − x∗‖ + ‖(x − F (x))+ − (x∗ − F (x∗))+‖
≤ ‖x − x∗‖ + ‖(x − F (x)) − (x∗ − F (x∗))‖
≤ 2‖x − x∗‖ + ‖F (x) − F (x∗)‖
≤ (2 + L)‖x − x∗‖.

This means that the left-hand side of inequality (6.7) holds.

Combining (6.6) and (6.7), and taking c1 = 1
(α−1)(2+L)2 and c2 = α(1+L)2

(α−1)ρ2 , the desired

conclusion (6.5) follows. 2

When m = n with J = Rn, the error bound result given by (6.7) becomes the corresponding
one for NCP presented by Chen and Harker (1997). So, ours is a generalization of their result.

At last, we show that the uniform Cartesian P-property of F is also a sufficient condition
for the stationary point to be a solution of the problem.

Corollary 6.4 Let F : J → J be a continuously differentiable function, and x∗ ∈ J be a
stationary point of M(x, α). If F has the uniform Cartesian P-property on J , then x∗ is a
regular solution of problem (1.1).

Proof. In view of Theorem 5.3, we only prove the regularity of x∗. Let z ∈ J be any nonzero
vector in the set ri(Cone(∇yϕα(x∗, F (x∗))))

⋂

(∇xϕα(x∗, F (x∗)))∗, then by the assumptions,
there exists an index ν ∈ {1, 2, · · · ,m} such that

〈z(ν), (F ′(x∗)T z)(ν)〉 > 0. (6.8)

Let ω ∈ J be the vector whose blocks are all 0 except for its νth block which is equal to z(ν).
Then, by (6.2) we readily show that ω satisfies all conditions in the definition of regularity.
Hence, from (6.8) we obtain that

〈ω,F ′(x∗)T z〉 = 〈z(ν), (F ′(x∗)T z)(ν)〉 > 0,

i.e., x∗ is a regular point. This completes the proof. 2

Based on the proofs of Corollaries 5.4 and 6.4, we assert that our regularity for a point is
a weaker condition than the Cartesian P-property and the positive definiteness of the Jacobian
F ′(x) at this point.

7 Final Remarks

In this paper, we have introduced the vector-valued implicit Lagrangian for SCCP, and showed
that it is a C-function and possesses several interesting properties. Then, we have developed the
real-valued implicit Lagrangian and the related merit function for SCCP. Based on this merit
function, we have presented a necessary and sufficient condition for a stationary point to be
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a solution of the problem (1.1), and established a global error bound for SCCP with uniform
Cartesian P-property.

Finally, we should point out that the regularity of a point given in Section 5 is weaker than
the Cartesian P-property, and provides a characterization of an important class of tractable
nonmonotone SCCPs. However, we do not know the relationship between the regularity of a
point and the various P-properties introduced by Gowda et al (2004, 2005). So, one future
research topic motivated by our work is to investigate this relationship. Moreover, in this
paper we do not address any numerical method for solving the symmetric cone complementarity
problem based on the implicit Lagrangian. We leave this also as a future research topic.
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