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Although many researches have conjectured the optimality of the hedging point pol-
icy for the multiple-product stochastic capacitated periodic review problem, it is still
a challenge to prove the hypothesis. This paper considers a special case of the capaci-
tated multiple-product periodic review problem where stochastic demand distribution,
production rate, unit production cost and periodic expected inventory cost are the same
for all different products. For this symmetric problem, we prove an optimal policy where
ordering and non-ordering regions for every product are defined. Our research provides
significant implications to the characterization of the optimal policy for the general
problem.
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1. Introduction

In the past 50 years, abundant research efforts aimed at finding the optimal ordering
policies for stochastic dynamic inventory models. Many theories have been gradually
developed for single-product systems (Iglehart, 1963; Veinott, 1966; Federgruen and
Zipkin, 1986; Chen and Lambrecht, 1996; Chen, 2004a). However, only few theo-
ries have been established for capacitated multiple-product periodic review sys-
tems. Evans (1967) first investigates such a system without considering the setup
cost. Furthermore, researchers (for example, Wein, 1992; Gershwin, 1994; de Veri-
court et al., 2000; Srivatsan and Dallery, 1998) have conjectured the optimality of
the hedging point policy of production/ordering for the multiple-product model.
Chen (2004b) characterizes the optimal hedging point policy for the two-product
system.

However, extending Chen’s (2004b) results to a system with more than two
products is not straightforward, and still a great challenge in academia. This paper
focuses on a symmetric multiple-product system in which parameters of the stochas-
tic demand distribution, the production rate, the unit production cost, and the
expected periodic inventory cost are the same for all different products. We estab-
lish an optimal policy which can be regarded as a special case of the hedging point
policy. The policy is intuitive and can be described as follows. First, optimal order-
ing and non-ordering regions can be defined. Second, it is proved that the following
ordering process can be repeated: Ordering the product with the least inventory
until its inventory level reaches the second lowest of all inventory levels, or the
capacity is used up, or the non-ordering region or the global minimum point is
reached.

The symmetric model is rooted in many practical applications. For instance, in
many mass customization cases (Lee et al., 1993; Selladurai, 2004), manufacturing
settings for different product variations are more or less the same. In some cases,
even demand distributions are just slightly different (DeCroix and Arreola-Risa,
1998).

The remainder of this paper is organized as follows. The literature review is
carried out in Sec. 2. Section 3 introduces the general multiple-product system.
In Sec. 4, analytical results for the symmetric three-product model are presented.
Section 5 extends the results in Sec. 4 to the symmetric m(m > 3)-product system
and further to the infinite horizon case. Conclusions are drawn in Sec. 6.

2. Literature Review

Johnson (1967) and Kalin (1980) establish the optimality of a multi-dimensional (s,
S) policy for the multiple-product model without considering capacity constraints.
For the capacitated multiple-product model, the policy is far more complex. Evans
(1967) may be the first one to consider the capacitated multiple-product, peri-
odic review and stochastic demand system in a finite horizon. Under the assump-
tion that the one-period expected cost function is strictly convex and second-order
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differentiable, he shows that an optimal policy can be partially characterized by
the base-stock policy. When all product inventory levels are above the base-stock
level, it is optimal to order nothing; when all product inventory levels are below the
base-stock level, it is optimal to order up to the base-stock level if there is suffi-
cient capacity. Evans (1967) only partially characterizes the order policy. Based on
Evans’s (1967) work, the model has been investigated intensively by the researchers.
Peña-Perez and Zipkin (1997) provide a heuristic policy for the system. Ha (1997)
proves that the optimality of the hedging point policy for the two-product system
in which two products have the identical production time. Wein (1992) proposes
an approximation for the multiclass queuing control problem. The solution conjec-
tures the optimality of a hedging point policy when all products are backlogged.
Srivatsan and Dallery (1998) and de Vericourt et al. (2000) provide a partial char-
acterization of the optimal hedging point policy by different techniques. Gersh-
win (1994) provides a systematic review on research works in this field and also
conjectures the optimality of the hedging point policy for the multiple product
system.

For the two-product system, Chen (2004b) proves the optimality of the hedging
point policy which can be described as follows. There are two curves intersect at
one hedging point, and therefore divide the two-dimensional (2D) plane into three
distinct regions, it is optimal to order none of the products 1 and 2 in different
regions.

DeCroix and Arreola-Risa (1998) extend Evans’s (1967) results to the infinite
horizon case, and prove that the symmetric resource allocation policy is optimal to
the model which is similar to the one in this paper. This paper further characterizes
the policy, and defines optimal ordering and non-ordering regions for each product.

When setup costs (or times) and capacity constraints are simultaneously con-
sidered in the multiple-product model, the system becomes much more complex.
Federgruen and Katalan (1998), Anupindi and Tayur (1998), and Stadtler (2003)
propose some heuristic solutions. It is still a challenge to find an optimal policy for
the system.

3. Model Description, Notation, and Dynamic
Program Formulation

A capacitated multiple-product periodic review system considers a production sys-
tem with a reliable and flexible machine that produces multiple distinct products
in a make-to-stock mode. Machine’s flexibility means that little time or cost is
required for the changeover as described in Gershwin (1994). The stochastic periodic
demand for each item is independently and identically distributed (i.i.d.). Unsatis-
fied demands are backlogged with the incurred penalty cost. The costs considered
here include the production cost and the inventory cost. The production cost func-
tion is assumed to be linear and the inventory cost function is convex. The inventory
cost is actually the holding cost when the inventory level is positive, or the penalty
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cost when there is a backlogging. Convex inventory cost can be justified by the case
of the Just-In-Time manufacturing system in which inventory is not encouraged.
The objective is to minimize the total expected discounted cost over the planning
time horizon.

A general model for the m-product system can be expressed as the following
dynamic program.

fn(x1, x2, . . . , xm) = min
mP

i=1

Xi−xi
ui

≤1;

xi≤Xi,∀i,1≤i≤m

{
m∑

i=1

(Li(Xi) + ci(Xi − xi))

+ αE(fn−1(X1 − d1, X2 − d2, . . . , Xm − dm))

}
, (1)

where

xi(Xi): The inventory level before (after) the order is placed for product
i at the beginning of a period.

Li(Xi): The one-period expected inventory cost function for product i.
It is assumed to be convex.

ui: The production rate for product i.
ci: The unit production cost for product i.
di: The one-period demand for product i, and it is an i.i.d. random

variable.
α: The discount factor.

fn(x1, x2, . . . , xm): The n-period minimum expected discounted cost function.

Define gi(X) = Li(X) + ciX , and

Gn(X1, X2, . . . , Xm)

=
m∑

i=1

gi(Xi) + αE(fn−1(X1 − d1, X2 − d2, . . . , Xm − dm)). (2)

Then Eq. (1) can be simplified as

fn(x1, x2, . . . , xm) = min
mP

i=1

Xi−xi
ui

≤1;

xi≤Xi,∀i,1≤i≤m

{Gn(X1, X2, . . . , Xm)} −
m∑

i=1

cixi. (3)

The initial condition is f0(x1, x2, . . . , xm) = 0.
It can be easily shown by induction that Gn(X1, X2, . . . , Xm) and fn(x1,

x2, . . . , xm) are convex (Chen, 2001).
One-sided directional partial derivatives of convex functions Gn(X1,

X2, . . . , Xm) and fn(x1, x2, . . . , xm) exist by Theorem 23.1 in Rockafellar (1970)
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and G′
nX+

i

(X1, X2, . . . , Xm) is defined as

G′
nX+

i

(X1, X2, . . . , Xm)

= lim
t→0+

Gn(X1, . . . , Xi + t, . . . , Xm) − Gn(X1, . . . , Xi, . . . , Xm)
t

. (4)

t → 0+ means that t approaches zero from the side which is greater than zero. The
other partial derivatives can be defined similarly.

4. Analytical Results for a Symmetric Three-Product System

First, we consider the following case: The periodic stochastic market demand is
discrete and can be 2, 5, 8 respectively with probability 0.2, 0.5, 0.3. The unit holding
cost is 1 and the shortage penalty cost is 6. The unit production cost is 3 and the
periodic discount factor is 0.98. It is easy to compute the global minimum which
is achieved at point (10, 10, 10). The problem with different production rates and
different inventory levels will have different order quantities as demonstrated in the
following Table 1.

From Table 1, we can observe some possible rules. For instance, if ordering is
necessary and the production capacity allows, the product with the least inventory
will be ordered till its inventory level reaches that of the product with the second
least inventory; then both products will be ordered simultaneously till their inven-
tory levels reach that of the product with the third least inventory. In this section,
we will prove these rules are true for the model. Moreover, the larger production
rate affects the order quantities with the same rule.

Here, model (3) is a simplified model, with its ordering policy being analyzed.
The simplified model assumes that three products have the same i.i.d. stochas-
tic demand, inventory cost, unit production cost, and production rate. Since cost
parameters are the same, the subscripts in the notation are removed thereafter.
Thus,

Gn(Xi, Xj , Xk) = g(Xi) + g(Xj) + g(Xk)

+ αE(fn−1(Xi − d, Xj − d, Xk − d)). (5)

Table 1. Computational results for different inventory levels and
production rates.

Starting inventory Inventory level after Inventory level after
level ordering (u = 3) ordering (u = 5)

(2, 5, 1) (3, 5, 3) (4, 5, 4)
(2, 5, 5) (5, 5, 5) (5.66, 5.66, 5.66)
(2, 5, 9) (5, 5, 9) (6, 6, 9)
(2, 1, 5) (3, 3, 5) (4, 4, 5)
(2, 9, 5) (5, 9, 5) (6, 9, 6)
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fn(xi, xj , xk) = min
Xi−xi

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi≤Xi,xj≤Xj ,xk≤Xk

{Gn(Xi, Xj , Xk)}

− c(xi + xj + xk). (6)

Due to symmetry, it can be inferred that ordering and non-ordering regions for
products i, j, and k might divide the three-dimensional (3D) space into three equal
parts. The main theoretical result obtained in this section is that three planes of
Xi = Xj , Xj = Xk, and Xk = Xi intersect at one global minimum point with equal
coordinate values and divide the 3D space into six equal parts. Propositions 4.1 and
4.2 characterize the ordering priority of these three products, and Proposition 4.3
presents the ordering policy.

Lemma 4.1 is straightforward.

Lemma 4.1. Suppose (r1, s1, t1) and (r2, s2, t2) are any sequence orders of
(i, j, k), then for all n, Gn(xr1, xs1, xt1) = Gn(xr2, xs2, xt2), and fn(xr1, xs1, xt1) =
fn(xr2, xs2, xt2).

Lemma 4.2. For both Gn(xi, xj , xk) and fn(xi, xj , xk), at least one global mini-
mum point P (X0

i , X0
j , X0

k) exists for each of them where their coordinate values are
equal, i.e., X0

i = X0
j = X0

k .

Proof. Suppose one global optimum point is P1(X1
i , X1

j , X1
k), without loss of

generality, let X1
i ≤ X1

j ≤ X1
k . If two equal signs are achieved, then the

lemma has been proved. Suppose at least one equal sign of the two does
not hold. Since P1(X1

i , X1
j , X1

k) is the global minimum point, by Lemma 4.1,
P2(X1

k , X1
i , X1

j ) and P3(X1
j , X1

k , X1
i ) are also global minimum points. Due to the

convexity of Gn(xi, xj , xk) and fn(xi, xj , xk), define P = 1
3P1 + 1

3P2 + 1
3P3 =

(X1
i +X1

j +X1
k

3 ,
X1

i +X1
j +X1

k

3 ,
X1

i +X1
j +X1

k

3 ), clearly P is a global optimum point with
equal coordinate values. This completes the proof.

Proposition 4.1. If xi = xj , then G′
nx+

i

(xi, xj , xk) = G′
nx+

j

(xi, xj , xk), f ′
nx+

i

(xi,

xj , xk) = f ′
nx+

j

(xi, xj , xk), if xj = xk, then G′
nx+

j

(xi, xj , xk) = G′
nx+

k

(xi, xj , xk),

f ′
nx+

j

(xi, xj , xk) = f ′
nx+

k

(xi, xj , xk), and if xk = xi, then G′
nx+

k

(xi, xj , xk) =

G′
nx+

i

(xi, xj , xk), f ′
nx+

k

(xi, xj , xk) = f ′
nx+

i

(xi, xj , xk).

Proof. The proof for the case of xi = xj will be given, and the results for the cases
of xj = xk and xk = xi can be obtained similarly.

By (4), Lemma 4.1 and xi = xj ,

G′
nx+

i

(xi, xj , xk) = lim
t→0+

Gn(xi + t, xj , xk) − Gn(xi, xj , xk)
t

,

= lim
t→0+

Gn(xj , xi + t, xk) − Gn(xj , xi, xk)
t

,
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= lim
t→0+

Gn(xi, xj + t, xk) − Gn(xi, xj , xk)
t

,

= G′
nx+

j

(xi, xj , xk).

Similar process is applicable to f ′
nx+

i

(xi, xj , xk). This completes the proof.

Proposition 4.1 states that when two items have equal inventory, their ordering
priorities are also equal.

Proposition 4.2. If xi < xj , then G′
nx+

i

(xi, xj , xk) ≤ G′
nx+

j

(xi, xj , xk), and

f ′
nx+

i

(xi, xj , xk) ≤ f ′
nx+

j

(xi, xj , xk), if xi > xj , then G′
nx+

i

(xi, xj , xk) ≥ G′
nx+

j

(xi,

xj , xk), and f ′
nx+

i

(xi, xj , xk) ≥ f ′
nx+

j

(xi, xj , xk).

Proof. The proof for xi < xj will be given. It is conducted by induction. First for
n = 1, by Eq. (5),

G1(xi + t, xj , xk) = g(xi + t) + g(xj) + g(xk), and

G1(xi, xj + t, xk) = g(xi) + g(xj + t) + g(xk).

Since g(·) is convex, if xi < xj , then g(xi + t) + g(xj) ≤ g(xi) + g(xj + t), thus
G1(xi + t, xj , xk) ≤ G1(xi, xj + t, xk), and

G′
1x+

i

(xi, xj , xk) = lim
t→0+

G1(xi + t, xj , xk) − G1(xi, xj , xk)
t

≤ lim
t→0+

G1(xi, xj + t, xk) − G1(xi, xj , xk)
t

= G′
1x+

j

(xi, xj , xk).

Assume that for n = N , if xi < xj , then G′
Nx+

i

(xi, xj , xk) ≤ G′
Nx+

j

(xi, xj , xk), and if

xi > xj , then G′
Nx+

i

(xi, xj , xk) ≥ G′
Nx+

j

(xi, xj , xk). The assumption that if xi < xj

then G′
Nx+

i

(xi, xj , xk) ≤ G′
Nx+

j

(xi, xj , xk) implies:

lim
t→0+

GN (xi + t, xj , xk) − GN (xi, xj + t, xk)
t

≤ 0. (7)

Furthermore, the following results are based on the assumptions and Proposi-
tion 4.1: If xi < xj , then G′

Nx+
i

(xi, xj , xk) ≤ G′
Nx+

j

(xi, xj , xk), if xi > xj , then

G′
Nx+

i

(xi, xj , xk) ≥ G′
Nx+

j

(xi, xj , xk), and if xi = xj , then G′
Nx+

i

(xi, xj , xk) =

G′
Nx+

j

(xi, xj , xk).

Thus, under the condition of that ordering product i or j is necessary, we have
two ordering policies:

Ordering policy 1: When xi < xj , ordering product i has the priority lower than
ordering product j, and vice versa. Thus, it is optimal to order product i when
xi < xj and product j when xi > xj .
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Ordering policy 2: When xi = xj , then it is always optimal to order products i

and j simultaneously along with xi = xj . This is due to the following reasons. To
the left-hand side of xi = xj , ordering product i is preferred to product j, and to
the right-hand side of xi = xj ordering product j is preferred; thus, it is optimal
to order products i and j simultaneously along with xi = xj . Although there is a
possibility that Chattering Phenomena in Chen (2004b) exists, xi = xj is always
included in the chattering area. Therefore, ordering along with xi = xj is always
optimal.

According to the above policies, if xi < xj , then Xi ≤ Xj ; if xi = xj , then
Xi = Xj ; and if xi > xj , then Xi ≥ Xj . Now it will be proved that if xi < xj ,
f ′

Nx+
i

(xi, xj , xk) ≤ f ′
Nx+

j

(xi, xj , xk).

From Eq. (6),

fN (xi + t, xj , xk) = min
Xi−(xi+t)

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi+t≤Xi;xj≤Xj ;xk≤Xk

{GN (Xi, Xj , Xk)}

− c(xi + xj + xk + t), (8)

fN (xi, xj + t, xk) = min
Xi−xi

u +
Xj−(xj+t)

u +
Xk−xk

u ≤1;
xi≤Xi;xj+t≤Xj ;xk≤Xk

{GN (Xi, Xj , Xk)}

− c(xi + xj + xk + t) (9)

and

fN (xi + t, xj , xk) − fN (xi, xj + t, xk)

= min
Xi−(xi+t)

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi+t≤Xi;xj≤Xj ;xk≤Xk

{GN (Xi, Xj , Xk)}

− min
Xi−xi

u +
Xj−(xj+t)

u +
Xk−xk

u ≤1;
xi≤Xi;xj+t≤Xj ;xk≤Xk

{GN(Xi, Xj , Xk)}. (10)

Assign X ′
i = Xi − t, then Xi = X ′

i + t, thus

min
Xi−(xi+t)

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi+t≤Xi;xj≤Xj ;xk≤Xk

{GN (Xi, Xj , Xk)}

= min
X′

i−xi
u +

Xj−xj
u +

Xk−xk
u ≤1;

xi≤X′
i ;xj≤Xj ;xk≤Xk

{GN(X ′
i + t, Xj, Xk)}

= min
Xi−xi

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi≤Xi;xj≤Xj ;xk≤Xk

{GN(Xi + t, Xj , Xk)}. (11)
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Similarly, assign X ′
j = Xj − t, then Xj = X ′

j + t and

min
Xi−xi

u +
Xj−(xj+t)

u +
Xk−xk

u ≤1;
xi≤Xi;xj+t≤Xj ;xk≤Xk

{GN (Xi, Xj, Xk)}

= min
Xi−xi

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi≤Xi;xj≤Xj ;xk≤Xk

{GN (Xi, Xj + t, Xk)}. (12)

Clearly, both minimization functions at the right-hand sides of Eqs. (11) and (12)
have the same constraint, thus have the same set of feasible solutions.

By Eqs. (11) and (12), Eq. (10) can be written as

fN (xi + t, xj , xk) − fN (xi, xj + t, xk)

= min
Xi−xi

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi≤Xi;xj≤Xj ;xk≤Xk

{GN (Xi + t, Xj, Xk)}

− min
Xi−xi

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi≤Xi;xj≤Xj ;xk≤Xk

{GN(Xi, Xj + t, Xk)}. (13)

Since xi < xj , for a sufficiently small positive t, we have xi + t ≤ xj . For the point
(xi + t, xj , xk) in Eq. (8), suppose the optimal point after ordering is (X1

i , X1
j , X1

k),
it is clear that X1

i ≤ X1
j . For the point (xi, xj + t, xk) in (9), suppose the optimal

point after ordering is (X2
i , X2

j , X2
k), thus X2

i ≤ X2
j since xi < xj < xj + t.

The next step here is to prove that GN (X1
i , X1

j , X1
k) ≤ GN (X2

i , X2
j , X2

k). Equa-
tion (7) and Proposition 4.1 state that for a sufficiently small positive t, and
Xi ≤ Xj , then GN (Xi + t, Xj, Xk) − GN (Xi, Xj + t, Xk) ≤ 0. Since the mini-
mization functions at the right-hand sides of Eqs. (11) and (12) have the same
set of feasible solutions, therefore, for a sufficiently small positive t, and Xi ≤ Xj ,
we have

min
Xi−xi

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi≤Xi;xj≤Xj ;xk≤Xk

{GN (Xi + t, Xj , Xk)}

≤ min
Xi−xi

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi≤Xi;xj≤Xj ;xk≤Xk

{GN (Xi, Xj + t, Xk)}.

Since X1
i ≤ X1

j , thus by Eq. (11), for Xi ≤ Xj , the following inequality holds:

GN (X1
i , X1

j , X1
k) ≤ min

Xi−xi
u +

Xj−xj
u +

Xk−xk
u ≤1;

xi≤Xi;xj≤Xj ;xk≤Xk

{GN(Xi, Xj + t, Xk)}. (14)

For X2
i ≤ X2

j , consider the following two cases:

Case 1: X2
i < X2

j . It means that there exist Xi and Xj such that following inequal-
ity holds.

X2
i = Xi < Xj + t = X2

j .

When t → 0+, Xi ≤ Xj . This means that the minimum to the right-hand side of
inequality (14) is attained at Xi ≤ Xj . Thus, by Eqs. (12) and (14), the following
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result is true:

GN (X1
i , X1

j , X1
k) ≤ GN (X2

i , X2
j , X2

k).

Case 2: X2
i = X2

j . It means that (X2
i , X2

j , X2
k) satisfies the following inequalities:

X2
i
− xi

u
+

X2
j − (xj + t)

u
+

X2
k − xk

u
≤ 1, xi ≤ X2

i , xj + t ≤ X2
j , xk ≤ X2

k .

Since X2
i = X2

j , and xi < xj , thus X2
i = X2

j ≥ xj + t > xi + t, and X2
j ≥

xj + t > xj , xk ≤ X2
k . This means that (X2

i , X2
j , X2

k) is in the feasible region of
minXi−(xi+t)

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi+t≤Xi;xj≤Xj ;xk≤Xk

{GN (Xi, Xj, Xk)}. Thus,

GN (X1
i , X1

j , X1
k) ≤ GN (X2

i , X2
j , X2

k).

The above analysis yields the following inequality for t → 0+:

GN (X1
i , X1

j , X1
k) ≤ GN (X2

i , X2
j , X2

k). (15)

By Eq. (10), for t → 0+, we have fN(xi + t, xj , xk) − fN (xi, xj + t, xk) ≤ 0. Thus,

f ′
Nx+

i

(xi, xj , xk) − f ′
Nx+

j

(xi, xj , xk)

= lim
t→0+

fN (xi + t, xj , xk) − fN(xi, xj + t, xk)
t

≤ 0. (16)

The next step is to prove that if Xi < Xj , then G′
(N+1)X+

i

(Xi, Xj , Xk) −
G′

(N+1)X+
j

(Xi, Xj, Xk) ≤ 0.

By Eq. (5),

G′
(N+1)X+

i

(Xi, Xj , Xk) − G′
(N+1)X+

j

(Xi, Xj , Xk)

= g′(Xi) − g′(Xj) + αE(f ′
NX+

i

(Xi − d, Xj − d, Xk − d)

− f ′
NX+

j

(Xi − d, Xj − d, Xk − d)). (17)

Since Xi < Xj , thus

g′(Xi) − g′(Xj) ≤ 0. (18)

By Eq. (16), the following inequality can be obtained easily:

αE{f ′
NX+

i

(Xi − d, Xj − d, Xk − d) − f ′
NX+

j

(Xi − d, Xj − d, Xk − d)} ≤ 0. (19)

Thus, by (18) and (19), G′
(N+1)X+

i

(Xi, Xj , Xk) − G′
(N+1)X+

j

(Xi, Xj , Xk) ≤ 0.

This completes the first part of the proposition and also concludes the proof.

Due to the symmetry of xi(Xi), xj(Xj), and xk(Xk), the following results can
be obtained:

(1) if xj < xk, then G′
nx+

j

(xi, xj , xk) ≤ G′
nx+

k

(xi, xj , xk) and f ′
nx+

j

(xi, xj , xk) ≤
f ′

nx+
k

(xi, xj , xk);
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(2) if xj > xk, then G′
nx+

j

(xi, xj , xk) ≥ G′
nx+

k

(xi, xj , xk) and f ′
nx+

j

(xi, xj , xk) ≥
f ′

nx+
k

(xi, xj , xk);

(3) if xk < xi, then G′
nx+

k

(xi, xj , xk) ≤ G′
nx+

i

(xi, xj , xk) and f ′
nx+

k

(xi, xj , xk) ≤
f ′

nx+
i

(xi, xj , xk);

(4) if xk > xi, then G′
nx+

k

(xi, xj , xk) ≥ G′
nx+

i

(xi, xj , xk) and f ′
nx+

k

(xi, xj , xk) ≥
f ′

nx+
i

(xi, xj , xk).

From Propositions 4.1 and 4.2, we can see that the plane xi = xj divides the
whole 3D space into two parts of xi < xj with G′

nx+
i

(xi, xj , xk) ≤ G′
nx+

j

(xi, xj , xk)

and xi > xj with G′
nx+

i

(xi, xj , xk) ≥ G′
nx+

j

(xi, xj , xk). Similar arguments are appli-

cable to the planes of xj = xk and xk = xi. Thus, these three planes of xi = xj ,
xj = xk, and xk = xi have an intersection curve which is the line of xi = xj = xk

as illustrated by line L1 in Fig. 1. By Lemma 4.2, L1 passes through a global mini-
mum point S. In addition, these three planes also divide the space into six different
sub-spaces which share the line L1 as the common boundary.

By the preceding analysis, the following results can be obtained as described in
Fig. 1:

in sub-space 1©:

xi ≤ xj ≤ xk, and

G′
nx+

i

(xi, xj , xk) ≤ G′
nx+

j

(xi, xj , xk) ≤ G′
nx+

k

(xi, xj , xk), (20)

S

1

2

3

4
5

6

xk= xi

Xk

Xi

Xj

L
1

xj= xk

xi= xj

Fig. 1. Solution framework for the symmetric three-product system.
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in sub-space 2©:

xj ≤ xi ≤ xk, and

G′
nx+

j

(xi, xj , xk) ≤ G′
nx+

i

(xi, xj , xk) ≤ G′
nx+

k

(xi, xj , xk), (21)

in sub-space 3©:

xj ≤ xk ≤ xi, and

G′
nx+

j

(xi, xj , xk) ≤ G′
nx+

k

(xi, xj , xk) ≤ G′
nx+

i

(xi, xj , xk), (22)

in sub-space 4©:

xk ≤ xj ≤ xi, and

G′
nx+

k

(xi, xj , xk) ≤ G′
nx+

j

(xi, xj , xk) ≤ G′
nx+

i

(xi, xj , xk), (23)

in sub-space 5©:

xk ≤ xi ≤ xj , and

G′
nx+

k

(xi, xj , xk) ≤ G′
nx+

i

(xi, xj , xk) ≤ G′
nx+

j

(xi, xj , xk), (24)

in sub-space 6©:

xi ≤ xk ≤ xj , and

G′
nx+

i

(xi, xj , xk) ≤ G′
nx+

k

(xi, xj , xk) ≤ G′
nx+

j

(xi, xj , xk). (25)

In sub-spaces 1© and 6©, G′
nx+

i

(xi, xj , xk) has the smallest value compared

with G′
nx+

j

(xi, xj , xk) and G′
nx+

k

(xi, xj , xk). Because Gn(xi, xj , xk) is convex,

G′
nx+

i

(xi, xj , xk) is a non-decreasing function of xi. Therefore, the boundary between

ordering something and nothing in sub-spaces 1© and 6© is the surface X∗
i (xj , xk)

which is defined as

G′
nx+

i

(xi, xj , xk)

{≥ 0, for xi ≥ X∗
i (xj , xk)

< 0, for xi < X∗
i (xj , xk)

. (26)

Similar analysis is applicable to sub-spaces 2© and 3©, and sub-spaces 4© and 5©.
The following proposition describes an optimal order policy for this system.

Proposition 4.3. (a) For any point P (xi, xj , xk) in sub-space 1© with xi greater
than or equal to X∗

i (xj , xk), it is optimal to order nothing;
(b) For any point P (xi, xj , xk) in sub-space 1© with xi less than X∗

i (xj , xk), it
is optimal to order product i until X∗

i (xj , xk) or a global minimum point is reached,
or plane xi = xj is reached if sufficient capacity is available. If the plane xi = xj

is reached, then order products i and j simultaneously along with the curve xi = xj

with the given xk value until X∗
i (xj , xk) or a global minimum point is reached, or

line L1 is reached if the capacity allows. If line L1 is reached, then order products i,
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j, and k simultaneously along with the line until a global minimum point is reached
provided any capacity is left.

Similar results hold for sub-spaces 2©, 3©, 4©, 5©, and 6© respectively. Sub-spaces
1©, 2©, 3©, 4©, 5©, and 6© are defined by (20)–(25) respectively.

Proof. By the definition of X∗
i (xj , xk), for a point P (xi, xj , xk) in sub-space

1©, if xi ≥ X∗
i (xj , xk), then G′

nx+
i

(xi, xj , xk) ≥ 0, and 0 ≤ G′
nx+

i

(xi, xj , xk) ≤
G′

nx+
j

(xi, xj , xk) ≤ G′
nx+

k

(xi, xj , xk). It implies that ordering these three products

will increase the cost. Hence, the part (a) is applicable.
If xi < X∗

i (xj , xk), then G′
nx+

i

(xi, xj , xk) < 0. Furthermore, as G′
nx+

i

(xi,

xj , xk) ≤ G′
nx+

j

(xi, xj , xk) ≤ G′
nx+

k

(xi, xj , xk), for any point in sub-space 1©, order-

ing product i has more advantage. Thus, increasing xi is optimal. The following
scenarios will occur while increasing xi.

Scenario 1: When X∗
i (xj , xk) is reached, by part (a), further ordering will no

longer reduce the cost, so the optimum is reached.

Scenario 2: A global minimum point is reached. Obviously, further cost reduction
is also impossible.

Scenario 3: xi = xj is reached. By the analysis at ordering policy 2 in the proof
of Proposition 4.2, increasing products i and j simultaneously along with xi = xj

is optimal if further ordering is necessary. While increasing xi and xj , scenario 1,
2, and 4 may occur and their respective analyses are applicable respectively.

Scenario 4: The line L1 is reached. Since L1 is the line with Xi = Xj = Xk,
similarly, the optimal ordering is to increase the inventory of products i, j, and k

simultaneously along with line L1, until the global minimum point is reached or the
capacity is used up. This concludes part (b) of the proposition.

Similar analysis is applicable to sub-spaces 2©, 3©, 4©, 5©, and 6©. This completes
the proof.

Thus, Proposition 4.3 proves the policy stated in Sec. 1. For a given xk, by the
definition of X∗

i (xj , xk), X∗
i (xj , xk) actually is a point on plane xi = xj . Therefore,

on plane xi = xj , X∗
i (xj , xk) is a function of xk and can be rewritten as X

′∗
(xk).

Clearly, the global minimum point is on the curve X
′∗

(xk).
Proposition 4.3 can be explained intuitively if we consider product 1 to be the

product with the lowest inventory; product 2 to be the one with the second-lowest
inventory; and product 3 to be the one with the highest inventory. By the optimal
policy in Proposition 4.3, the firm first produces product 1 until its inventory reaches
the same inventory level of product 2 at the beginning of the period. Then the
firm produces products 1 and 2 at the same rate until both inventory levels reach
the same inventory level of product 3 at the beginning of the period. Finally, the
firm produces all three products at the same rate. This process will stop either
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when the product capacity is used up or when the marginal benefit of production
becomes zero.

5. Extensions

5.1. Extension to the symmetric m-product system

Similarly, the symmetric m-product model assumes that products in the system
have the same i.i.d. stochastic demand, unit production cost and production rate
respectively. Therefore, define

Gn(X1, X2, . . . , Xm) = g(X1) + g(X2) + · · · + g(Xm)

+ αE(fn−1(X1 − d, X2 − d, . . . , Xm − d))

then the symmetric m-product system can be expressed as the following dynamic
program.

fn(x1, x2, . . . , xm) = min
X1−x1

u +
X2−x2

u +···+ Xm−xm
u ≤1;

x1≤X1;x2≤X2;...;xm≤Xm

{Gn(X1, X2, . . . , Xm)} − c

n∑
i=1

xi.

With a little effort, Lemmas 4.1 and 4.2 and Propositions 4.1–4.3 can be
extended for the symmetric m-product system, in which every xi = xj(i �= j, 1 ≤
i, j ≤ m) divides the m-dimensional space into two parts. All the parts have a com-
mon boundary of x1 = x2 = · · · = xm, and construct the sub-spaces in the number
of C1

mC1
m−1 · · ·C1

2C1
1 = m!, where Cl

k = k!
l!(k−l)! .

By Katajainen and Pasanen (1999), the time complexity of sorting the inventory
levels of (x1, x2, . . . , xm) is O(m log m).

5.2. Extension to infinite horizon

DeCroix and Arreola-Risa (1998) prove that Gn(Xi, Xj, Xk) and fn(xi, xj , xk) con-
verge monotonically and uniformly on any finite compact set. Hence, these limiting
functions are convex and satisfy the following equation.

f(xi, xj , xk) = min
Xi−xi

u +
Xj−xj

u +
Xk−xk

u ≤1;
xi≤Xi;xj≤Xj ;xk≤Xk

{G(Xi, Xj , Xk)} − c(xi + xj + xk),

where f(xi, xj , xk) = limn→∞ fn(xi, xj , xk) and G(xi, xj , xk) = limn→∞ Gn(xi,

xj , xk).
Clearly, let n → ∞, Lemmas 4.1 and 4.2, Propositions 4.1 and 4.2 also hold

for f(xi, xj , xk) and G(xi, xj , xk). Therefore, for the infinite horizon case, Proposi-
tion 4.3 is true.

DeCroix and Arreola-Risa’s (1998) result is also true for the m-product system.
Therefore, the results in Lemmas 4.1 and 4.2 and Propositions 4.1–4.3 for the three-
product infinite horizon case can be extended to the m-product infinite horizon
case.
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6. Discussions and Conclusions

This paper discusses a special case of the multiple-product flexible manufacturing
system. An optimal policy is established for the problem. Our research provides a
characterization for the structure of the optimal policy for a special case and also
provides significant implications to the characterization of the optimal policy for
the general problem.

Although this paper characterizes the production policy for the symmetric m-
product system, it is still not clear on how production controls of two or three
products affect each other in the optimal production policy. For the general two-
product system, Chen (2004b) completely characterizes the optimal policy based
on µ-difference monotone which is a structural property to reflect the competitive
advantage of producing two products. In this paper, the difficulty is avoided by
Propositions 4.1 and 4.2 where production controls of two products are not affected
by the production control of the third product. Future research can be directed
toward characterizing the optimal policy for the general multiple-product model.
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