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Abstract

There has been a lot of research on dynamic lot sizing problems with different nonlinear cost

structures due to capacitated production, minimum order quantity requirements, availability of

quantity discounts, etc. Developing optimal solutions efficiently for dynamic lot sizing models

with nonlinear cost functions is a challenging topic. In this paper we present a set of sufficient

conditions such that if a single-item dynamic lot sizing problem satisfies these conditions, then

the existence of a polynomial-time solution method for the problem is guaranteed. Several

examples are presented to demonstrate the use of these sufficient conditions.
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1 Introduction

Dynamic lot sizing (DLS) models are important inventory management tools for handling time-

varying demands. They have been used extensively in production planning systems. However,

in many real-life applications of DLS, the replenishment cost function has a nonlinear structure,

which can make the analysis of the DLS model highly challenging. For example, product prices

with quantity discounts are quite common in practice. These include all-units discounts, incremen-

tal discounts, truckload discounts, and other discount schemes. These price discounts make the

replenishment cost function of the DLS model quite complicated, which in turn increases the com-

plexity of the model. The cost function becomes even more complicated when there are additional

requirements such as minimum order quantity (MOQ) constraints. Another example is when the

production cost is concave (due to economy of scale of production) but the production capacity is

limited. Combining a concave production cost with a finite capacity results in a complicated cost

structure. In some DLS applications, the inventory holding cost function is also nonlinear. Hence,

DLS models with a nonlinear cost structure cover a broad range of applications.

Since Wagner and Whitin (1958) introduced the DLS model in their seminal paper, many

optimal and heuristic algorithms have been developed for different variants of the model. These

variants cover single versus multiple items, single versus multiple stages of production, stationary

versus time-varying demands, backlogging versus no shortages, uncapacitated versus capacitated

production, as well as other additional features such as lost sales, resales, bounded inventory,

demand time windows, etc. See Brahimi et al. (2006), Jans and Degraeve (2007, 2008), Buschkühl

et al. (2010), and Suwondo and Yuliando (2012) for recent reviews on various DLS problems and

solution approaches. Among these DLS problems, a substantial amount of research has been

devoted to single-stage, single-item problems of the following form:

P : minimize

n
∑

i=1

[

Pi(Xi) +Hi(Ii)
]

subject to Ii = Ii−1 +Xi − di (i = 1, 2, . . . , n)

I0 = Ī0

In ≤M

Xi ≥ 0 (i = 1, 2, . . . , n)

where
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n = the number of time periods in the planning horizon;

di = the given demand in period i (di ≥ 0);

Xi = the replenishment quantity in period i (Xi is a decision variable);

Ii = the ending inventory of period i (Ii is a decision variable);

Pi(Xi) = replenishment cost in period i (Pi(Xi) ≥ 0);

Hi(Ii) = cost of holding Ii units of inventory from period i to period i+ 1 (Hi(Ii) ≥ 0);

Ī0 = a given initial inventory level at the beginning of period 1; and

M = a given upper bound on the inventory level at the end of period n. Specifically, a lot of

research has been conducted for problem P with different replenishment cost functions Pi(·) and

holding cost functionsHi(·). Depending on these cost functions, some problems are computationally

intractable (i.e., NP-hard), while some of them are solvable in polynomial time.

Note that in problem P, functions Pi(·) and Hi(·) are not required to be monotone, concave,

or convex, and variable Ii is not required to be nonnegative. Note also that in problem P, we may

disallow a certain replenishment quantity Xi by setting Pi(Xi) = +∞. Hence, production capacity

constraints may be represented by setting Pi(Xi) = +∞ whenever Xi exceeds the production

capacity. Similarly, we may disallow a certain inventory level Ii by setting Hi(Ii) = +∞. Problems

with backlogging are represented by setting Hi(Ii) equal to the backordering cost whenever Ii < 0.

Problems with no backlogging allowed are represented by setting Hi(Ii) = +∞ whenever Ii < 0.

Traditionally, it is quite common that a custom-made solution method is developed for each

particular DLS problem. This is particularly true for those problems that are solvable optimally

in polynomial time with a high order of complexity, where custom-made algorithms comprising

sophisticated techniques (e.g., dynamic programming with sophisticated data structures and/or

complicated computational procedures) are often employed to lower the computational burden. It

is also true when the researcher wishes to show that a DLS problem is polynomial-time solvable.

Unlike the mainstream DLS literature, in this paper we present a set of sufficient conditions, such

that if problem P satisfies these conditions, the existence of a polynomial-time solution method

for the problem is guaranteed. These sufficient conditions enable us to identify the polynomial-

solvability of DLS problems easily.

Problem P covers many DLS models studied by other researchers. For example, the special case

where the holding cost function is linear and the replenishment cost function covers a fixed setup

cost and a linear production cost is the classical DLS model. In this classical model, Hi(Ii) = hiIi
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if Ii ≥ 0, Pi(Xi) = si + piXi if Xi > 0, and Pi(Xi) = 0 if Xi = 0, for i = 1, 2, . . . , n, where hi is the

unit holding cost, pi is the unit production cost, and si is the fixed setup cost in period i. Highly

efficient polynomial-time algorithms have been developed for this special case (and its variant with

backlogging allowed); see Federgruen and Tzur (1991), Wagelmans et al. (1992), and Aggarwal and

Park (1993). Extensions of this classical DLS model with concave costs have also been studied by

Wagner (1960) and Zangwill (1966, 1969).

Special cases with fixed setup costs, linear/concave holding and production costs, and produc-

tion capacity have been studied. Polynomial-time algorithms have been proposed by Florian and

Klein (1971), Van Hoesel and Wagelmans (1996), Ou (2012), and Piñeyro et al. (2013) for differ-

ent variants of the problem when the production capacity is stationary. Special cases with fixed

setup costs, linear/concave holding and production costs, and bounded inventory have also been

studied. Polynomial-time algorithms have been proposed by Love (1973), Gutiérrez et al. (2002,

2007), Atamtürk and Küçükyavuz (2008), Liu (2008), Van den Heuvel and Wagelmans (2008), and

Hwang and Van den Heuvel (2012).

MOQ requirements can be viewed as a special case of the general replenishment cost function

Pi(·), where Pi(Xi) = +∞ when replenishment quantity Xi is below the MOQ. Thus, many DLS

models with MOQ requirements can be viewed as special cases of problem P. Capacitated and

uncapacitated DLS problems with MOQ and various cost functions have been studied by Lee

(2004), Hwang (2010), Okhrin and Richter (2011a, 2011b), and Hellion et al. (2012, 2013).

Special cases with linear holding costs, fixed setup costs, and production costs with various

quantity discount patterns have been studied extensively. These include models with all-units dis-

count (Chung et al. 1987; Sohn and Hwang 1987; Federgruen and Lee 1990; Xu and Lu 1998; Chan

et al. 2002; Li et al. 2012; Mirmohammadi and Eshghi 2012; Archetti et al. 2014), models with

incremental discount (Federgruen and Lee 1990; Archetti et al. 2014), models with truckload dis-

count (Li et al. 2004), and models with batch ordering cost (or stepwise production cost) structure

(Vander Eecken 1968; Lippman 1969; Elmaghraby and Bawle 1972; Pochet and Wolsey 1993; Lee

1989; Li et al. 2004; Van Vyve 2007; Akbalik and Pochet 2009; Akbalik and Rapine 2012, 2013). A

model with general piecewise concave replenishment and holding costs has been studied by Koca

et al. (2014). A model with capacity reservation has been studied by Lee and Li (2013).

Problem P is known to be NP-hard for many special cases; see, for example, Florian et al. (1980)

and Bitran and Yanasse (1982). Pseudo-polynomial time algorithms have been developed for some
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cases; see, for example, Swoveland (1975) and Shaw and Wagelmans (1998). Algorithms with-

out polynomial time bounds have also been developed for some cases; see, for example, Chen et

al. (1994). Fully polynomial time approximation schemes have been developed for the case with

general monotone replenishment and holding cost functions; see, for example, Van Hoesel and

Wagelmans (2001), Chubanov et al. (2006), Ng et al. (2010), Chubanov and Pesch (2012), and

Halman et al. (2012).

Some of the abovementioned models satisfy our sufficient conditions, while some of them do not.

Table 1 summarizes various known DLS models with nonlinear costs that satisfy our conditions

(note: this table does not include those works on the classical DLS model with “fixed plus linear”

replenishment costs and linear holding/backlogging costs).

In Section 2, we present the set of sufficient conditions mentioned above. We provide a frame-

work for constructing a polynomial-time algorithm for those problems which satisfy these condi-

tions. In Section 3, we present several examples to demonstrate the use of these sufficient conditions.

Some concluding remarks are provided in Section 4.

2 Optimality Conditions

For simplicity, we assume that in problem P the initial inventory at the beginning of period 1 is

zero and that the ending inventory at the end of period n is required to be zero. This assumption

is made without loss of generality, as we can transform problem P into the following problem:

P
′ : minimize

n
∑

i=1

[

Pi(Xi) +Hi(Ii)
]

subject to Ii = Ii−1 +Xi − di (i = 1, 2, . . . , n)

I0 = In = 0

Xi ≥ 0 (i = 1, 2, . . . , n)

The transformation can be accomplished as follows: Consider any given instance of problem P with

ñ periods. If Ī0 ≥ 0, then we add a dummy period 0 before period 1 with d0 = 0,

P0(X) =







0, if X = Ī0;

+∞, if X 6= Ī0;
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Table 1: DLS models with nonlinear costs which fit into our framework.

Reference(s) Replenishment cost function Holding & backordering
cost functions

Running time of
solution method(s)

Wagner (1960) Concave Concave; no backlogging O(n2)

Zangwill (1966) Concave Concave; backlogging
allowed

O(n3)

Zangwill (1969) Fixed plus linear cost Concave; backlogging
allowed

O(n2)

Florian and Klein (1971) Concave cost with constant
capacities

Concave; backlogging
allowed

O(n4)

Bitran and Yanasse (1982) Fixed plus linear cost;
nonincreasing setup and unit
production costs; constant
capacities

Linear; no backlogging O(n3)

Pochet and Wolsey (1993) Fixed plus linear cost with constant
capacities C

Linear; no backlogging O(n2 min{n, C})

Van Hoesel and Wagelmans
(1996)

Concave cost with constant
capacities

Linear; no backlogging O(n3)

Ou (2012) Fixed plus linear cost with constant
capacities

Concave; backlogging
allowed

O(n3)

Piñeyro et al. (2013) Concave cost with constant
capacities

Concave cost with
non-speculative motives; no
backlogging

O(n3)

Hwang (2010) Concave cost with MOQ
requirement

Concave; backlogging
allowed

O(n5)

Okhrin and Richter (2011a) Fixed cost; constant unit
production cost; MOQ requirement;
constant capacities

Linear; no backlogging O(n3)

Okhrin and Richter (2011b) Fixed cost; constant unit
production cost; MOQ requirement

Linear; no backlogging O(n2)

Hellion et al. (2012, 2013) Concave cost with MOQ
requirement and constant capacities

Concave; no backlogging O(n6)

Federgruen and Lee (1990);
Xu and Lu (1998)

Fixed plus linear cost with all-units
discount (single price breakpoint);
nonincreasing product costs

Linear; no backlogging O(n3)

Sohn and Hwang (1987) Fixed plus linear cost with all-units
discount and resales (single price
breakpoint q)

Linear; no backlogging O(n3(
P

di/q)2)

Mirmohammadi and Eshghi
(2012)

Fixed plus linear cost with all-units
discount (single price breakpoint)

Linear; no backlogging O(n4)

Li et al. (2012) Fixed plus linear cost with all-units
discount and resales (single price
breakpoint)

Linear; no backlogging O(n2)

Li et al. (2012) Fixed plus linear cost with all-units
discount and resales (m price
breakpoints)

Linear; no backlogging O(nm+3)

Federgruen and Lee (1990) Fixed plus linear cost with
incremental discount; nonincreasing
setup and unit production costs

Linear; no backlogging O(n2)

Archetti et al. (2014) Fixed plus linear cost with
incremental discount

Linear; no backlogging O(n2)

Koca et al. (2014) Piecewise concave with m
breakpoints

Concave; backlogging
allowed

O(n2m+3)

Lee and Li (2013) Fixed plus linear cost with capacity
reservation and constant capacities

Linear; no backlogging O(n4)
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and H0(X) = 0 for any X . If Ī0 < 0, then we add a dummy period 0 before period 1 with d0 = −Ī0,

P0(X) =







0, if X = 0;

+∞, if X 6= 0;

and H0(X) = 0 for any X . We also add a dummy period ñ + 1 after period ñ with Pñ+1(X) =

Hñ+1(X) = 0 for any X and dñ+1 = M . It is easy to see that in an optimal solution of the

transformed problem, the beginning inventory level of period 1 must be Ī0, and the ending inventory

level of period ñ is allowed to be any value no greater than M . Thus, any optimal solution to the

transformed problem is also optimal to problem P if we remove the replenishments in the two

dummy periods. Note that this transformation does not affect the polynomial-time solvability of

the problem. Hence, in the following we focus on analyzing problem P′.

We first introduce a few definitions. A period i is said to be a regeneration period if Ii =

0. Hence, periods 0 and n of problem P′ are regeneration periods. A period i is said to be a

replenishment period if Xi > 0. Let {Y1, Y2, . . . , Y`} be a set of special replenishment quantities,

which are time-independent. Denote Y0 = 0. A period is said to be a regular period if the

replenishment quantity in that period is equal to Yk for some k = 0, 1, . . . , `. Otherwise, it is said

to be an irregular period. A regular period with a replenishment quantity Yk is called a type-k

regular period. Thus, type-0 regular periods are non-replenishment periods.

Next, we introduce some conditions:

Condition 1: Functions Pi(·) and Hi(·), i = 1, 2, . . . , n, can be evaluated in constant time.

Condition 2: There exists an optimal solution to P′ in which for any two consecutive regeneration

periods u and v (u < v), at most one of the periods u+ 1, u+ 2, . . . , v is an irregular period.

Condition 3: The number of special replenishment quantities, `, is fixed (i.e., a constant).

Condition 2 is a property which is often seen in DLS research, where irregular periods, depending

on the context, are sometimes called “fractional production periods” (Van Hoesel and Wagelmans

1996) or “LTL replenishment periods” (Li et al. 2004). In the following, we show that a polynomial-

time algorithm exists for problem P′ when Conditions 1–3 are satisfied. To do so, we define Ψu as

the optimal total cost to satisfy the demand in periods u+ 1, u+ 2, . . . , n, given that period u is a

regeneration period. For 0 ≤ u < v ≤ n, we define ψu+1,v as the optimal total cost to satisfy the

demand in periods u + 1, u + 2, . . . , v, given that periods u and v are (unnecessarily consecutive)

regeneration periods and that the number of irregular periods in {u + 1, u + 2, . . . , v} is at most
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one. Clearly, the following dynamic program solves problem P′ optimally:

(I) Recurrence relation: Ψu = minu<v≤n{ψu+1,v + Ψv} for u = 0, 1, . . . , n.

(II) Boundary condition: Ψn = 0.

(III) Objective: Ψ0.

The running time of this dynamic program isO(n2) if all the ψu+1,v values have been determined.

Therefore, it suffices to show that ψu+1,v can be obtained in polynomial time. We will use the

following notation: Let Z+ denote the set of all nonnegative integers. Let Di,j =
∑j

k=i dk denote

the cumulative demand in periods i, i+ 1, . . . , j.

In the computation of the ψu+1,v value, we consider the replenishment quantities in periods

u + 1, u+ 2, . . . , v. According to Condition 2, among these periods, besides one period which we

refer to as a special period, all the other v − u − 1 periods are regular periods. The special period

can be a regular period or an irregular period. In case there is no irregular period among periods

u+ 1, u+ 2, . . . , v, then the special period must be a regular period, and in such a case, we are free

to select any one of these v − u periods and refer to it as the special period.

For 0 ≤ u < v ≤ n, and for N0, N1, . . . , N` ∈ Z+ such that
∑`

k=0 Nk = v − u − 1 and
∑`

k=0 NkYk ≤ Du+1,v , define ψ′
u+1,v(N0, N1, . . . , N`) as the optimal total cost to satisfy the demand

in periods u + 1, u + 2, . . . , v, given that: (i) periods u and v are (unnecessarily consecutive)

regeneration periods; (ii) the set {u + 1, u + 2, . . . , v} includes one special period, say, period t;

and (iii) among the periods in {u + 1, u + 2, . . . , v} \ {t}, Nk of them are type-k regular periods

(k = 0, 1, . . . , `). Clearly,

ψu+1,v = min
N0,N1,...,N`∈Z+ s.t.

P`
k=0 Nk=v−u−1 and

P`
k=0 NkYk≤Du+1,v

{

ψ′
u+1,v(N0, N1, . . . , N`)

}

. (1)

Thus, we focus on determining the value of ψ′
u+1,v(N0, N1, . . . , N`) for any given u, v, N0, N1, . . . , N`

such that
∑`

k=0 Nk = v − u − 1 and
∑`

k=0 NkYk ≤ Du+1,v. Here, the technique of computing the

ψu+1,v value via evaluating all possible combinations of (N0, N1, . . . , N`) is adopted from Li et

al. (2012).

Consider any given i = u+1, u+2, . . . , v. There are either 0 or 1 special periods among periods

i, i+ 1, . . . , v, and the rest are all regular periods. For k = 0, 1, . . . , `, we let nk denote the number

of type-k regular period among the non-special periods in {i, i+ 1, . . . , v}. Then,

v − i ≤
∑̀

k=0

nk ≤ v − i+ 1.

8



Note that v− i+1−
∑`

k=0 nk, which is the number of special periods among periods i, i+1, . . . , v,

is equal to either 0 or 1. By using the state (n0, n1, . . . , n`) to keep track of the current status,

we develop the following dynamic program for calculating ψ′
u+1,v(N0, N1, . . . , N`). Here, the state

(n0, n1, . . . , n`) represents the scenario where Nk −nk non-special type-k regular periods have been

assigned to periods u+ 1, u+ 2, . . . , i− 1, so that there are nk type-k regular periods left for those

non-special periods in {i, i+ 1, . . . , v}, for k = 0, 1, . . . , `.

For i = u+1, u+2, . . . , v and nk = 0, 1, . . . , Nk (for k = 0, 1, . . . , `) such that v−i ≤
∑`

k=0 nk ≤

v − i + 1, define fu+1,v,i(n0, n1, . . . , n`) as the optimal total cost to satisfy the demand in periods

i, i+ 1, . . . , v, given that: (i) periods u and v are (unnecessarily consecutive) regeneration periods;

(ii) among those non-special periods within {i, i+ 1, . . . , v}, nk of them are type-k regular periods

(k = 0, 1, . . . , `); and (iii) there are v − i+ 1 −
∑`

k=0 nk special periods within {i, i+ 1, . . . , v}.

(I) Recurrence relation: For i = u+ 1, u+ 2, . . . , v and nk = 0, 1, . . . , Nk (k = 0, 1, . . . , `) such that

v − i ≤
∑`

k=0 nk ≤ v − i+ 1,

fu+1,v,i(n0, n1, . . . , n`)

=



























































min

{

Pi(Du+1,v −
∑`

k=0 NkYk) +Hi(Di+1,v −
∑`

k=0 nkYk) + fu+1,v,i+1(n0, n1, . . . , n`),

min
k=0,1,...,`

{

Pi(Yk)+Hi

(
∑`

j=0(Nj−nj)Yj +Yk−Du+1,i

)

+fu+1,v,i+1(n0, . . . , nk−1, nk−1, nk+1, . . . , n`)
}

}

,

if
∑`

k=0 nk = v − i;

min
k=0,1,...,`

{

Pi(Yk) +Hi(Di+1,v −
∑`

j=0 njYj + Yk) + fu+1,v,i+1(n0, . . . , nk−1, nk−1, nk+1, . . . , n`)
}

,

if
∑`

k=0 nk = v − i+ 1.

(II) Boundary conditions:

fu+1,v,v+1(n0, n1, . . . , n`) =







0, if (n0, n1, . . . , n`) = (0, 0, . . . , 0);

+∞, otherwise;

fu+1,v,i(n0, n1, . . . , n`) = +∞ if nk < 0 for some k = 0, 1, . . . , ` (for i = u+ 1, u+ 2, . . . , v).

(III) Objective: ψ′
u+1,v(N0, N1, . . . , N`) = fu+1,v,u+1(N0, N1, . . . , N`).

The recurrence relation is divided into two cases, depending on whether a special period is

assigned to one of the periods i, i+ 1, . . . , v or not.
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In the first case,
∑`

k=0 nk = v− i. Then, v− i+1−
∑`

k=0 nk = 1, and therefore a special period

is to be assigned to one of the periods i, i+ 1, . . . , v. In this case, we need to decide if we should

assign the special period to period i.

First, suppose we assign the special period to period i (which is the first term of the minimiza-

tion). Then, the replenishment quantity in period i must be Du+1,v −
∑`

k=0 NkYk. The ending

inventory level of period i is equal to Di+1,v −
∑`

k=0 nkYk, because the total demand in periods

i+1, i+2, . . . , v exceeds the total replenishment quantity in those periods by this quantity. Hence,

the holding cost incurred in period i is Hi(Di+1,v −
∑`

k=0 nkYk). Also, because the special period

is assigned to period i, the minimum possible total cost incurred in periods i + 1, i + 2, . . . , v is

fu+1,v,i+1(n0, n1, . . . , n`).

Next, suppose we do not assign the special period to period i (which is the second term of

the minimization). Then, we need to decide if the replenishment quantity in period i should be

Y0, Y1, . . ., or Y`. If we select an replenishment quantity of Yk, then the replenishment cost incurred

in period i is Pi(Yk). Furthermore, the ending inventory level of period i is
∑`

j=0(Nj −nj)Yj +Yk −

Du+1,i, because the total replenishment quantity in periods u+1, u+2, . . . , i is
∑`

j=0(Nj−nj)Yj +Yk

and the total demand in these periods is Du+1,i. Hence, in this case, the holding cost incurred in

period i is Hi

(
∑`

j=0(Nj − nj)Yj + Yk −Du+1,i

)

, and the minimum possible total cost incurred in

periods i+ 1, i+ 2, . . . , v is fu+1,v,i+1(n0, . . . , nk−1, nk − 1, nk+1, . . . , n`).

In the second case,
∑`

k=0 nk = v − i + 1. Then, v − i + 1 −
∑`

k=0 nk = 0, and therefore

no special period is assigned to periods i, i + 1, . . . , v. In such a case, we just need to decide

the replenishment quantity for period i, which is equal to either Y0, Y1, . . ., or Y`. If we select

a replenishment quantity of Yk, then the replenishment cost incurred in period i is Pi(Yk), and

the ending inventory level of period i is Di+1,v −
∑`

j=0 njYj + Yk, because the total demand in

periods i + 1, u + 2, . . . , v is Di+1,v, while the total replenishment quantity in these periods is
∑`

j=0 njYj − Yk. Also, the minimum possible total cost incurred in periods i + 1, i + 2, . . . , v is

fu+1,v,i+1(n0, . . . , nk−1, nk − 1, nk+1, . . . , n`).

Note that in the above dynamic programming formulation, a state (n0, n1, . . . , n`) is used to

keep track of the current status. This enables us to attain a polynomial running time when ` is

fixed, that is, when Condition 3 is satisfied. To analyze the computational complexity of the above

solution method, we first note that the values in {Di,j | 1 ≤ i, j ≤ n} can be pre-computed in O(n2)

time.
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Suppose we have pre-computed all of theDi,j values. Then, consider the above dynamic program

for calculating ψ′
u+1,v(N0, N1, . . . , N`). (i) There are O(n) stages; (ii) in each stage there are O(n)

possible values of each nk, for k = 0, 1, . . . , ` − 1; (iii) if n0, n1, . . . , n`−1 have been chosen, then

there are only two possible values of n`; and (iv) it requires a constant time to evaluate each

fu+1,v,i(n0, n1, . . . , n`) in the recurrence relation (by Conditions 1 and 3). Thus, this dynamic

program can be executed in O(n`+1) time. In other words, given u, v, N0, N1, . . . , N`, the value

of ψ′
u+1,v(N0, N1, . . . , N`) can be determined in O(n`+1) time. Note also that, given u and v, the

value of ψu+1,v can be determined from equation (1), where there are O(n`) possible values of

(N0, N1, . . . , N`) such that
∑`

k=0 Nk = v − u − 1. Hence, the value of ψu+1,v can be determined

in O(n`+1 · n`) = O(n2`+1) time. Therefore, predetermining all ψu+1,v values can be done in

O(n2`+1 · n2) = O(n2`+3) time, which implies that the overall running time needed for solving

problem P
′ via this method is O(n2`+3).

Summarizing the above analysis, we have the following theorem, which implies that problem P

is solvable in polynomial time.

Theorem 1 If Conditions 1–3 are satisfied, then an O(n2`+3) time algorithm can be constructed

for problem P.

3 Examples of Problems Satisfying Conditions 1–3

In this section, we demonstrate the sufficient conditions developed in Section 2 with several exam-

ples.

3.1 Example 1: DLS with Production Capacity and Backlogging

The first example is a capacitated DLS problem with fixed setup costs, linear production costs,

production capacities, backlogging allowed, and concave holding/backordering costs. Such a capac-

itated DLS problem can be viewed as a special case of problem P with replenishment cost

Pi(Xi) =



















0, if Xi = 0;

si + piXi, if 0 < Xi ≤ Ci;

+∞, if Xi > Ci;

where si is a fixed setup cost of production, pi is the unit production cost, and Ci is a time-varying

production capacity (see Figure 1(a)). In this problem, Hi(0) = 0 and Hi(·) is concave over intervals

11



(−∞, 0] and [0,∞) (see Figure 1(b)). This problem is known to be NP-hard in general (Florian et

al. 1980; Bitran and Yanasse 1982), and the special case with stationary production capacity can be

solved in O(n3) time (Ou 2012). This problem has the property that there always exists an optimal

solution such that there is at most one fractional production period between any two consecutive

regeneration periods, where a fractional production period i is a period in which 0 < Xi < Ci (see

Florian and Klein 1971). Thus, Condition 2 is satisfied.

� � � � � � � � � � 	 
 � � � � 
 � 	 � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � 	 �

�� �� ��

� ��

�� �� � 

! "#$%

&'

Figure 1: DLS with production capacity and backlogging.

Consider the case in which the number of distinct values of C1, C2, . . . , Cn is fixed. Let

C′
1, C

′
2, . . . , C

′
m be the distinct values of C1, C2, . . . , Cn, wherem is a fixed value. Let {C′

1, C
′
2, . . . , C

′
m}

be the set of special replenishment quantities. Then, Condition 3 is satisfied with ` = m. If the

functions Hi(·), i = 1, 2, . . . , n, can be evaluated in constant time, then Condition 1 is also satisfied

and, by Theorem 1, the problem is solvable in O(n2`+3) time. This also implies that the special

case with stationary production capacity is solvable in O(n5) time.

3.2 Example 2: Capacitated DLS with MOQ Requirement

The next example is a capacitated DLS problem with concave production and holding costs, sta-

tionary production capacity, no backlogging, and an MOQ requirement. The problem can be

12



formulated as follows:

minimize

n
∑

i=1

[

pi(Xi) + hi(Ii)
]

subject to Ii = Ii−1 +Xi − di (i = 1, 2, . . . , n)

LYi ≤ Xi ≤ UYi (i = 1, 2, . . . , n)

I0 = 0

Ii ≥ 0 (i = 1, 2, . . . , n)

Yi ∈ {0, 1} (i = 1, 2, . . . , n)

where pi(·) and hi(·) are concave functions, L > 0 is the MOQ, and U > 0 is the production capacity.

In this formulation, the concave replenishment cost function pi(·) may include a setup cost. In some

applications, the setup cost is ignored, as the MOQ already prohibits the replenishment quantities

to go below a certain level (see Okhrin and Richter 2011a, 2011b). Hellion et al. (2012, 2013) have

developed an O(n6) algorithm for this problem.

This problem can be viewed as a special case of problem P with replenishment cost

Pi(Xi) =







pi(Xi), if L ≤ Xi ≤ U ;

+∞, if Xi < L or Xi > U ;

(see Figure 2) and inventory holding cost

Hi(Ii) =







hi(Ii), if Ii ≥ 0;

+∞, if Ii < 0;

The problem has a property that there always exists an optimal solution such that there is at

most one fractional production period between any two consecutive regeneration periods, where

a fractional production period i is a period in which L < Xi < U (see Property 2 in Hellion et

al. 2012).

Let {L, U} be the set of special replenishment quantities. Then, Condition 2 is satisfied. The

number of special replenishment quantities, `, equals 2. Hence, Condition 3 is satisfied. If the

functions pi(·) and hi(·), i = 1, 2, . . . , n, can be evaluated in constant time, then Condition 1 is also

satisfied and, by Theorem 1, the problem is solvable in O(n7) time.

13



() ** +,

- ./01

Figure 2: Capacited DLS with MOQ requirement.

3.3 Example 3: DLS with Piecewise Concave Production Costs

The following DLS model is a generalization of the problem presented in Section 3.2:

minimize

n
∑

i=1

[

Pi(Xi) +Hi(Ii)
]

subject to Ii = Ii−1 +Xi − di (i = 1, 2, . . . , n)

I0 = 0

Xi, Ii ≥ 0 (i = 1, 2, . . . , n)

where Pi(·) is a piecewise concave function (see Figure 3) and Hi(·) is a concave function over the

23 44 56

7 89

Figure 3: DLS with piecewise concave production costs.
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interval [0,∞). Koca et al. (2014) have developed an O(n2m+3) algorithm for the case where the

breakpoints of the production cost function are stationary and the number of breakpoints, m, is

fixed.

This problem has a property that there always exists an optimal solution such that there is at

most one fractional production period between any two consecutive regeneration periods, where

a fractional production period i is a period in which Xi is not at a breakpoint of the curve Pi(·)

(see Theorem 1 in Koca et al. 2014). Let the distinct breakpoints in the production cost functions

P1(·), P2(·), . . . , Pn(·) be the special replenishment quantities. Then, Condition 2 is satisfied. If the

total number of distinct breakpoints in the production cost functions is fixed to m, then Condition 3

is satisfied with ` = m. If, in addition, the functions Pi(·) andHi(·), i = 1, 2, . . . , n, can be evaluated

in constant time, then Condition 1 is also satisfied and, by Theorem 1, the problem is solvable in

O(n2m+3) time.

3.4 Example 4: DLS with All-Units Discount and Resales

Next, we consider a DLS problem with all-units discount and resales. Let si be the fixed ordering

cost in period i. Let hi be the unit holding cost in period i. Let pi(Xi) be the purchase price of the

item in period i when the replenishment quantity is Xi. Function pi(·) has an all-units discount

price structure as shown in Figure 4(a), where the price breakpoints Q1, Q2, . . . , Qm are stationary.

Denote Q0 = 0 and Qm+1 = +∞. The unit price of the item in period i is αi,k if the replenishment

quantity is within [Qk, Qk+1), for k = 0, 1, . . . , m. In period i, the decision maker may choose to

resell part of the inventory and receive a revenue of ri per unit. We assume that αi,m+
∑j−1

q=i hq ≥ rj

for 1 ≤ i ≤ j ≤ n. Without this assumption, the decision maker can purchase an unlimited amount

of the item in period i, carry it, and resell it in period j to obtain an unlimited profit. Let Si be the

quantity of the item resold in period i. No backlogging is allowed. The problem can be formulated

as follows:

P1 : minimize

n
∑

i=1

[

siδ(Xi) + pi(Xi) + hiIi − riSi

]

subject to Ii + Si = Ii−1 +Xi − di (i = 1, 2, . . . , n)

I0 = In = 0

Xi, Ii, Si ≥ 0 (i = 1, 2, . . . , n)

15



: ; < = > ? @ A ; B C = ? D @ C D E = C ? D F G H

I J K L M N O M P Q R S T M P U V W R U X Y P V U Q W P Q P N L W J O M T Z [

\] ^^ _`

abcd

e

fg hij
-

kl

mnoa

pqra

st -
uva

wx ya

z{ =|

}~ �� ��
¢

��
¢��

�

�� ���
-

��
��

���

���

���

�� =�

Figure 4: DLS with all-units discount and resales.

where δ(Xi) = 1 if Xi > 0, and δ(Xi) = 0 if Xi = 0. A replenishment period i is called a fractional

replenishment period if Xi /∈ {Q1, Q2, . . . , Qm}. A period i is called a resale period if Si > 0.

Li et al. (2012) have shown that this problem is NP-hard in general and have developed an

O(nm+3) algorithm for the case where the number of price breakpoints, m, is fixed. To show that

this problem satisfies Conditions 1–3, we first demonstrate that the decision variables S1, S2, . . . , Sn
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can be eliminated. Define

r̃i = max
j=i,i+1,...,n

{

rj −

j−1
∑

q=i

hq

}

,

which represents the resalable value of a unit of the item in period i if we select the best pos-

sible period among periods i, i + 1, . . . , n to resell it. Li et al. (2012) have shown that solving

the given problem is equivalent to solving the problem with the objective function of minimizing
∑n

i=1

[

siδ(Xi) + pi(Xi) + hiIi − r̃iSi

]

. Using this new objective function, the problem has the

following property (see Lemma 2 in Li et al. 2012): There exists an optimal solution in which for

any two consecutive regeneration periods u and v (u < v), (i) none of periods u+ 2, u+ 3, . . . , v is

a resale period; and (ii) the number of fractional replenishment periods plus the number of resale

periods included in {u + 1, u+ 2, . . . , v} is at most one. This property implies that a resale must

take place in a replenishment period. It also implies that among periods u+ 1, u+ 2, . . . , v, except

for at most one period, the net replenishment quantity (i.e., replenishment quantity less the resale

quantity) in a period must be equal to one of Q0, Q1, . . . , Qm.

Let X ′
i denote the net replenishment quantity in period i. Let k be the index such that X ′

i ∈

[Qk, Qk+1). Then, the net replenishment cost, excluding the fixed setup cost, incurred in period i

is

p′i(X
′
i) = min

{

αi,kX
′
i, αi,k+1Qk+1−r̃i(Qk+1−X

′
i), αi,k+2Qk+2−r̃i(Qk+2−X

′
i), . . . , αi,mQm−r̃i(Qm−X ′

i)
}

,

because the decision maker has a choice of purchasing X ′
i units without reselling any of them,

purchasing Qk+1 units and resellingQk+1−X
′
i units, purchasing Qk+2 units and reselling Qk+2−X

′
i

units, etc. Hence, the given problem can be transformed into the following problem:

P
′
1 : minimize

n
∑

i=1

[

Pi(X
′
i) + hiIi

]

subject to Ii = Ii−1 +X ′
i − di (i = 1, 2, . . . , n)

I0 = In = 0

X ′
i, Ii ≥ 0 (i = 1, 2, . . . , n)

where Pi(X
′
i) = si + p′i(X

′
i) if X ′

i > 0, and Pi(X
′
i) = 0 if X ′

i = 0 (see Figure 4(b)).

Let {Q1, Q2, . . . , Qm} be the set of special replenishment quantities. The above property implies

that there always exists an optimal solution to Problem P
′
1 such that between any two consecutive

regeneration periods, there is at most one replenishment period not having a special replenishment

17



quantity. Thus, Condition 2 is satisfied. If m is fixed, then function Pi(·) can be evaluated in

constant time, and therefore Condition 1 is satisfied. Hence, problem P′
1, and therefore problem

P1, is solvable in O(n2m+3) time when m is fixed.

4 Concluding Remarks

We have presented a simple framework for obtained polynomial time algorithms for DLS problems

with nonlinear costs. This framework states that if Conditions 1–3 are satisfied, then a polynomial

time algorithm exists.

Problem P has only two sets of decision variables, namely replenishment quantity variables

and inventory variables. However, many DLS models involve more than these two sets of decision

variables. When there is a third set of decision variables, depending on the problem structure,

the model may be convertible into problem P or P′ by consolidating two different sets of decision

variables into one single set. For example, in the DLS problem with make-or-buy decisions presented

by Lee and Zipkin (1989), the problem can be transformed into an equivalent DLS problem with

only one set of replenishment variables. The transformed problem in Lee and Zipkin, in fact,

satisfies Conditions 1–3 when the cost functions and production capacities are stationary. Another

example is the DLS problem with all-units discount and resales presented in Section 3.4, where we

have demonstrated how to combine the replenishment variable Xi with the resale variable Si and

convert the problem into problem P′.

Note that Condition 2 is valid for only a subset of single-item, single-stage DLS problems.

There are many problems which can be formulated as model P but do not satisfy Condition 2. For

example, models with inventory bounds (see, e.g., Gutiérrez et al. 2007) are unlikely to satisfy this

condition. Hence, an interesting future research direction is to extend the current framework so that

it can be applied to more DLS problems. Another possible future research direction is to extend

Conditions 1–3 to cover DLS models with more complicated structures such as DLS problems with

multiple-items and DLS problems with multiple stages of production.
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