
ar
X

iv
:1

31
0.

17
69

v1
 [

m
at

h.
O

C
]

 7
 O

ct
 2

01
3

A Splitting Augmented Lagrangian Method for Low

Multilinear-Rank Tensor Recovery ∗

Lei Yang† Zheng-Hai Huang‡ Yufan Li§

Abstract

This paper studies a recovery task of finding a low multilinear-rank tensor that ful-

fills some linear constraints in the general settings, which has many applications in

computer vision and graphics. This problem is named as the low multilinear-rank

tensor recovery problem. The variable splitting technique and convex relaxation

technique are used to transform this problem into a tractable constrained opti-

mization problem. Considering the favorable structure of the problem, we develop

a splitting augmented Lagrangian method to solve the resulting problem. The pro-

posed algorithm is easily implemented and its convergence can be proved under

some conditions. Some preliminary numerical results on randomly generated and

real completion problems show that the proposed algorithm is very effective and

robust for tackling the low multilinear-rank tensor completion problem.

Keywords: Multilinear-rank; low multilinear-rank tensor recovery; tensor com-

pletion; augmented Lagrangian method

AMS subject classifications: 90C25, 93C41, 65K05

1 Introduction

Tensors (or multidimensional arrays) emerge as the higher-order generalization of vectors

and matrices. More formally, for a positive integer N , an N -way or Nth-order real tensor

can be regarded as an element of Rn1×...×nN . Thus, a first-order tensor is a vector and a

second-order tensor is a matrix. Tensors are applicable in many fields, which involve the

∗This work was partially supported by National Nature Science Foundation of China (No. 11171252).
†Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, P.R. China.

Email: ylei@tju.edu.cn
‡Corresponding author. Department of Mathematics, School of Science, Tianjin University, Tianjin

300072, P.R. China. He is also with the Center for Applied Mathematics of Tianjin University. Email:

huangzhenghai@tju.edu.cn
§Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, P.R. China.

Email: liyufan@tju.edu.cn

1

http://arxiv.org/abs/1310.1769v1

multi-way data, such as psychometrics, chemometrics, signal processing, computer vision,

data mining and elsewhere (see an excellent survey by Kolda and Bader [1]). Tensor rank

as an important intrinsic characterization of a tensor has been widely discussed based

on various tensor decompositions in the literature. Considering the rank as a ‘sparsity’

measure, we can recover a tensor by assuming that it is ‘sparse’ and solving the following

linear constrained problem:

min
X

Φ(X) s.t. A (X) = b (1)

where X ∈ R
n1×···×nN is the decision variable, Φ(·) denotes a kind of tensor rank function,

A : R
n1×...×nN → R

p with p ≤
∏N

i=1 ni is a linear map, and b ∈ R
p. One of its special

cases is the tensor completion problem:

min
X

Φ(X) s.t. XΩ = MΩ,

where X , M are N -way tensors with identical size in each dimension, and the entries of

M in the index set Ω are given while the remaining entries are missing. It is a missing

value estimation problem in which a subset of the entries of the tensor X is given and the

unknown entries are to be deduced under the low rank assumption. This problem has

many applications in computer vision and graphics, e.g., image inpainting [2, 3], video

inpainting [4], etc.

If X is a second-order tensor, then problem (1) reduces to the matrix rank minimiza-

tion problem [5, 6]:

min
X

rank(X) s.t. A (X) = b, (2)

where X ∈ R
m×n is the decision variable, and the linear map A : Rm×n → R

p and

vector b ∈ R
p are given. This problem finds a solution of the lowest rank that fulfills

some linear constraints and has a wide range of applications in system identification

[7], optimal control [5] and low-dimensional embedding in Euclidean space [8], etc. But

this problem is NP-hard [9]. Recent studies in matrix rank minimization have shown

that under certain conditions, one can obtain a solution to the original problem (2) via

solving a convex relaxation of it [6, 10, 11, 12, 13]. It is well known that the best convex

approximation of the rank function over the unit ball of matrices with norm less than

one is the nuclear norm [14], which denotes the sum of the nonzero singular values of

matrices. Thus, the closest convex relaxation of problem (2) is as follows:

min
X

||X||∗ s.t. A (X) = b. (3)

Several effective algorithms have been proposed for solving (3), such as Fixed Point

Continuation with Approximate Singular Value Decomposition (FPCA) by Ma et al. [15],

The Singular Value Thresholding Algorithm (SVT) by Cai et al. [16], The Accelerated

Proximal Gradient algorithm (APG) by Toh et al. [17], etc.

2

However, for higher-order tensor rank minimization, there are only a few studies due

to the complexity of the multi-way data analysis. Liu et al. [18] initialized the study

on the tensor completion problem and laid the theoretical foundation of low rank tensor

completion. After their pioneering work, convex optimization begins to be used on the

tensor completion problem. Gandy et al. [19] used the n-rank of a tensor as a ‘sparsity’

measure and considered the low-n-rank tensor recovery problem, which was more general

than the one in [18]. They introduced a tractable convex relaxation of the n-rank and

proposed two algorithms to solve the low-n-rank tensor recovery problem numerically.

Recently, Signoretto et al. [20] showed how convex optimization can be leveraged to deal

with a broader set of problems under a low multilinear-rank assumption. The authors pro-

posed a scalable template algorithm based on the Douglas-Rachford splitting technique

and explicitly derived the convergence guarantees for proposed algorithm. Encouraging

numerical results were reported in [20]. More recently, Yang et al. [21] proposed a fixed

point iterative method for low n-rank tensor pursuit and proved the convergence of the

method under some assumptions. The numerical results demonstrated the efficiency of

the proposed method, especially for “easy” problems (with high sampling ratio and low

n-rank). Some related work can also be found in Marco Signoretto et al. [22, 23], and

Ryota Tomioka et al. [24, 25]. Additionally, Zhang et al. discussed the exact recovery

conditions for tensor n-rank minimization via its convex relaxation in [26]. Moveover, a

third-order tensor recovery problem based on a new tensor rank proposed by Kilmer et

al. [27] was also investigated by Yang et al. [28].

In this paper, we use the multilinear-rank of a tensor as a ‘sparsity’ measure and con-

sider the tensor multilinear-rank minimization problem. By performing variable splitting,

the classical augmented Lagrangian method (ALM) can be used to solve the reformula-

tion of the original constrained convex programming directly. Moreover, motivated by

the work in [29, 30, 31], we take the advantage of the favorable structure and develop

a splitting augmented Lagrangian method (SALM) as an improvement of the classical

ALM. The convergence of SALM is also proved under some conditions. We also apply

the proposed SALM to solve the low multilinear-rank tensor completion problems, de-

noted by SALM-LRTC. Some preliminary numerical results show the fast and accurate

recoverability of SALM-LRTC.

The rest of our paper is organized as follows. In Section 2, we briefly introduce some

essential notations. Section 3 presents the tensor multilinear-rank minimization problem

and its relaxation model. In Section 4, the augmented-Lagrangian-type methods, includ-

ing ALM and SALM, are developed to solve the relaxed constrained convex optimization

problem. In Section 5, we give the convergence analysis of SALM. In Section 6, we report

the results of some numerical tests and comparisons among different algorithms. Some

final remarks are given in the last section.

3

2 Notation and Preliminaries

In this section, we briefly introduce some essential nomenclatures and notations used

in this paper. Throughout this paper, scalars are denoted by lowercase letters, e.g.,

a, b, c, · · ·; vectors by bold lowercase letters, e.g., a,b, c, · · ·; and matrices by uppercase

letters, e.g., A,B,C, · · ·. An N -way tensor is denoted as X ∈ R
n1×...×nN , whose elements

are denoted as xi1···ik···iN where 1 6 ik 6 nk and 1 6 k 6 N . Let T := R
n1×...×nN denote

the set of all the N -way tensors, and T N := T × T × · · · × T
︸ ︷︷ ︸

N

.

Next, we present some basic facts about tensors and more details can be found in

[1, 20]. An N -way tensor X is rank-1 if it consists of the outer product of N nonzero

vectors. Then, the linear span of such rank-1 elements forms the vector space T , which

is endowed with the inner product

〈X ,Y〉 =
n1∑

i1=1

n2∑

i2=1

· · ·
nN∑

iN=1

ai1i2···iN bi1i2···iN .

The corresponding (Frobenius-) norm is ‖X‖F =
√

〈X ,X〉. When the tensor X reduces

to the matrix X , ‖X‖F is just the Frobenius norm of the matrix X .

Matricization, also known as unfolding or flattening, is the process of reordering the

elements of an N -way array into a matrix. We use X(n) to denote the mode-n unfolding

of the tensor X ∈ R
n1×...×nN . Specially, the tensor element (i1, i2, · · · , iN) is mapped to

the matrix element (in, j), where

j = 1 +

N∑

k=1,k 6=n

(ik − 1)Vk with Vk =

k−1∏

m=1,m6=n

nm.

That is, the “unfold” operation on a tensor X is defined as unfoldn(X) := X(n) ∈ R
nn×Jn

with Jn =
∏N

k=1,k 6=n nk. The opposite operation “refold” is defined as refoldn(X(n)) := X .

The n-rank of an N -way tensor X ∈ R
n1×...×nN , indicated by rank(X(n)), is the rank of

X(n). A tensor with rn = rank(X(n)) for n ∈ {1, 2, . . . , N} is called a rank-(r1, r2, . . . , rN)

tensor; the N -tuple (r1, r2, . . . , rN) is called as multilinear-rank 1 of X .

An alternative notion of rank is rankCP (X) [1], which is defined as the smallest number

of rank-1 tensors that generate X as their sum. Whereas for second order tensors,

rank1(X) = rank2(X) = rankCP (X); for the general case, it follows that rankn(X) ≤
rankCP (X) for any n ∈ {n1, n2, . . . , nN}.

The i-mode (matrix) product of a tensor X ∈ R
n1×···×nN with a matrix U ∈ R

L×ni is

denoted by X ×iU and is of size n1×· · ·×ni−1×L×ni+1×· · ·×nN . It can be expressed

in terms of unfolded tensors:

Y = X ×i U ⇐⇒ Y(i) = UX(i).

1Note that the n-rank of X is defined by the rank of X(n) in [1, 20] and the N -tuple (r1, r2, . . . , rN)

is called as multilinear-rank in [20]. While the N -tuple (r1, r2, . . . , rN) is also called as n-rank in [19].

In order to prevent confusion, we adopt the same notation and conventions as [1, 20] in this paper

4

For any matrix X , ‖X‖2 denotes the operator norm of the matrix X ; ||X||∗ =
∑n

i=1 σi(Y) denotes the nuclear norm of X , i.e., the sum of the singular values of X .

For any vector x, we use Diag(x) to denote a diagonal matrix with its i-th diagonal

element being xi.

Additionally, for x ∈ R
n
+ and τ > 0, the nonnegative vector shrinkage operator sτ (·)

is defined as

sτ (x) := x̄ with x̄i =

{
xi − τ, if xi − τ > 0,

0, otherwise.

For X ∈ R
m×n and τ > 0, the matrix shrinkage operator Dτ (·) is defined as Dτ (X) :=

UDiag(sτ (σ))V
⊤, where X = UDiag(σ)V ⊤ is the singular value decomposition of X .

3 Low Multilinear-Rank Tensor Recovery Problem

In this section, we will consider the multilinear-rank tensor recovery problem. Note that

the minimization problem (1) is extended from the matrix (i.e., second-order tensor)

case. But unlike matrix, the tensor rank is much more complex and non-unique. In fact,

rankCP (X) is difficult to handle, as there is no straightforward algorithm to determine

rankCP of a specific given tensor. This problem is NP-hard [9]. While multilinear-rank is

easy to compute, therefore we pay our attention on the multilinear-rank, which is denoted

as rankmulti(X) below, in this work. Then, (1) becomes the following minimization

problem:

min
X∈T

rankmulti(X) s.t. A (X) = b. (4)

Since the multilinear-rank is the tuple of the ranks of the mode-n unfoldings, (4) is

actually a multiobjective optimization problem. To keep things simple, we will use the

sum of the ranks of the different unfoldings as the objective function. Thus, we will

consider the following low multilinear-rank tensor recovery problem:

min
X∈T

N∑

i=1

rank(X(i)) s.t. A (X) = b, (5)

where the linear map A : R
n1×...×nN → R

p with p ≤
∏N

i=1 ni and vector b ∈ R
p are

given. The corresponding low multilinear-rank tensor completion is

min
X∈T

N∑

i=1

rank(X(i)) s.t. XΩ = MΩ, (6)

where X , M are N -way tensors with identical size in each mode, and the entries of M
in the index set Ω are given while the remaining entries are missing.

5

The low multilinear-rank tensor recovery problem (5) (also its special case (6)) is

a difficult non-convex problem due to the combination nature of the function rank(·).
Therefore, we also use the nuclear norm as an approximation of rank(·) to get a convex

and computationally tractable problem. Then, the nuclear norm relaxation of (5) is:

min
X∈T

N∑

i=1

||X(i)||∗ s.t. A (X) = b. (7)

Note that problem (7) is difficult to solve due to the interdependent nuclear norms.

Therefore, we perform variable splitting and attribute a separate variable to each unfold-

ing of X . Let Y1,Y2, · · · ,YN be new tensor variables, which are equal to the tensor X ,

i.e., introduce the new variable Yi ∈ T such that Yi,(i) = X(i) for all i ∈ {1, 2, · · · , N}.
With these new variables Yis, we can rephrase (7) as follows:

min
X ,Yi

N∑

i=1

||Yi,(i)||∗

s.t. Yi = X , ∀i ∈ {1, 2, · · · , N}, (8)

Yi ∈ T , X ∈ B := {X ∈ T |A (X) = b}.

In the following, we design an algorithm to solve (8).

4 The Augmented-Lagrangian-Type Methods

In this section, the augmented-Lagrangian-type methods are introduced to solve problem

(8).

First, we directly apply the classical ALM (i.e., augmented Lagrangian method) to

solve problem (8) by noticing that it’s a convex constrained optimization problem. As we

all know, ALM is one of the state-of-the-art methods for solving constrained optimization

problem. It has a pleasing convergence speed with higher accuracy under some rather

general conditions. Then, by introducing Lagrange multiplier Λi ∈ T to the equality

constraint Yi = X for any i ∈ {1, 2, · · · , N}, we can give the augmented Lagrangian

function of (8):

LA(X ,Y1, · · · ,YN ,Λ1, · · · ,ΛN , β)

:=
N∑

i=1

||Yi,(i)||∗ −
N∑

i=1

〈Λi,X − Yi〉+
N∑

i=1

β
2
‖X − Yi‖2F ,

(9)

where β > 0 is the penalty parameter. Then, the classical ALM applied for problem (8)

is outlined in Algorithm 1.

6

Algorithm 1 The classical ALM for low multilinear-rank tensor recovery

Input: A , b, Λ0, β0, ρ ≥ 1

1: while not converged, do

2: Compute (X k+1,Yk+1
1 , · · · ,Yk+1

N) = argmin
X∈B,Yi∈T

LA(X ,Y1, · · · ,YN ,Λk
1 , · · · ,Λ

k
N , βk)

3: For i ∈ {1, 2, · · · , N}, update Λk+1
i = Λk

i − βk(X k+1 − Yk+1
i),

4: Update βk+1 = ρβk

5: end while

Output: (X k,Yk
1 , · · · ,Y

k
N)

The convergence of Algorithm 1 is easily to derive, one can refer to [32, 33] for more

details. For the implement of the subproblem:

(X k+1,Yk+1
1 , · · · ,Yk+1

N) = argmin
X∈B,Yi∈T

LA(X ,Y1, · · · ,YN ,Λ
k
1, · · · ,Λ

k
N , β

k) (10)

in Step 2 of Algorithm 1, we may cost much time to solve it to get an optimal solution.

Then, inspired by Tao et al. [29], He et al. [30] and Lin et al. [31], taking the favorable

structure emerging in both the objective function and constraints of (8) into consider-

ation, we can split subproblem (10) into N + 1 independent minimization subproblems

for given (Λk
1, · · · ,Λ

k
N) and βk:

X k+1 ∈ argmin
X∈B

LA(X ,Yk
1 ,Y

k
2 , · · · ,Y

k
N ,Λ

k
1, · · · ,Λ

k
N , β

k),

Yk+1
1 ∈ argmin

Y1∈T
LA(X k+1,Y1,Yk

2 , · · · ,Y
k
N ,Λ

k
1, · · · ,Λ

k
N , β

k),

Yk+1
2 ∈ argmin

Y2∈T
LA(X k+1,Yk+1

1 ,Y2, · · · ,Yk
N ,Λ

k
1, · · · ,Λ

k
N , β

k),

...

Yk+1
N ∈ argmin

YN∈T
LA(X k+1,Yk+1

1 ,Yk+1
2 , · · · ,YN ,Λ

k
1, · · · ,Λ

k
N , β

k),

(11)

which iterate (X k,Yk
1 , · · · ,Y

k
N) through solving N +1 separable subproblems one by one

based on the idea of alternative direction method and using the latest information in

each subproblem. Moreover, it’s very encouraging to see that the exact solution of each

subproblem in (11) can be derived easily. In the following, we discuss it separately.

For the first subproblem in (11), i.e., the minimization of LA over B with respect to

the variable X , which is actually a quadratic optimization problem:

min
X∈B

LA(X) = −
N∑

i=1

〈Λi,X − Yi〉+
N∑

i=1

β

2
‖X − Yi‖

2
F . (12)

It is easy to check that (12) is equivalent to the following problem:

min
X∈B

∥
∥
∥
∥
∥
X −

1

Nβ

[
N∑

i=1

Λi +

N∑

i=1

βYi

]∥
∥
∥
∥
∥

2

F

. (13)

7

By the definition of B in (8), B is convex and closed. Then, the optimal solution of (13)

can be achieved by

X ∗ = PB

(

1

Nβ

[
N∑

i=1

Λi +
N∑

i=1

βYi

])

,

where PB(·) is a projection operator onto set B. Especially, for the case of tensor comple-

tion problem, B = {X ∈ T |XΩ = MΩ} and we can readily calculate the optimal solution

X ∗ via

X ∗
i1i2···iN

=

Mi1i2···iN , if (i1, i2, · · · , iN) ∈ Ω,
(

1
Nβ

[
N∑

i=1

Λi +
N∑

i=1

βYi

])

i1i2···iN

, otherwise.

For the left N subproblems which minimize LA over T with respect to the variable

Yi for any fixed i ∈ {1, 2, · · · , N}, we fix all variables except Yi for given i and then the

minimization of LA becomes:

min
Yi∈T

LA(Yi) = ‖Yi,(i)‖∗ − 〈Λi,X − Yi〉+
β
2
‖X − Yi‖

2
F . (14)

Next, we will give an optimal solution to problem (14). Before this, we need the following

lemma.

Lemma 4.1 Let hi(Z) = ‖Z(i)‖∗ for any Z ∈ R
n1×···×nN and i ∈ {1, 2, · · · , N}; and

g(Z) = ‖Z‖∗ for any Z ∈ R
m×n. Then, for any i ∈ {1, 2, · · · , N}, the subdifferential of

hi(·) at Z is the mode-i refolding of the subdifferential of ‖ · ‖∗ at Z(i), i.e., ∂hi(Z) =

refoldi(∂g(Z(i))).

Proof. Firstly, note that unfoldi(·) and refoldi(·) are linear one-to-one invertible op-

erators. Then, by the definition of subdifferential, for any i ∈ {1, 2, · · · , N} and any

Q ∈ ∂hi(Z) ⊆ R
n1×···×nN , we have

hi(Z
′

) ≥ hi(Z) + 〈Z
′

− Z, Q〉, ∀Z
′

∈ R
n1×···×nN . (15)

It is easy to see that (15) is equivalent to

‖Z
′

(i)‖∗ ≥ ‖Z(i)‖∗ + 〈Z
′

(i) − Z(i), Q(i)〉, ∀Z
′

(i) ∈ R
ni×Ji,

where Ji =
∏N

k=1,k 6=i nk. Hence, Q(i) is the subdifferential of ‖ · ‖∗ at Z(i) by using the

definition of subdifferential again, i.e., Q(i) ∈ ∂g(Z(i)).

On the other hand, for any i ∈ {1, 2, · · · , N} and any Q(i) ∈ ∂g(Z(i)) ⊆ R
ni×Ji with

Ji =
∏N

k=1,k 6=i nk, we have

‖Z
′

(i)‖∗ ≥ ‖Z(i)‖∗ + 〈Z
′

(i) − Z(i), Q(i)〉, ∀Z
′

(i) ∈ R
ni×Ji,

8

and then

hi(Z
′

) ≥ hi(Z) + 〈Z
′

− Z, Q〉, ∀Z
′

∈ R
n1×···×nN .

Thus, Q is also a subdifferential of hi(·) at Z, i.e., Q ∈ ∂hi(Z).

Consequently, we get that ∂hi(Z) = refoldi(∂g(Z(i))) for any i ∈ {1, 2, · · · , N}. ✷

Theorem 4.1 For any given i ∈ {1, 2, · · · , N}, an optimal solution to problem (14) can

be given by

Y∗
i = refoldi

(

D 1

β

(

X(i) −
1

β
Λi,(i)

))

.

Proof. By using Lemma 4.1, we can easily obtain the result of this theorem in a similar

way as [21, Theorem 4.1]. So, we omit it here. ✷

It’s worth noticing that the derivation of optimal solution Y∗
i above contains one

application of the matrix shrinkage operator followed by a refolding of resulting matrix

into a tensor and the calculation is independent of the choice of i. Thus, for given

(Λk
1, · · · ,Λ

k
N) and βk, (11) can be easily written as the following more specific form:

X k+1 := PB

(

1
Nβk

[
N∑

i=1

Λk
i +

N∑

i=1

βkYk
i

])

,

Yk+1
i := refold

(

D 1

βk

(

Xk+1
(i) − 1

βkΛ
k
i,(i)

))

, for i ∈ {1, 2, · · · , N}.
(16)

Now, we are ready to present our SALM (i.e., splitting augmented Lagrangian method)

for solving (8).

Algorithm 2 The SALM for low multilinear-rank tensor recovery

Input: A , b, Λ0, β0, ρ ≥ 1

1: while not converged, do

2: Compute X k+1 = PB

(

1
Nβk

[
N∑

i=1

Λk
i +

N∑

i=1

βkYk
i

])

3: For i ∈ {1, 2, · · · , N}, compute Yk+1
i = refold

(

D 1

βk

(

Xk+1
(i) − 1

βkΛ
k
i,(i)

))

4: For i ∈ {1, 2, · · · , N}, update Λk+1
i = Λk

i − βk(X k+1 − Yk+1
i)

5: Update βk+1 = ρβk

6: end while

Output: (X k,Yk
1 , · · · ,Y

k
N)

In fact, Algorithm 2 can be viewed as a more general alternating direction method

with three or more separable alternative parts, whose convergence is still open in the

literature when there are no more conditions given. Nevertheless, due to the well structure

of problem (8), when some restrictive conditions on {βk} are assumed, the validity and

optimality of Algorithm 2 can be guaranteed, which is discussed in the next section.

9

5 Convergence Results

In this section, we discuss the convergence of SALM given in Algorithm 2. In order to

illustrate our convergence results conveniently, we begin by equivalently restating (8) as

the following constrained problem:

min
X ,Yi∈T

f(X) +
N∑

i=1

||Yi,(i)||∗

s.t. Yi = X , ∀i ∈ {1, 2, · · · , N},

(17)

where f : T → R is defined by

f(X) =

{
0, X ∈ B := {X ∈ T |A (X) = b},
+∞, otherwise.

Note that f is an indicator function of B and it is also a convex function on T since B is

a convex set. Moreover, the subdifferential of f at X is the normal cone of B at X [34],

denoted by NB(X):

NB(X) :=

{
{Z ∈ T : 〈Z,X

′

− X〉 ≤ 0, ∀X
′

∈ B}, X ∈ B,

∅, otherwise.

Assume that (X ∗,Y∗
1 , · · · ,Y

∗
N) ∈ T N+1 is an optimal solution of (17), then by the opti-

mality condition of (17), there must exist Lagrange multipliers (Λ∗
1,Λ

∗
2, · · · ,Λ

∗
N) ∈ T N

satisfying the following inclusions:

∑N
i=1 Λ

∗
i ∈ NB(X

∗), X ∗ ∈ B,

0 ∈ ∂
(

‖Y ∗
i,(i)‖∗

)

+ Λ∗
i , ∀i ∈ {1, 2, · · · , N},

X ∗ = Y∗
i , ∀i ∈ {1, 2, · · · , N}.

(18)

Therefore, a solution of (18) also yields an optimal solution of (17) (Hence (8)). Through-

out this paper, we assume that the optimal solution set of (18) is nonempty.

In the following, we show some crucial lemmas before giving the main convergence

results of SALM. For convenience, we denote

V =

Y1
...

YN

Λ1
...

ΛN

, V[1] =

Y1,(1)
...

YN,(1)

Λ1,(1)
...

ΛN,(1)

∈ R
2Nn1×J1 ,

where J1 =
∏N

k=2 nk. Note that V[1] is only a notation of abstract vector and is not the

mode-1 unfolding of V . For any V
′

[1], V
′′

[1], we define

〈V
′

[1],V
′′

[1]〉 =
N∑

i=1

(

〈Y
′

i,(1), Y
′′

i,(1)〉+ 〈Λ
′

i,(1),Λ
′′

i,(1)〉
)

. (19)

10

For any V , we define

‖V ‖M,1 = ‖V[1]‖M :=
√

〈V[1],M · V[1]〉 (20)

where M ∈ R
2Nn1×2Nn1 is a positive definite matrix. It is easy to check that ‖ · ‖M,1

satisfies the properties of a norm, and we call it the (M, 1)-norm associated with V .

Analogously, we can define the (M, i)-norm for any other i ∈ {2, 3, · · · , N}. Here, we

only use the (M, 1)-norm in the rest of the paper.

Lemma 5.1 Suppose that the sequences {(X k,Yk
1 , · · · ,Y

k
N)} and {(Λk

1, · · · ,Λ
k
N)} are gen-

erated by SALM, and (X ∗,Y∗
1 , · · · ,Y

∗
N) is an optimal solution of (17) with (Λ∗

1, · · · ,Λ
∗
N)

being the corresponding Lagrange multipliers. Then, the following inequalities hold:

〈X k+1 − X ∗,
∑N

i=1 Λ̃
k+1
i −

∑N
i=1 Λ

∗
i 〉 ≥ 0,

〈Yk+1
i − Yk

i ,−Λk+1
i − (−Λk

i)〉 ≥ 0, ∀i ∈ {1, 2, · · · , N},
〈Yk+1

i − Y∗
i ,−Λk+1

i − (−Λ∗
i)〉 ≥ 0, ∀i ∈ {1, 2, · · · , N},

where Λ̃k+1
i = Λk

i − βk(X k+1 − Yk
i) for any i ∈ {1, 2, · · · , N}.

Proof. Based on the optimality condition of (11), the k-th iteration can be characterized

by the following system:

N∑

i=1

Λk
i − βk

N∑

i=1

(X k+1 − Yk
i) ∈ NB(X

k+1), X k+1 ∈ B,

0 ∈ ∂
(

‖Y k+1
i,(i) ‖∗

)

+ Λk
i − βk(X k+1 −Yk+1

i), ∀i ∈ {1, 2, · · · , N},

Λk+1
i = Λk

i − βk(X k+1 − Yk+1
i), ∀i ∈ {1, 2, · · · , N},

which is equivalent to

N∑

i=1

Λ̃k+1
i ∈ NB(X k+1), X k+1 ∈ B,

−Λk+1
i ∈ ∂

(

‖Y k+1
i,(i) ‖∗

)

, ∀i ∈ {1, 2, · · · , N}.
(21)

Moreover, by the optimality condition (18), we have that

N∑

i=1

Λ∗
i ∈ NB(X ∗), X ∗ ∈ B,

−Λ∗
i ∈ ∂

(

‖Y ∗
i,(i)‖∗

)

, ∀i ∈ {1, 2, · · · , N}.
(22)

From the first formulas of (21) and (22), together with the definition of NB(·), we can
obtain that

〈X k+1 − X ∗,
N∑

i=1

Λ̃k+1
i −

N∑

i=1

Λ∗
i 〉 = 〈−

N∑

i=1

Λ̃k+1
i ,X ∗ − X k+1〉+ 〈−

N∑

i=1

Λ∗
i ,X

k+1 −X ∗〉

≥ 0.

11

Note that ‖Yi,(i)‖∗ can be viewed as a convex function of Yi, by combining the fact

that the subdifferential operator of a convex function is monotone [34] and the second

formulas of (21) and (22), we can get that

〈Yk+1
i − Yk

i ,−Λk+1
i − (−Λk

i)〉 ≥ 0,

〈Yk+1
i −Y∗

i ,−Λk+1
i − (−Λ∗

i)〉 ≥ 0,

for any i ∈ {1, 2, · · · , N}. The proof is complete. ✷

According to Lemma 5.1, we can give the following lemma.

Lemma 5.2 Suppose that the sequences {(X k,Yk
1 , · · · ,Y

k
N)} and {(Λk

1, · · · ,Λ
k
N)} are gen-

erated by SALM, (X ∗,Y∗
1 , · · · ,Y

∗
N) is an optimal solution of (17) with (Λ∗

1, · · · ,Λ
∗
N) being

the corresponding Lagrange multipliers, and V , V[1] are defined as before. Then,

(i) 〈V k+1
[1] − V k

[1],Mk · (V
k+1
[1] − V ∗

[1])〉 ≤ 0.

Moreover, if {βk} is nondecreasing, we have

(ii) ‖V k+1 − V ∗‖2Mk+1,1
≤ ‖V k − V ∗‖2Mk ,1

− ‖V k+1 − V k‖2Mk,1
,

(iii) −
+∞∑

k=0

〈V k+1
[1] − V k

[1],Mk · (V
k+1
[1] − V ∗

[1])〉 < +∞,

where Mk =

[

INn1

1
(βk)2

INn1

]

∈ R
2Nn1× 2Nn1 is a block diagonal matrix with INn1

∈

R
Nn1×Nn1 being the identity matrix.

Proof. (i) From the optimality condition, we have Y∗
i = X ∗ for any i ∈ {1, · · · , N}.

Combining Λk+1
i − Λk

i = −βk(X k+1 − Yk+1
i) and Λk+1

i − Λ̃k+1
i = βk(Yk+1

i − Yk
i), we get

〈Λk+1
i − Λk

i ,Λ
k+1
i − Λ∗

i 〉

= −βk〈X k+1 −Yk+1
i ,Λk+1

i − Λ∗
i 〉

= −βk〈X k+1 −X ∗,Λk+1
i − Λ∗

i 〉+ βk〈Yk+1
i − Y∗

i ,Λ
k+1
i − Λ∗

i 〉

= −βk〈X k+1 −X ∗,Λk+1
i − Λ̃k+1

i 〉 − βk〈X k+1 − X ∗, Λ̃k+1
i − Λ∗

i 〉

+βk〈Yk+1
i − Y∗

i ,Λ
k+1
i − Λ∗

i 〉

= −(βk)2〈X k+1 − X ∗,Yk+1
i − Yk

i 〉 − βk〈X k+1 −X ∗, Λ̃k+1
i − Λ∗

i 〉

+βk〈Yk+1
i − Y∗

i ,Λ
k+1
i − Λ∗

i 〉.

And thus,

〈V k+1
[1] − V

k
[1],Mk · (V

k+1
[1] − V

∗
[1])〉

=

N∑

i=1

(

〈Y k+1
i,(1) − Y k

i,(1), Y
k+1
i,(1) − Y ∗

i,(1)〉+
1

(βk)2
〈Λk+1

i,(1) − Λk
i,(1),Λ

k+1
i,(1) − Λ∗

i,(1)〉

)

12

=
N∑

i=1

(

〈Yk+1
i − Yk

i ,Y
k+1
i −Y∗

i 〉+
1

(βk)2
〈Λk+1

i − Λk
i ,Λ

k+1
i − Λ∗

i 〉

)

=
N∑

i=1

(
〈Yk+1

i −Yk
i ,Y

k+1
i − Y∗

i 〉 − 〈X k+1 −X ∗,Yk+1
i − Yk

i 〉
)

−
1

βk

N∑

i=1

〈X k+1 − X ∗, Λ̃k+1
i − Λ∗

i 〉+
1

βk

N∑

i=1

〈Yk+1
i − Y∗

i ,Λ
k+1
i − Λ∗

i 〉

=
1

βk

N∑

i=1

(

〈Yk+1
i − Yk

i ,Λ
k+1
i − Λk

i 〉 − 〈X k+1 − X ∗, Λ̃k+1
i − Λ∗

i 〉

+〈Yk+1
i − Y∗

i ,Λ
k+1
i − Λ∗

i 〉
)

(23)

≤ 0,

where the last inequality follows from Lemma 5.1.

(ii) From the definition of (M, 1)-norm in (20), it is easy to verify that

‖V k − V ∗‖2Mk,1
= ‖V k

[1] − V ∗
[1]‖

2
Mk

=
N∑

i=1

(

‖Yk
i − Y∗

i ‖
2
F + 1

(βk)2
‖Λk

i − Λ∗
i ‖

2
F

)

.
(24)

Then, by βk+1 ≥ βk and (i), we can derive that

‖V k+1 − V
∗‖2Mk+1,1

≤ ‖V k+1 − V
∗‖2Mk,1

= ‖V k − V
∗‖2Mk,1

− ‖V k+1 − V
k‖2Mk,1

+ 2〈V k+1
[1] − V

k
[1],Mk · (V

k+1
[1] − V

∗
[1])〉 (25)

≤ ‖V k − V
∗‖2Mk,1

− ‖V k+1 − V
k‖2Mk,1

.

(iii) By (25), we have that

−〈V k+1
[1] − V

k
[1],Mk · (V

k+1
[1] − V

∗
[1])〉 ≤

1

2
‖V k − V

∗‖2Mk,1
−

1

2
‖V k+1 − V

∗‖2Mk+1,1
.

Then, it is easy to get that

−
+∞∑

k=0

〈V k+1
[1] − V

k
[1],Mk · (V

k+1
[1] − V

∗
[1])〉 ≤

1

2
‖V 0 − V

∗‖2M0,1 < +∞.

The proof is complete. ✷

From Lemma 5.2 (ii), we can see that if {βk} is nondecreasing, the sequence {‖V k −
V ∗‖2Mk,1

} is nonincreasing. Based on these three results in Lemma 5.2, we have the

following lemma immediately, which paves the way towards the convergence of SALM.

13

Lemma 5.3 Let {βk} be nondecreasing, and the sequences {(X k,Yk
1 , · · · ,Y

k
N)} and {(Λk

1,

· · ·, Λk
N)} be generated by SALM. Suppose that (X ∗,Y∗

1 , · · · ,Y
∗
N) is an optimal solution

of (17) with (Λ∗
1, · · · ,Λ

∗
N) being the corresponding Lagrange multipliers, and V , V[1], Mk

are defined as before. Then, for any i ∈ {1, 2, · · · , N},

(i) lim
k→∞

‖X k+1 −Yk+1
i ‖F = lim

k→∞
‖Yk+1

i − Yk
i ‖F = lim

k→∞

1
βk ‖Λ

k+1
i − Λk

i ‖F = 0; and

(ii) the sequences {(X k,Yk
1 , · · · ,Y

k
N)} and {(Λk

1, · · · ,Λ
k
N)} are all bounded.

Proof. (i) From Lemma 5.2 (ii), we have that

‖V k+1 − V
k‖2Mk,1

≤ ‖V k − V
∗‖2Mk,1

− ‖V k+1 − V
∗‖2Mk+1,1

.

Furthermore, we can obtain that

+∞∑

k=0

‖V k+1 − V
k‖2Mk,1

≤ ‖V 0 − V
∗‖2M0,1

< +∞,

which immediately implies that lim
k→∞

‖V k+1 − V k‖2Mk,1
= 0. Recall that

‖V k+1 − V
k‖2Mk,1

=
N∑

i=1

(

‖Yk+1
i −Yk

i ‖
2
F +

1

(βk)2
‖Λk+1

i − Λk
i ‖

2
F

)

,

we have that for any i ∈ {1, 2, · · · , N},

lim
k→∞

‖Yk+1
i − Yk

i ‖F = 0, lim
k→∞

1

βk
‖Λk+1

i − Λk
i ‖F = 0,

which, together with X k+1 −Yk+1
i = − 1

βk (Λ
k+1
i − Λk

i), shows that

lim
k→∞

‖X k+1 − Yk+1
i ‖F = lim

k→∞

1

βk
‖Λk+1

i − Λk
i ‖F = 0. (26)

(ii) By (24) and Lemma 5.2 (ii), we can easily obtain that

N∑

i=1

‖Yk
i − Y∗

i ‖
2
F ≤ ‖V k − V

∗‖2Mk,1
≤ ‖V 0 − V

∗‖2M0,1
< +∞,

which shows that ‖Yk
i −Y∗

i ‖F < +∞ for any i ∈ {1, 2, · · · , N}. Then, the sequence {Yk
i }

is bounded. Moreover, the boundedness of {Yk
i } and (i) imply that {X k} is bounded.

Additionally, note that

−Λk+1
i ∈ ∂

(

||Y k+1
i,(i) ||∗

)

, i ∈ {1, 2, · · · , N},

we have that the sequence {Λk
i } is bounded since the dual norm of ‖ · ‖∗ is ‖ · ‖2. ✷

Now, we are ready to give the convergence of SALM.

14

Theorem 5.1 Let {βk} be nondecreasing and
∑+∞

k=0
1
βk = +∞. Suppose that the se-

quences {(X k,Yk
1 , · · · ,Y

k
N)} and {(Λk

1, · · · ,Λ
k
N)} are generated by SALM, and V , V[1],

Mk are defined as before. Then, the sequence {(X k,Yk
1 , · · · ,Y

k
N)} converges to an opti-

mal solution of (17) (Hence (8)).

Proof. From Lemma 5.3 (ii), the sequences {(X k,Yk
1 , · · · ,Y

k
N)} and {(Λk

1, · · · ,Λ
k
N)}

are bounded, and thus, exist convergent subsequences. Then, by (26), for any i ∈
{1, 2, · · · , N},

lim
k→+∞

‖X k − Yk
i ‖F = 0,

which, together with the fact that B is compact, shows that any accumulation point of

sequence {(X k,Yk
1 , · · · ,Y

k
N)} is a feasible solution of (17).

Next, we show that some accumulation point of the sequence {(X k,Yk
1 , · · · ,Y

k
N)} is

an optimal solution of (17). Let F ∗ denote the optimal objective value of (17), and

suppose that (X ∗,Y∗
1 , · · · ,Y

∗
N) is an optimal solution of (17) with (Λ∗

1,Λ
∗
2, · · · ,Λ

∗
N) being

the corresponding Lagrange multipliers. Note that ‖ · ‖∗ is convex, which, together with

the optimal condition:
∑N

i=1 Λ̃
k
i ∈ NB(X k) and −Λk

i ∈ ∂(||Y k
i,(i)||∗), X

∗ = Y∗
i for any

i ∈ {1, 2, · · · , N}, implies that

N∑

i=1

||Y k
i,(i)||∗

≤
N∑

i=1

(
||Y ∗

i,(i)||∗ − 〈−Λk
i ,Y

∗
i − Yk

i 〉
)
− 〈

N∑

i=1

Λ̃k
i ,X

∗ − X k〉

= F ∗ +
N∑

i=1

〈−Λ∗
i − (−Λk

i),Y
∗
i −Yk

i 〉+
N∑

i=1

〈Λ∗
i − Λ̃k

i ,X
∗ − X k〉

+

N∑

i=1

〈Λ∗
i ,Y

∗
i −Yk

i 〉 −
N∑

i=1

〈Λ∗
i ,X

∗ − X k〉

= F ∗ +
N∑

i=1

〈−Λk
i − (−Λ∗

i),Y
k
i −Y∗

i 〉+
N∑

i=1

〈Λ̃k
i − Λ∗

i ,X
k −X ∗〉

+

N∑

i=1

〈Λ∗
i ,X

k
i − Yk

i 〉. (27)

By (23) and Lemma 5.2 (iii),

+∞∑

k=0

1

βk

(
N∑

i=1

〈Yk+1
i −Y∗

i ,−Λk+1
i − (−Λ∗

i)〉+
N∑

i=1

〈X k+1 −X ∗, Λ̃k+1
i − Λ∗

i 〉

)

≤ −
+∞∑

k=0

〈V k+1
[1] − V

k
[1],M · (V k+1

[1] − V
∗
[1])〉 < +∞.

15

As
∑+∞

k=0
1
βk = +∞, there must exist a subsequence {(X kj ,Y

kj
1 , · · · ,Y

kj
N)} such that

N∑

i=1

(

〈Y
kj
i − Y∗

i ,−Λ
kj
i − (−Λ∗

i)〉+ 〈X kj − X ∗, Λ̃
kj
i − Λ∗

i 〉
)

−→ 0 as j → +∞.

Here, we assume that the subsequence {(X kj ,Y
kj
1 , · · · ,Y

kj
N)} converges to (X̂ , Ŷ1, · · ·,

ŶN). If not, there must exist a convergent subsequence of {(X kj ,Y
kj
1 , · · · ,Y

kj
N)} since it is

bounded by Lemma 5.3 (ii), and we can denote this subsequence as {(X kj ,Y
kj
1 , · · · ,Y

kj
N)}

again without loss of generality. By (26), we have that for any i ∈ {1, 2, · · · , N},

lim
j→+∞

‖X kj − Y
kj
i ‖F = 0 =⇒ ‖X̂ − Ŷi‖F = 0,

and furthermore,

X̂ = Ŷi =⇒ lim
j→+∞

(X kj −Y
kj
i) = 0. (28)

Then, for (27), we take the limit and get

N∑

i=1

||Ŷi,(i)||∗ = lim
j→+∞

N∑

i=1

||Y
kj
i,(i)||∗ ≤ F ∗.

So the limit point (X̂ , Ŷ1, · · · , ŶN) of (X kj ,Y
kj
1 , · · · ,Y

kj
N) is an optimal solution of (17).

From Lemma 5.3 (ii), {(Λ
kj
1 , · · · ,Λ

kj
N)} is bounded. So, we can directly assume that

the subsequence {(Λ
kj
1 , · · · ,Λ

kj
N)} converges to (Λ̂1, · · · , Λ̂N) without loss of generality.

Thus, we have that

‖V kj − V̂ ‖2Mkj
,1 =

N∑

i=1

(

‖Y
kj
i − Ŷi‖

2
F +

1

(βkj)2
‖Λ

kj
i − Λ̂i‖

2
F

)

→ 0 as j → +∞.

By Lemma 5.2 (ii), {‖V k − V̂ ‖2Mk,1
} is nonincreasing, then we can derive that

‖V k − V̂ ‖2Mk,1
→ 0, k → +∞,

which indicates that lim
k→+∞

Yk
i = Ŷi for any i ∈ {1, 2, · · · , N}. By (26) and X̂ = Ŷi, we

see that lim
k→+∞

X k = X̂ .

Consequently, the consequence {(X k,Yk
1 , · · · ,Y

k
N)} converges to (X̂ , Ŷ1, · · · , ŶN), which

is an optimal solution of (17) (Hence (8)). This completes the proof. ✷

16

6 Numerical Experiments

In this section, we apply SALM to solve low multilinear-rank tensor completion prob-

lems, which is denoted by SALM-LRTC, and evaluate its empirical performance both on

simulated and real world data with the missing data. We also compare it with the latest

tensor completion algorithms, including FP-LRTC (fixed point continuation method for

low n-rank tensor completion) [21], TENSOR-HC (hard completion) [20], ADM-CON

(ADMM for the “Constraint” approach) [24] and ADM-TR(E) (alternative direction

method algorithm for low-n-rank tensor recovery) [19]. All numerical experiments are

run in Matlab 7.11.0 on a HP Z800 workstation with an Intel Xeon(R) 3.33GHz CPU

and 48GB of RAM.

6.1 Implementation Details

Problem settings. The random low multilinear-rank tensor completion problems without

noise we consider in our numerical experiments are generated as in [19, 24, 21]. For

creating a tensor M ∈ R
n1×...×nN with rank (r1, r2, · · · , rN), we first generate a core

tensor S ∈ R
r1×···×rN with i.i.d. Gaussian entries (∼ N (0, 1)). Then, we generate matrices

U1, · · · , UN , with Ui ∈ R
ni×ri whose entries are i.i.d. from N (0, 1) and set

M := S ×1 U1 ×2 · · · ×N UN .

With this construction, the multilinear-rank of M equals (r1, r2, · · · , rN) almost surely.

We also conduct numerical experiments on random low multilinear-rank tensor com-

pletion problems with noisy data. For the noisy random low multilinear-rank tensor com-

pletion problems, the tensor M ∈ R
n1×...×nN is corrupted by a noise tensor E ∈ R

n1×...×nN

with independent normally distributed entries. Then, M is taken to be

M := M̄+ σE = S ×1 U1 ×2 · · · ×N UN + σE . (29)

We use sr to denote the sampling ratio, i.e., a percentage sr of the entries to be known

and choose the support of the known entries uniformly at random among all supports of

size sr
(
∏N

i=1 ni

)

. The values and the locations of the known entries of M are used as

input for the algorithms.

Singular value decomposition. Computing singular value decomposition (SVD) is the

main computational cost of solving low multilinear-rank tensor completion problems. So

using the Lanczos algorithm [35] like PROPACK [36] for computing only partial singular

value decomposition is used to speed up the calculation in FP-LRTC, ADM-CON and

ADM-TR(E). However, to use PROPACK, one have to predict the number of singular

values to compute. Although there has been many heuristics to choose the predeter-

mined number for matrix or tensor completion [21, 31, 29, 24, 19, 17, 16, 15], it is still

difficult to give an optimal strategy. In fact, the algorithms may not achieve very good

17

recoverability under the inappropriate prediction. Hence, for good recoverability and

simplicity, we use the matlab command [U, S, V] = svd(X,′ econ′) instead of PROPACK

to compute full SVD in our algorithm. The same command is also used in TENSOR-HC.

Evaluation criterion and stopping criterion. For random low multilinear-rank tensor

completion problems without noise, we report the relative error

rel.err :=
||Xsol −M||F

||M||F

to estimate the closeness ofXsol toM, where Xsol is the “optimal” solution to (7) produced

by the algorithms and M is the original tensor.

For random low multilinear-rank tensor completion problems with noisy data, we

measure the performance based on the normalized root mean square error (NRMSE) [20]

on the complementary set Ωc:

NRMSE(X opt,M̄) :=
||X opt

Ωc − M̄Ωc||F
(
max(M̄Ωc)−min(M̄Ωc)

)√

|Ωc|

where M̄ is as in (29) and |Ωc| denotes the cardinality of Ωc.

The stopping criterion we use for SALM-LRTC in all our numerical experiments is

as follows:

‖X k+1 −X k‖F
max{1, ‖X k‖F}

< Tol,

where Tol is a moderately small number, since when X k gets close to an optimal solution

X opt, the distance between X k and X k+1 should become very small.

Updating βk. In our numerical experiments, to keep things simple, we update βk

adaptively as follows:

βk+1 =

{

ρβk, if ‖Xk+1−Xk‖F
max{1,‖Xk‖F }

≤ ε,

βk, otherwise,

where ρ > 1 and ε is a small positive number. This rule indicates that βk is increased

by a constant factor ρ when there is a slow change during iterations and it is also used

in ADM-TR(E).

Choice of parameters. Throughout the experiments, we choose the initial iterate to

be X 0 = 0 and set β0 = 0.1, ρ = 5, Tol = 10−8. The parameters in updating βk is set as

follows: if sr > 0.5, we set ε = 10−3; otherwise, we set ε = 10−4, where sr is the sampling

ratio.

18

6.2 Numerical Simulation

In this part, we test some randomly created problems to illustrate the recoverability

and convergence properties of SALM-LRTC and provide the comparisons with other

algorithms. All results are average values of 10 independent trials.

In FP-LRTC, we set µ1 = 1, τ = 10, θµ = 1 − sr, µ̄ = 1 × 10−8, ε = 10−2. In

TENSOR-HC, we set the regularization parameters λi, i ∈ {1, 2, · · · , N} to 1 and τ to

10. The parameter λ in ADM-CON is set to 0 and the code of ADM-CON is downloaded

from http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka/Softwares/Tensor.html. In ADM-

TR(E), the parameters are set to cβ = 5, cλ = 5, β = 1, λ = N . The above parameter

settings can be seen in [21, 20, 19, 24] for more details.

Table 1. Numerical results on low multilinear-rank tensor completion without noise

Method iter rel.err time Method iter rel.err time

T = R
50×50×50, r = (9, 9, 3)

sr = 0.3 sr = 0.6

SALM-LRTC 70 8.45e-8 3.85 SALM-LRTC 35 8.35e-9 2.06

FP-LRTC 520 5.77e-8 30.23 FP-LRTC 105 3.09e-8 2.03

TENSOR-HC 76 3.81e-8 6.75 TENSOR-HC 59 2.24e-8 5.19

ADM-CON 150 3.37e-8 13.14 ADM-CON 64 2.69e-8 5.52

ADM-TR(E) 422 2.62e-7 39.13 ADM-TR(E) 214 1.40e-8 22.26

T = R
100×100×50 , r = (10, 10, 5)

sr = 0.3 sr = 0.6

SALM-LRTC 67 9.97e-9 22.96 SALM-LRTC 33 4.77e-9 11.28

FP-LRTC 520 2.78e-8 39.90 FP-LRTC 105 4.44e-9 9.10

TENSOR-HC 54 4.08e-8 25.39 TENSOR-HC 35 2.57e-8 16.47

ADM-CON 149 1.85e-8 69.29 ADM-CON 65 9.56e-9 31.38

ADM-TR(E) 380 1.92e-7 175.59 ADM-TR(E) 186 6.86e-9 84.57

T = R
20×20×30×30 , r = (4, 4, 4, 4)

sr = 0.3 sr = 0.6

SALM-LRTC 74 2.25e-8 15.66 SALM-LRTC 35 5.11e-9 7.38

FP-LRTC 520 4.20e-8 100.29 FP-LRTC 210 6.96e-9 16.53

TENSOR-HC 52 4.49e-7 17.06 TENSOR-HC 36 7.82e-8 11.92

ADM-CON 173 1.21e-7 53.12 ADM-CON 72 8.17e-8 22.12

ADM-TR(E) 445 2.57e-7 147.89 ADM-TR(E) 228 2.77e-8 81.05

T = R
20×20×20×20×20 , r = (2, 2, 2, 2, 2)

sr = 0.3 sr = 0.6

SALM-LRTC 72 9.46e-9 246.45 SALM-LRTC 35 5.88e-9 117.54

FP-LRTC 520 5.25e-8 387.94 FP-LRTC 105 2.14e-8 84.64

TENSOR-HC 57 2.15e-8 272.88 TENSOR-HC 40 2.74e-8 187.79

ADM-CON 175 1.60e-8 813.11 ADM-CON 76 1.08e-8 375.13

ADM-TR(E) 381 1.97e-7 1194.78 ADM-TR(E) 192 2.19e-8 656.17

Different problem settings are used to test the algorithms. The order of tensors varies

from three to five, and we also vary the multiliear-rank and the sampling ratio sr. Table 1

reports the results for random low multilinear-rank tensor completion problems without

19

http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka/Softwares/Tensor.html

noise. In the table, we report the average iterations, the average relative error, and

the average time (in seconds) of 10 runs. As can be seen from Table 1, SALM-LRTC

outperforms other algorithms in most cases. Although FP-LRTC converges fastest for the

problems with high sr and low n-rank (e.g., T = R
100×100×50, r = (10, 10, 5), sr = 0.6),

SALM-LRTC also results nearly the same computation time and relative errors as those

of FP-LRTC. For other problems, SALM-LRTC is robust and converges faster than others

obviously. Especially, it takes SALM-LRTC no more than 40 iterations on the average

to solve the problems with sr = 0.6 in our experiments. In addition, the solutions for

almost all the problems in our experiments computed by SALM-LRTC are more accurate

than those delivered by other algorithms. Specifically, the relative errors of SALM-LRTC

are smaller than 1× 10−8 in most cases.

0 5 10 15 20 25 30
10

−9

10
−8

10
−7

10
−6

100 × 100 × 100

Multilinear−Rank

R
el

at
iv

e
E

rr
or

SALM−LRTC
FP−LRTC
TENSOR−HC
ADM−CON
ADM−TR(E)

(a)

0 5 10 15 20 25 30
10

1

10
2

10
3

100 × 100 × 100

Multilinear−Rank

C
P

U
 ti

m
e

SALM−LRTC
FP−LRTC
TENSOR−HC
ADM−CON
ADM−TR(E)

(b)

Figure 1: Recovery results of 100 × 100 × 100 tensors with sr = 0.5 and different

multilinear-ranks by SALM-LRTC, FP-LRTC, TENSOR-HC, ADM-CON and ADM-

TR(E). (a) relative error; (b) CPU time in seconds.

In Figure 1, we fix the tensor size (100 × 100 × 100) and compare the first four

different algorithms (ADM-TR(E) is poorer than other algorithms obviously by Table

1) for created noiseless problems with different multilinear-ranks (r, r, r) (here we set

r1 = r2 = r3 = r for convenience). The sampling ratio is set to sr = 0.5. Figure 1

shows that all the algorithms are effective for this set of problems. We can also see that

SALM-LRTC costs relatively constant time and is faster than others for most problems.

Moreover, SALM-LRTC is more robust and always has more accurate solution than that

of other algorithms.

We further study SALM-LRTC to solve random low multilinear-rank tensor com-

pletion problems with noisy data. Table 2 presents the numerical performance. In the

table, we report the mean of NRMSEs, iterations and execution times over 10 indepen-

dent trials. Note that a different σ gives a different noise level. Then, we set σ = 0.02

and σ = 0.04, respectively. From the results, we can see that the NRMSEs of all the

20

algorithms are smaller than the noise level in the given data. Especially, SALM-LRTC

and TENSOR-HC have nearly the same performance, which are better than others.

Table 2. Numerical results on low multilinear-rank tensor completion with noise

Method iter NRMSE time Method iter NRMSE time

T = R
50×50×50, r = (9, 9, 3), sr = 0.3

σ = 0.02 σ = 0.04

SALM-LRTC 40 1.24e-2 2.32 SALM-LRTC 40 2.11e-2 2.35

FP-LRTC 500 1.29e-2 11.08 FP-LRTC 500 2.13e-2 11.25

TENSOR-HC 34 9.25e-3 2.97 TENSOR-HC 28 1.74e-2 2.48

ADM-CON 106 1.11e-2 8.57 ADM-CON 140 2.13e-2 11.23

ADM-TR(E) 240 1.35e-2 27.99 ADM-TR(E) 314 2.15e-2 34.65

T = R
50×50×50, r = (9, 9, 3), sr = 0.6

σ = 0.02 σ = 0.04

SALM-LRTC 37 6.80e-3 2.04 SALM-LRTC 31 1.26e-2 1.69

FP-LRTC 105 7.48e-3 2.44 FP-LRTC 105 1.37e-2 2.37

TENSOR-HC 26 9.84e-3 2.30 TENSOR-HC 20 1.89e-2 1.72

ADM-CON 38 9.32e-3 3.13 ADM-CON 69 1.76e-2 5.68

ADM-TR(E) 445 6.77e-3 58.18 ADM-TR(E) 534 1.29e-2 76.14

T = R
20×20×20×20×20 , r = (2, 2, 2, 2, 2), sr = 0.3

σ = 0.02 σ = 0.04

SALM-LRTC 27 7.75e-3 86.85 SALM-LRTC 25 1.11e-2 84.95

FP-LRTC 500 8.61e-3 436.99 FP-LRTC 500 1.01e-2 440.56

TENSOR-HC 18 8.58e-3 80.14 TENSOR-HC 20 1.59e-2 92.28

ADM-CON 287 8.19e-3 1435.63 ADM-CON 359 1.26e-2 1802.40

ADM-TR(E) 389 5.84e-3 1162.46 ADM-TR(E) 689 1.25e-2 2015.95

T = R
20×20×20×20×20 , r = (2, 2, 2, 2, 2), sr = 0.6

σ = 0.02 σ = 0.04

SALM-LRTC 24 5.27e-3 82.61 SALM-LRTC 24 8.79e-3 83.23

FP-LRTC 105 5.43e-3 95.15 FP-LRTC 105 9.03e-3 97.22

TENSOR-HC 15 9.04e-3 70.87 TENSOR-HC 20 1.74e-2 99.48

ADM-CON 227 8.65e-3 1145.63 ADM-CON 336 1.55e-2 1700.12

ADM-TR(E) 334 5.15e-3 1056.33 ADM-TR(E) 455 7.54e-3 1402.68

6.3 Image Simulation

In this part, we test the performance of SALM-LRTC on image inpainting [2, 3]. In fact,

a color image can be represented as a third-order tensor. Then, if the image is of low

multilinear-rank, or numerical low multilinear-rank, we can solve the image inpainting

problem as a low multilinear-rank tensor completion problem. In other words, we can

recover an image by solving problem (8) with the sampling set Ω indexing non-missing

pixels.

In our test, for each image we remove entries in all the channels simultaneously (first

two rows in Figure 2, 90.80% and 62.86% known entries, respectively), or consider the case

where entries are missing at random (last row in Figure 2, 30% known entries). Figure

21

2 reports the original pictures, the input data tensor and the outcome of our algorithm.

The relative errors of recovered results are 2.29e-2, 2.73e-2 and 1.09e-1, respectively.

(a)

(b)

(c)

Figure 2: Original images (left column); Input to the algorithm (middle column); The

recovered result by SALM-LRTC (right column).

7 Conclusions

In this paper we focused on low multilinear-rank tensor recovery problem, and adopted

variable splitting technique and convex relaxation technique to transform it into a tractable

constrained optimization problem, which can be solved by the classical ALM directly.

Taking advantage of well structure emerging in the transformed model, an easily imple-

mented algorithm is developed based on the classical ALM. Some preliminary numerical

results show the efficiency and robustness of the proposed algorithm.

It is interesting to investigate how to make the best use of tensor structure to improve

the relative model and algorithm. We believe that the augmented-Lagrangian-type frame-

22

work can yield more robust and effective methods for more general tensor optimization

problems based on the full utilization of the desired structure. Moreover, the nonconvex

sparse optimization problems and the related algorithms in vector or matrix space have

been widely discussed in the literature [37, 38, 39, 40]. It is worth investigating the

nonconvex model in the tensor space.

Acknowledgments

We would like to thank Silvia Gandy for sending us the code of ADM-TR(E), and thank

Marco Signoretto for sending us the code of TENSOR-HC.

References

[1] T.G. Kolda and B.W. Bader, “Tensor decompositions and applications,” SIAM Rev.,

vol. 51, pp. 457-464, 2009.

[2] M. Bertalmı́o, G. Sapiro, V. Caselles and C. Ballester, “Image inpainting,” Proceed-

ings of SIGGRAPH 2000, New Orleans, USA, 2000.

[3] N. Komodakis and G. Tziritas, “Image completion using global optimization.” CVPR,

pp. 417-424, 2006.

[4] T. Korah, C. Rasmussen, “Spatiotemporal inpainting for recovering texture maps of

occluded building facades.” IEEE Trans. Image Process., vol. 16(9), pp. 2262-2271,

2007.

[5] M. Fazel, H. Hindi and S. Boyd, “A rank minimization heuristic with application to

minimum order system approximation,” Proceedings of the American Control Con-

ference (Arlington, VA, June 2001), vol. 6, 4734-4739, 2001.

[6] B. Recht, M. Fazel and P. A. Parrilo, “Guaranteed minimum-rank solutions of linear

matrix equations via nuclear norm minimization,” SIAM Rev., vol. 52, pp. 471-501,

2010.

[7] Z. Liu and L. Vandenberghe, “Interior-point method for nuclear norm approximation

with application to system identification.” SIAM J. Matrix Anal. Appl., vol. 31(3),

pp. 1235-1256, 2009.

[8] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and some of its

algorithmic applications”. Combinatorica, vol. 15, pp. 215-245, 1995.

[9] J.H̊astad, “Tensor rank is NP-complete,” J. Algorithms, vol. 11, pp. 644-654, 1990.

[10] E.J. Candès and B. Recht, “Exact matrix completion via convex optimization,”

Found. Comput. Math., vol. 9, pp. 717-772, 2009.

[11] B. Recht, W. Xu and B. Hassibi, “Null space conditions and threshlods for rank

minimization,” Math. Program., vol. 127, pp. 175-202, 2011.

23

[12] B. Recht, “A simpler approach to matrix completion,” J. Mach. Learn. Res., vol.

12, pp. 3413-3430, 2011.

[13] Y.J. Liu, D.F. Sun and K.C. Toh, “An implementable proximal point algorithmic

framework for nuclear norm minimization,” Math. Program., vol. 133(1-2), pp. 399-

436, 2012.

[14] M. Fazel, “Matrix Rank Minimization with Applications,” PhD thesis, Stanford

University, 2002.

[15] S.Q. Ma, D. Goldfarb and L.F. Chen, “Fixed point and Bregman iterative methods

for matrix rank minimization,” Math. Program., vol. 128, pp. 321-353, 2011.

[16] J.F. Cai, E.J. Candès and Z.W. Shen, “A singular value thresholding algorithm for

matrix completion,” SIAM J. Optim., vol. 20, No.4, pp. 1956-1982, 2010.

[17] K.C. Toh and S.W. Yun, “An accelerated proximal gradient algorithm for nuclear

norm regularized linear least squares problems,” Pac. J. Optim., vol. 6, pp. 615-640,

2010.

[18] J. Liu, P. Musialski, P. Wonka and J.P. Ye, “Tensor completion for estimating

missing values in visual data,” in IEEE Int. Conf. Computer Vision (ICCV), Kyoto,

Japan, pp. 2114-2121, 2009.

[19] S. Gandy, B. Recht and I. Yamada, “Tensor completion and low-n-rank tensor re-

covery via convex optimization,” Inv. Probl., vol. 27, 025010 (19pp), 2011.

[20] M. Signoretto, Q. Tran Dinh, L. De Lathauwer, J.A.K. Suykens, “Learning with

tensors: a framework based on convex optimization and spectral regularization,” to

appear in Mach. Learn., 2013.

[21] L. Yang, Z.H. Huang and X.J. Shi, “A fixed point iterative method for low n-rank

tensor pursuit,” IEEE Trans. Signal Process., vol. 61(11), pp. 2952-2962, 2013.

[22] M. Signoretto, L. De. Lathauwer and J.A.K. Suykens, “Nuclear norms for tensors

and their use for convex multilinear estimation,” Internal report 10-186, ESAT-

SISTA, K.U. Leuven, Leuven, Belgium, Lirias number: 270741, 2010.

[23] M. Signoretto, R. Plas, B. Moor, and J. Suykens, “Tensor versus matrix completion:

A comparison with application to spectral data,” IEEE Signal Process. Lett., vol.

18(7), pp. 403-406, 2011.

[24] R. Tomioka, K. Hayashi and H. Kashima, “Estimation of low-rank tensors via convex

optimization,” Arxiv preprint arXiv:1010.0789v2, 2011.

[25] R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima, “Statistical performance of

convex tensor decomposition,” Advances in Neural Information Processing Systems

(NIPS) 24. 2011, Granada, Spain.

[26] M. Zhang, Z.H. Huang, “Exact recovery conditions for the low-n-rank tensor recov-

ery problem via its convex relaxation,” submitted to J. Optim. Theory Appl., Revised

2013.

24

http://arxiv.org/abs/1010.0789

[27] M.E. Kilmer, K. Braman, N. Hao, R.C. Hoover, “ Third order tensors as operators on

matrices: a theoretical and computational framework with applications in imaging,”

SIAM J. Matrix Anal. Appl., vol. 34(1), pp. 148-172, 2013

[28] L. Yang, Z.H. Huang, S.L. Hu and J.Y. Han, “An iterative algorithm for third-order

tensor multi-rank minimization,” submitted to Comput. Optim. Appl., Revised 2013.

[29] M. Tao and X. M. Yuan, “Recovering low-rank and sparse components of matrices

from incomplete and noisy observations,” SIAM J. Optim., vol. 21, pp. 57-81, 2011.

[30] B.S. He, M. Tao and X. M. Yuan, “Alternating direction method with Gaussian

back substitution for separable convex programming,” SIAM J. Optim., vol. 22(2),

pp. 313-340, 2012.

[31] Z. Lin, M. Chen and Y. Ma, “The augmented lagrange multiplier method for exact

recovery of corrupted low-rank matrices,” UIUC Technical Report UILU-ENG-09-

2215, 2009.

[32] M. Hestenes, “Multiplier and gradient methods,”J. Optim. Theory Appl., vol. 4, pp.

303-320, 1969.

[33] M.J.D. Powell, A method for nonlinear constraints in minimization problems, in

Optimization, R. Fletcher, ed., Academic Press, New York, 1969, pp. 283C298.

[34] R. T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, 1970.

[35] M. W. Berry, “Large-scale sparse singular value decompositions,” The International

Journal of Supercomputer Applications, vol. 6, pp. 13-49, 1992.

[36] R. M. Larsen. PROPACK-software for large and sparse svd calculations available at

http://sun.stanford. edu/srmunk/PROPACK/.

[37] Z.B. Xu, X.Y Chang, F.M. Xu and H. Zhang, “L1/2 regularization: A thresholding

representation theory and a fast solver,” IEEE Trans. Neural Networ. Learn. Syst.,

vol. 23(7), pp. 1013-1027, 2012.

[38] M. Zhang, Z.H. Huang and Y. Zhang, “Restricted p-isometry properties of nonconvex

matrix recovery,” IEEE Trans. Inform. Theory, vol. 59(7), pp. 4316-4323, 2013.

[39] L.C. Kong and N.H. Xiu, “Exact low-rank matrix recovery via nonconvex schatten

p-minimization,” Asia. Pac. J. Oper. Res., vol. 30(3), 1340010(13pages), 2013.

[40] Y.F. Li, Y.J. Zhang and Z.H. Huang, “Reweighted nuclear norm minimization algo-

rithm for low rank matrix recovery,” submitted to J. Comput. Appl. Math., Revised

2013.

25

http://sun.stanford

	1 Introduction
	2 Notation and Preliminaries
	3 Low Multilinear-Rank Tensor Recovery Problem
	4 The Augmented-Lagrangian-Type Methods
	5 Convergence Results
	6 Numerical Experiments
	6.1 Implementation Details
	6.2 Numerical Simulation
	6.3 Image Simulation

	7 Conclusions

