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1. Introduction

Multistage stochastic optimization models aim at determining optimal responses to

information as it becomes available over a finite horizon of N stages. Consider a

finite set Ξ of scenarios ξ = (ξ1, . . . , ξN ) ∈ Rm1 ×· · ·×RmN , where ξk is revealed at

the end of stage k, after a decision xk(ξ1, ..., ξk−1) is made but before the decision

xk+1(ξ1, ..., ξk) is made. Each scenario ξ has a known probability p(ξ) > 0, and these

probabilities add up to one. In this way Ξ is a probability space. Our attention is

directed to such decision-mappings that designate responses to the scenarios in Ξ,

i.e.,

x(·) : ξ 7→ x(ξ) =
(
x1(ξ), . . . , xN (ξ)

)
∈ Rn1 × · · · × RnN , Rn,

where xk(ξ) is the decision made at stage k = 1, . . . , N .

The linear space Hn consisting of all such mappings x(·) from Ξ to Rn is a

finite-dimensional Hilbert space equipped with the expectational inner product

〈x(·), w(·)〉 = E
(
x(ξ)Tw(ξ)

)
=
∑
ξ∈Ξ

p(ξ)

N∑
k=1

xk(ξ)Twk(ξ), (1)

where T means the transpose.

The objective function of a multistage stochastic optimization is usually taken

as E
(
f(x(ξ), ξ)

)
, where E stands for the expectation and f(x(ξ), ξ) is the total cost

of N stages under scenario ξ. This objective uses the expectation as a risk measure,

which is often criticized for being risk-neutral because it treats the cost (the cases

of f(x(ξ), ξ) > 0) and the gain (the cases of f(x(ξ), ξ) < 0) indifferently. A more

reasonable approach, which is a focal point of recent research, is to use a more

flexible measure R
(
f(x(ξ), ξ)

)
, which is risk-averse (defined later), as the objective

function in the multistage stochastic optimization models.

A popular risk-averse measure in finance and business is the mean-deviation

function

Rmd(η) = E(η) + βσ(η),

where η is a random variable, β > 0 is a constant, and σ stands for the standard

deviation. This function takes standard deviation as a safeguard of the decision.

However, for practical applications, this safeguard may not be good enough. For

instance, in portfolio optimization, Markowitz (1959) noted the shortcoming of using

variance and proposed using the semivariance of a portfolio to control risk. Bawa

(1975), Bawa and Lindenberg (1977) and Fishburn (1977) introduced a class of

downside risk measure known as the lower partial moment (LPM) to better suit

different risk profiles of the investors. Since the LPM can be used to control the

loss of portfolio, it has become a popular risk measure (see for instances Chen et

al. (2011), Grootveld and Hallerbach (1999), Harlow (1991), Ling et al. (2019) and

Yu et al. (2006)). Let t be a constant. The LPM of random variable η with respect

to t is defined as

LPMm(η, t) = E(η − t)m+ , where m ≥ 0 and (η − t)+ = max{0, η − t}.
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In particular,

LPM0(η, t) = P(η ≥ t) (Probability of η ≥ t),

and LPM1(η, t) is the expected shortfall of η falling beyond t.

The corresponding risk measure to LPM (MLPM for short) can be expressed as

Rm(η, t) = E(η) + βLPMm(η, t). (2)

Let us specify the meaning of “averse risk measure” formally.

Definition 1.1. Let η be a random variable. A risk measure R(η) is called averse

if it is a closed convex function of η and satisfies

R(η) > E(η) for all non-constant η.

It can be verified that both Rmd and Rm (m ≥ 1) are averse risk measures.

This paper is concerned with a computational scheme that can solve a constrained

optimization problem which uses Rm as the objective function.

In addition to this objective function, we assume that every admissible decision

x(·) must satisfy a set of constraints and the constraints generally depend on ξ that

imposes a constraint on x(·). We write this fact in the form of

x(·) ∈ C ⊂Hn, which means x(ξ) ∈ C(ξ) ∀ ξ ∈ Ξ. (3)

It is easy to see that C is convex and closed if C(ξ) is convex and closed for all

ξ ∈ Ξ.

In addition to (3), an important constraint to a multi-stage stochastic optimiza-

tion problem is that the mappings x(·) must be nonanticipative in the sense that the

response xk(ξ) at stage k depends only on the portion (ξ1, . . . , ξk−1) of the scenario

ξ realized in earlier stages, i.e.

x(ξ) =
(
x1, x2(ξ1), x3(ξ1, ξ2), . . . , xN (ξ1, ξ2, . . . , ξN−1)

)
.

This format of x(·) imposes that x(·) belongs to the so-called nonanticipativity

subspace N of Hn, where

N = {x(·) : xk(ξ1, . . . , ξN ) does not depend on ξk, . . . , ξN ∀ k} . (4)

The complementary linear subspace of N with respect to the expectational inner

product (1) is denoted byM = N⊥, which will contain the dual sequence generated

by the algorithms we are going to introduce.

In summary, the multistage MLPM minimization problem accounts for finding

an optimal response function x(·) ∈Hn for the following problem

min Rm

(
f(x(ξ), ξ), t

)
s.t. x(·) ∈ C ∩ N , (5)

in which for every ξ, f(x(ξ), ξ) is continuously differentiable and convex in x(ξ) and

C(ξ) is nonempty, closed and convex.
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Note that the objective function of Problem (5) is

H
(
x(·)

)
, Rm

(
f(x(ξ), ξ), t

)
= E

(
f(x(ξ), ξ)

)
+ βE

[
f(x(ξ), ξ)− t

]m
+
.

The convexity of H
(
x(·)

)
depends on the definition of t. If t is given as an inde-

pendent parameter, then H
(
x(·)

)
is convex in x(·). If t is a function of x(·), say

t = E
(
f(x(ξ), ξ)

)
, then H

(
x(·)

)
may not be convex in x(·) when f

(
x(ξ), ξ

)
is not

affine in x(ξ).

We shall develop a practical numerical method for solving Problem (5) for either

fixed t, or t = E
(
f(x(ξ), ξ)

)
. There are several difficult points in developing such a

method; i.e.,

• Even if there is an analytic definition for each C(ξ) via equality-inequality

systems, there is no analytic representation for set C.
• There is generally no matrix representation for subspace N .

• The LPM term in the objective function brings in a linkage constraint that

disrupts the required separability in ξ (i.e. C(ξ) depends on a single real-

ization of ξ, not all realizations of ξ), which creates an additional obstacle

for decomposition-based algorithms.

We propose to use a revision of the scenario aggregation (now called progressive

hedging) idea of Rockafellar and Wets (1991) for solving Problem (5). To get around

the linkage constraint, a scenario based decomposition algorithm called the La-

grangian progressive hedging algorithm (LPHA for short) is designed for the La-

grangian form of (5). The advantage of the LPHA is its decomposability: At each

iteration, one first solves K subproblems of dimension n, ignoring the nonanticipa-

tivity, where K is the cardinality of the set Ξ. The second step of each iteration is

to restore nonanticipativity, by projecting the primal solution obtained in the first

step onto the space N and updating the dual solution obtained in last iteration in

the space M — this is called the projection step. Overall, by taking advantage of

the scenario-decomposition approach, we reduce the amount of computation signif-

icantly because it solves K problems of size n, rather than a single problem of size

nK in each iteration.

The paper is organized as follows. In next section, we briefly introduce the

original progressive hedging algorithm (PHA for short). Then in Section 3 we study

how to reformulate Problem (5) into a suitable format for PHA. In particular, we

introduce the saddle point format of (5) and the LPHA for the saddle point format

of (5). We also discuss convergence properties of the LPHA. A numerical example

will be presented in Section 4, which demonstrates the effectiveness of the LPHA.

The paper is concluded in Section 5.
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2. The original PHA in a nutshell

The PHA for stochastic variational inequalities, studied in Rockafellar and Sun

(2019), aims at solving a stochastic variational inequality (SVI) as follows.

Find x(·) ∈Hn such that −F(x(·)) ∈ NC∩N (x(·)), (6)

where C and N are defined as (3) and (4), respectively, NC∩N
(
x(·)

)
stands for the

normal cone of set C ∩ N at x(·) in the sense of convex analysis (Rockafellar, 1970),

and F : Hn ⇒Hn defined as

F(x(·)) : ξ 7→ F (x(ξ), ξ), (7)

where F (·, ξ) : Rn ⇒ Rn is a given mapping ∀ξ. Under the following constraint

qualification (CQ for short) condition

Either C is a convex polyhedron and C ∩ N 6= ∅ or ri C ∩ N 6= ∅, (8)

one has

NC∩N
(
x(·)

)
= NC

(
x(·)

)
+NN

(
x(·)

)
= NC

(
x(·)

)
+M.

Therefore, together with the decomposable structure (7) of mapping F and the

definition (3) of C, Problem (6) is equivalent to

Find x(·) ∈ N , w(·) ∈M such that − F
(
x(ξ), ξ

)
− w(ξ) ∈ NC(ξ)

(
x(ξ)

)
∀ξ. (9)

The PHA for solving Problem (9) consists of the following iteration steps.

Algorithm 1. The PHA for Problem (9)

Given xν(·) ∈ N , wν(·) ∈M, and r > 0,

Step 1. Obtain x̂(ξ) for every ξ via solving

−F
(
x̂(ξ), ξ

)
− wν(ξ)− r|x̂(ξ)− xν(ξ)| ∈ NC(ξ)

(
x̂(ξ)

)
;

Step 2. Update

xν+1(·) = PN
(
x̂(·)

)
, wν+1(·) = wν(·) + rPM

(
x̂(·)

)
;

ν := ν + 1, repeat.

PN
(
x̂(·)

)
and PM

(
x̂(·)

)
in Step 2 are the projections of x̂(·) onto subspaces N

and M, respectively. It should be noted that the calculation of PN
(
x̂(·)

)
is rather

simple — it accounts to computation of certain conditional expectations of x̂(ξ).

Specifically, in two-stage problems, this projection is simply to calculate the usual

expectation of x̂(ξ), i.e., xν+1(ξ) = E
(
x̂(ξ)

)
∀ξ. For more details, see Rockafellar

and Wets (1991). Besides, PM
(
x̂(·)

)
can be easily obtained by

PM
(
x̂(·)

)
= x̂(·)− PN

(
x̂(·)

)
= x̂(·)− xν+1(·).

We summarize the convergence properties of Algorithm 1 in the theorem below.
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Theorem 2.1 (Theorem 2 of Rockafellar and Sun (2019)). Suppose that (i)

F (x(ξ), ξ) is monotone for all ξ, (ii) CQ (8) is satisfied, and (iii) Problem (6) has

a solution. Then the sequence generated by Algorithm 1 converges to a primal-dual

solution pair of Problem (9),
(
x∗(·), w∗(·)

)
, namely(

xν(·), wν(·)
)
→
(
x∗(·), w∗(·)

)
as ν → +∞,

and the primal part x∗(·) is a solution of Problem (6).

Moreover, if F (x(ξ), ξ) is affine in x(ξ) and C(ξ) is polyhedral for all ξ, then

the sequence {
(
xν(·), wν(·)

)
} converges at q-linear rate with respect to the r-norm

defined as

‖
(
x(·)− x∗(·), w(·)− w∗(·)

)
‖r =

√
‖x(·)− x∗(·)‖2 +

1

r2
‖w(·)− w∗(·)‖2.

Based on the theory of variational inequalities, under CQ (8), a necessary con-

dition for x(·) to be an optimal solution to Problem (5) is

−∂H
(
x(·)

)
∈ NC∩N

(
x(·)

)
, (10)

where ∂H is the subdifferential mapping of H, and condition (10) will be also

sufficient if Problem (5) is convex. Clearly, when t is a fixed parameter, Problem (5)

is equivalent to Problem (6) with F
(
x(·)

)
= ∂H

(
x(·)

)
, and F has the decomposable

structure in this case, thus under CQ (8) one can apply Algorithm 1 to obtain a

solution to Problem (5). However, a complication arises when t = E
(
f(x(ξ), ξ)

)
and f is not affine in x(ξ), which makes MLPM minimization problem (5) to be

generally nonconvex and hence ∂H
(
x(·)

)
to be non-monotone. In the next section,

we build a convex relaxation of Problem (5) in this case and extend the PHA to a

Lagrange form for handling non-decomposability of the relaxed problem.

3. The LPHA for MLPM minimization

3.1. Conversion of Problem (5) to a decomposable form of (9)

Case 1: t is an independent parameter in Problem (5).

Under the assumption that f(x(ξ), ξ) is convex and continuously differentiable

in x(ξ) for every ξ, one can calculate the subdifferential of H, ∂H
(
x(·)

)
: Hn ⇒Hn,

via ∂H
(
x(·)

)
: ξ 7→ ∂h(x(ξ), ξ), where ∂h(x(ξ), ξ) is defined as follows.

• When m = 1,

∂h(x(ξ), ξ) =


∇f(x(ξ), ξ) + β∇f(x(ξ), ξ), if f(x(ξ), ξ) > t,

∇f(x(ξ), ξ) + λβ∇f(x(ξ), ξ), λ ∈ [0, 1], if f(x(ξ), ξ) = t,

∇f(x(ξ), ξ), if f(x(ξ), ξ) < t.

• When m > 1, ∂h(x(ξ), ξ) = ∇f(x(ξ), ξ)+βm(f(x(ξ), ξ)−t)m−1
+ ∇f(x(ξ), ξ).

Since Problem (5) is a convex program in this case, thus, under constraint qual-

ification, Problem (5) can be solved by Algorithm 1 with F (x(ξ), ξ) = ∂h(x(ξ), ξ).
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Case 2: t = E
(
f(x(ξ), ξ)

)
in Problem (5).

By introducing an auxiliary variable s(·), Problem (5) can be converted to

min
x(·),s(·)

H1

(
x(·), s(·)

)
, E

(
f(x(ξ), ξ) + βs(ξ)m

)
(11)

s.t.
(
x(·), s(·)

)
∈ C1 ∩N1,

where

C1 =

{(
x(·), s(·)

)
∈Hn ×H1 :

x(ξ) ∈ C(ξ), s(ξ) ≥ 0,

E
(
f(x(ξ), ξ)

)
≥ f(x(ξ), ξ)− s(ξ), ∀ξ

}
and

N1 = The nonanticipative subspace of
(
x(·), s(·)

)
=
{(
x(·), s(·)

)
∈Hn ×H1 : x(·) ∈ N , s(·) free

}
.

Note that ∂H1

(
x(·), s(·)

)
has decomposable structure like (7), however the con-

straints in C1 are not decomposable in ξ due to the existence of E
(
f(x(ξ), ξ)

)
. To

overcome this obstacle, we introduce a single auxiliary variable y and consider a

convex relaxation of (11) as follows.

min
y,x(·),s(·)

E
(
y + βs(ξ)m

)
(12)

s.t. x(ξ) ∈ C(ξ), s(ξ) ≥ 0, f(x(ξ), ξ)− s(ξ)− y ≤ 0, ∀ξ
E
(
f(x(ξ), ξ)

)
≤ y,

(
y, x(·), s(·)

)
∈ R×N1.

Proposition 3.1. Problem (12) is a convex relaxation of Problem (11), which

means that the optimal value of Problem (12) is a lower bound of the optimal value

of Problem (11). Moreover, if
(
y∗, x∗(·), s∗(·)

)
is a solution to Problem (12) and

y∗ = E
(
f(x∗(ξ), ξ)

)
, then

(
x∗(·), s∗(·)

)
is a solution to Problem (11).

Furthermore, if f(x(ξ), ξ) is affine in x(ξ) for all ξ, then Problem (11) is equiva-

lent to a convex program that is obtained by replacing the inequality E(f(x(ξ), ξ)) ≤
y in (12) with the equality E(f(x(ξ), ξ)) = y.

Proof. Since Problem (11) can be equivalently reformulated as

min
y,x(·),s(·)

E
(
y + βs(ξ)m

)
(13)

s.t. x(ξ) ∈ C(ξ), s(ξ) ≥ 0, ∀ξ
f(x(ξ), ξ)− s(ξ) ≤ E(f(x(ξ), ξ)) ≤ y, ∀ξ(
y, x(·), s(·)

)
∈ R×N1,

a solution
(
x∗(·), s∗(·)

)
to Problem (11) together with y∗ = E

(
f(x∗(ξ), ξ)

)
serves

a solution to Problem (13). Note that the objectives of Problem (12) and (13) are

the same, and the feasible set of (12) is larger than the feasible set of (13). Thus,

Problem (12), which is a convex problem, can be regarded as a convex relaxation

of Problem (11), with the optimal value of Problem (12) being not greater than

the optimal value of Problem (11). Moreover, if
(
y∗, x∗(·), s∗(·)

)
is a solution to
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Problem (12) and y∗ = E
(
f(x∗(ξ), ξ)

)
, then it is a feasible point of Problem (13).

Since any feasible point
(
y, x(·), s(·)

)
of Problem (13) is feasible to Problem (12),

the following holds by the fact that
(
y∗, x∗(·), s∗(·)

)
is a solution to (12):

E
(
y∗ + βs∗(ξ)m

)
≤ E

(
y + βs(ξ)m

)
∀ feasible

(
y, x(·), s(·)

)
of problem (13),

which infers that
(
y∗, x∗(·), s∗(·)

)
is also a feasible solution to Problem (13) and is

therefore a feasible solution to Problem (11).

If f(x(ξ), ξ) is affine in x(ξ) for all ξ, then equality E(f(x(ξ), ξ)) = y is a convex

constraint, therefore, replacing the inequality E(f(x(ξ), ξ)) ≤ y in (12) with the

equality E(f(x(ξ), ξ)) = y results in a convex program. It is easy to see that this

convex program is equivalent to Problem (11). The proof is complete. �

Remark 3.1. So far most applications we encounter have f(x(ξ), ξ) to be affine

in x(ξ). Therefore the second part of Proposition 3.1 applies and the relaxation is

exact. Otherwise, the error of the relaxation can be estimated by certain probability

inequalities (e.g., Chebyshev inequality and Petrov exponential inequality), based

on given moment information of ξ and other assumptions. This is an on-going work

in robust optimization and is better left for a separate study.

It is often more convenient for computational purpose to replace the single vari-

able y by a functional y(·) ∈ H with an additional constraint y(ξ) = y for all

ξ ∈ Ξ, i.e., y(ξ) independent with ξ and can be treated as an additional part of

the first-stage variable. In this way, we gain some theoretical advantage at a minor

computational cost. Denote

z(·) =
(
y(·), x(·), s(·)

)
∈Hn+2,

then problem (12) can be re-written as the following problem

min
z(·)

H2

(
z(·)
)

= E
(
h(z(ξ), ξ)

)
(14)

s.t. z(·) ∈ C2 ∩N2 ∩ S,

where h(z(ξ), ξ) := y(ξ) + βs(ξ)m, and

N2 = {z(·) ∈Hn+2 | y(ξ) = y ∀ ξ, x(·) ∈ N , s(·) free}.

Note that the objective function is the expectation of h(z(ξ), ξ), which infers that

H2 is continuously differentiable and its gradient has the decomposable structure

in ξ as (7) with F = ∇h. Besides, the first part of constraints is also decomposable

in ξ, namely, z(ξ) ∈ C2(ξ) ∀ ξ, where

C2 = {z(·) ∈Hn+2 : x(ξ) ∈ C(ξ), s(ξ) ≥ 0, f(x(ξ), ξ)− s(ξ)− y(ξ) ≤ 0,∀ξ},

the second part of constraints is the nonanticipativity constraint z(·) ∈ N2 and the

last single constraint

z(·) ∈ S = {z(·) ∈Hn+2 : E
(
f(x(ξ), ξ)− y(ξ)

)
≤ 0}
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is the so-called “linkage constraint” because it links all ξ together, or “cross con-

straint” as we named it in Sun et al (2019).

It is easy to show that, Problem (14) is a convex program. Thus, the sufficient

and necessary condition for optimality of z(·) is

−∇H2

(
z(·)
)
∈ NC2∩N2∩S

(
z(·)
)
, (15)

which is similar to Problem (6) except the additional linkage constraint S. Note

that H2 is differentiable, so we use ∇H2 instead of ∂H2.

3.2. The Lagrangian PHA for MLPM minimization

Now we focus on Problem (14). The idea to remove the linkage constraint is based

on the Lagrangian function. First, we denote the Lagrangian function of Problem

(14) by L(z(·), λ) : Hn+2 × R→ [−∞,+∞] and there hold

• if z(·) ∈ C2 ∩N2, λ ≥ 0, then

L(z(·), λ) = H2(z(·)) + λ
(
E
(
f(x(ξ), ξ)− y(ξ)

))
= E

(
`(z(ξ), λ)

)
,

where `(z(ξ), λ) = h(z(ξ), ξ) + λ(f(x(ξ), ξ)− y(ξ));

• if z(·) /∈ C2 ∩N2, λ ≥ 0, then L(z(·), λ) = +∞;

• if z(·) ∈ C2 ∩N2, λ < 0, then L(z(·), λ) = −∞.

Due to the convexity of Problem (14), under the following CQ that

ri C2 ∩N2 ∩ riS 6= ∅, (16)

z∗(·) is the optimal solution of Problem (14) iff there exists λ∗ ∈ R such that

(z∗(·), λ∗) is a saddle point of the Lagrangian function L(z(·), λ) with respect to

minimizing over z(·) ∈Hn+2 and maximizing over λ ∈ R, i.e.,

(z∗(·), λ∗) ∈ arg

{
min

z(·)∈C2∩N2

max
λ≥0

L(z(·), λ)

}
, (17)

which leads to (
−∇zL(z∗(·), λ∗)
∇λL(z∗(·), λ∗)

)
∈ N(C2∩N2)×R+

(z∗(·), λ∗). (18)

In fact, ∇zL(z∗(·), λ∗) ∈Hn+2 with

∇zL(z∗(·), λ∗) : ξ 7→

 1− λ∗
λ∗∇f(x∗(ξ), ξ))

βms∗(ξ)m−1

 ,

and ∇λL(z∗(·), λ∗) ∈ R with

∇λL(z∗(·), λ∗) = E
(
f(x(ξ), ξ)− y(ξ)

)
.

It can be seen that ∇zL(z∗(·), λ∗) has the decomposable structure as (7) while

∇λL(z∗(·), λ∗) is not decomposable. In order to handle the nondecomposable part,
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we use the similar technique for y to introduce a variable u(·) ∈ H and let u(·) ∈
C3 ∩N3 with

C3 := {u(·) ∈H : u(ξ) ∈ R+ ∀ ξ}, N3 := {u(·) ∈H : u(ξ) = λ ∀ ξ}.

Let L̄(z(·), u(·)) : (C2 × C3) ∩ (N2 ×N3)→ R be

L̄(z(·), u(·)) := E
(
`(z(ξ), u(ξ))

)
.

Then (z∗(·), λ∗) being a saddle point of L(z(·), λ) is equivalent to (z∗(·), u∗(·)) being

a saddle point of L̄(z(·), u(·)) with u∗(ξ) = λ∗ ∀ ξ, which further implies

−
(
∇zL̄(z∗(·), u∗(·))
−∇uL̄(z∗(·), u∗(·))

)
∈ N(C2×C3)∩(N2×N3)(z

∗(·), u∗(·)). (19)

Here ∇zL̄(z∗(·), u∗(·)) ∈Hn+2 with decomposable structure:

∇zL̄(z∗(·), u∗(·)) : ξ 7→

 1− u∗(ξ)
u∗(ξ)∇f(x∗(ξ), ξ))

βms∗(ξ)m−1

 ,

and ∇uL̄(z∗(·), u∗(·)) ∈H has decomposable structure as well with

∇uL̄(z∗(·), u∗(·)) : ξ 7→ f(x∗(ξ), ξ)− y∗(ξ).

So far, we come up with problem (19) in format (6) with

F =

(
∇zL̄
−∇uL̄

)
, C = C2 × C3 and N = N2 ×N3,

therefore, under CQ that ri(C2 × C3) ∩ (N2 × N3) 6= ∅, (19) is equivalent to find

(z∗(·), u∗(·)) ∈ N2 ×N3 and (w∗(·), v∗(·)) ∈M2 ×M3 such that

−
(
∇zL̄(z∗(ξ), u∗(ξ))

−∇uL̄(z∗(ξ), u∗(ξ))

)
−
(
w∗(ξ)

v∗(ξ)

)
∈ NC2(ξ)×C3(ξ)(z

∗(ξ), u∗(ξ)), ∀ ξ,

where Mi are the complementary subspace of Ni for i = 2, 3, then one can ap-

ply Algorithm 1 for the above equivalent problem and obtain a saddle point of

L̄(z(·), u(·)); furthermore, this saddle point can provide a solution to Problem (14).

More concretely, when applying Algorithm 1, it starts from
(
zν(·), uν(·)

)
∈ N2×

N3 and
(
wν(·), vν(·)

)
∈ M2 ×M3. In Step 1, one obtains (ẑν(ξ), ûν(ξ)) through

the following variational inequality for every ξ,

−
(
∇zL̄(z(ξ), u(ξ))

−∇uL̄(z(ξ), u(ξ))

)
−
(
wν(ξ)

vν(ξ)

)
− r

(
z(ξ)− zν(ξ)

u(ξ)− uν(ξ)

)
∈ NC2(ξ)×C3(ξ)(z(ξ), u(ξ)),

which is actually the saddle point condition of the following small-size min-max

problem for every ξ:

min
z∈C2(ξ)

max
u∈R+

φr
(
z, u;wν(ξ), vν(ξ), ξ

)
, (20)
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where

φr(z, u;w, v, ξ) = `(z, u) + zTw − uv +
r

2
‖z − zν(ξ)‖2 − r

2
(u− uν(ξ))2.

In fact, denote g(z(ξ), ξ) = f(x(ξ), ξ)− y(ξ), then problem (20) is equivalent to the

following problem

min
z∈C2(ξ)

{
h(z, ξ) + zTwν(ξ) +

r

2
‖z − zν(ξ)‖2 + max

u∈R+

{ug(z, ξ)− uvν(ξ)− r

2
(u− uν(ξ))2}

}
.

(21)

Since the maximizer of problem max
u∈R+

{ug(z, ξ)− uvν(ξ)− r
2 (u− uν(ξ))2} is

ûν(ξ) := max{0, uν(ξ) + r−1(g(z, ξ)− vν(ξ))},

we have (21) equal to

min
z∈C2(ξ)

ψr
(
z, uν(ξ), wν(ξ), vν(ξ), ξ

)
(22)

where

ψr(z, u, w, v, ξ) , h(z, ξ) + zTw +
r

2
‖z − zν(ξ)‖2 +

1

2r

(
g(z, ξ)− v

)2
−r

2
dist2

R+

(
uν(ξ) + r−1

(
g(z, ξ)− v

))
,

with dist2
R+

(a) := minx∈R+(x − a)2. Thus, the solution of (20), (ẑν(ξ), ûν(ξ)), can

be calculated in terms of the augmented Lagrangians:{
ẑν(ξ) = argmin z∈C2(ξ) ψr

(
z, uν(ξ), wν(ξ), vν(ξ), ξ

)
,

ûν(ξ) = max{0, uν(ξ) + r−1(g(ẑν(ξ), ξ)− vν(ξ))}.

In Step 2, the projection (zν+1(·), uν+1(·)) = PN2×N3
(ẑν(·), ûν(·)) is equivalent

to

{
zν+1(·) = PN2(ẑν(·)),
uν+1(ξ) = PN3

(ûν(·)), ⇔


yν+1(ξ) = E(ŷν(ξ)) ∀ ξ,
xν+1(·) = PN (x̂ν(·)),
sν+1(·) = ŝν(·),
uν+1(ξ) = E(ûν(ξ)) ∀ ξ,

and the dual part is {
wν+1(·) = wν(·) + r(ẑν(·)− zν+1(·)),
vν+1(·) = vν(·) + r(ûν(·)− uν+1(·)).

To summarize, the Lagrangian progressive hedging algorithm for Problem (14)

and its convergence results are presented as Algorithm 2 and Theorem 3.1.

Theorem 3.1. Suppose Problem (14) is solvable and CQ (16) holds. Then the

iteration sequence {(zν(·), uν(·), wν(·), vν(·))} generated by Algorithm 2 for any r >

0, starting from any (z0(·), u0(·)) ∈ N2 × N3 and (w0(·), v0(·)) ∈ M2 ×M3, will

converge (in the weak topology of Hn+3×Hn+3) to a solution pair of problem (14),
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(z∗(·), u∗(·), w∗(·), v∗(·)). Moreover, denoting Z = (z(·), u(·)) and W = (w(·), v(·)),
and the norm in Hn+3 ×Hn+3 as

‖(Z,W )‖2r = ‖z(·)‖2 + ‖u(·)‖2 +
1

r2
‖w(·)‖2 +

1

r2
‖v(·)‖2,

we have

‖(Zν+1,W ν+1)− (Z∗,W ∗)‖r ≤ ‖(Zν ,W ν)− (Z∗,W ∗)‖r for all ν.

Proof. The proof is similar to the one in Rockafellar and Sun (2020). We omit the

details. �

Algorithm 2. LPHA for MLPM minimization

Given (zν(·), uν(·)) ∈ N2 ×N3, (wν(·), vν(·)) ∈M2 ×M3, and r > 0,

Step 1. For every ξ, obtain ẑν(ξ) and ûν(ξ) via

ẑν(ξ) = arg min
z∈C2(ξ)

ψr(z, u
ν(ξ), wν(ξ), vν(ξ)),

ûν(ξ) = max
{

0, uν(ξ) + r−1(g(ẑν(ξ), ξ)− vν(ξ))
}

;

Step 2. Update

zν+1(·) = PN2
(ẑν(·)), uν+1(ξ) = E(ûν(ξ)) ∀ ξ,

wν+1(·) = wν(·) + r(ẑν(·)− zν+1(·)),
vν+1(·) = vν(·) + r(ûν(·)− uν+1(·));

ν := ν + 1, repeat.

Particularly, when f(x(ξ), ξ) is affine in x(ξ) for all ξ, Problem (12) is equivalent

to the following convex problem based on Proposition 3.1.

min
z(·)

H2

(
z(·)
)

(23)

s.t. z(·) ∈ C2 ∩N2 ∩ S ′,

where S ′ = {z(·) ∈ Hn+2 : E
(
f(x(ξ), ξ) − y(ξ)

)
= 0}. Utilizing the saddle point

concept to achieve the decomposition, we have that the solution to the following

SVI is a solution to Problem (23):

−
(
∇zL̄(z∗(·), u∗(·))
−∇uL̄(z∗(·), u∗(·))

)
∈ N(C2×H )∩(N2×N3)(z

∗(·), u∗(·)),

in which the only difference from (19) is the multiplier u∗(ξ) ∈ R rather than

u∗(ξ) ∈ R+ for all ξ. Therefore, following the similar derivations to Algorithm 2,

we can obtain the following Algorithm 3 for finding a solution to Problem (12) in

case that f(x(ξ), ξ) is affine.
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Algorithm 3. LPHA for MLPM minimization with affine f

Given (zν(·), uν(·)) ∈ N2 ×N3, (wν(·), vν(·)) ∈M2 ×M3, and r > 0,

Step 1. For every ξ, obtain ẑν(ξ) and ûν(ξ) via

ẑν(ξ) = arg min
z∈C2(ξ)

ψ̄r(z, u
ν(ξ), wν(ξ), vν(ξ)),

ûν(ξ) = uν(ξ) + r−1(g(ẑν(ξ), ξ)− vν(ξ)),

where ψ̄r(z, u, w, v) = h(z, ξ) + zTw + r
2‖z − z

ν(ξ)‖2 + 1
2r

(
g(z, ξ)− v

)2
;

Step 2. Update

zν+1(·) = PN2(ẑν(·)), uν+1(ξ) = E(ûν(ξ)) ∀ ξ,
wν+1(·) = wν(·) + r(ẑν(·)− zν+1(·)),
vν+1(·) = vν(·) + r(ûν(·)− uν+1(·));

ν := ν + 1, repeat.

4. A Numerical Example

In this section, we consider an optimal irrigation water allocation problem over

a multi-period planning horizon. Specifically, we adopt a real application problem

from Dai and Li (2013), in which a water manager is charged with supplying the

water resources to 15 irrigation subareas for 3 crops: wheat, maize and cotton,

with uncertainty in the total amount of the future available water, and farmers

are expanding their activities and investments with the amount of water which is

promised by the water manager. If the amount of water is allocated as the manager

promises, the local economy will achieve net benefits, while if insufficient water is

available, the users will either curtail their expansion plans or obtain water from

more expensive sources such as withdrawing groundwater which will leads to losses.

In this reservoir, wheat is planted in rotation with maize and cotton. In detail, wheat

is planted from winter this year to summer next year, while maize and cotton are

planted in summer and autumn next year. Since water demand of each crop varies

with its growth stage, and the same amount of water supplied or lacked in different

growth stages may result in different amount of crop yield or reduction of yield,

we consider the optimal irrigation water allocation problem over four periods, i.e.,

period i = 1, 2, 3, 4 stands for winter of this year, spring, summer and autumn

of next year, respectively. Let ξi be the random variable representing the amount

of available water in period i. For each i, ξi satisfies a discrete distribution with

detailed data shown in Table 1. Before observing the random available water ξ1, the

water manager needs to make decisions on irrigation water target and let farmers

know how much water they can expect so that their activities could be arranged,

which results in the first-stage decision x1 ∈ R45, consisted of the irrigation water

target for different crops in different subareas. Here we assume the irrigation target

remains the same during all periods. In fact, it is realistic since changes may not be
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Table 1. Available water under different flow levels in different seasons

Flow level Probability Available water ξi (103m3)
Period 1 Period 2 Period 3 Period 4

1 (Very low) 0.20 0 0 0 0
2 (Low) 0.25 8548.4 8149.9 3085.1 24522.9

3 (Medium) 0.40 28257.1 21505.0 17506.0 58083.0
4 (High) 0.10 34635.9 26631.5 26315.8 102523.4

5 (Very high) 0.05 44164.1 28308.7 28540.4 172815.7

cost-effective after the water pipes being set. When ξ1 is realized, the manager may

adjust his/her strategy and decide the actual amount of water to allocate in period

1, denoted by x2(ξ1). And after observing ξ2 in period 2, the manager is supposed to

decide the actual amount of water to allocate in period 2, i.e., x3(ξ1, ξ2). Therefore,

the whole decision process is as follows:

x1, ξ1, x2(ξ1), ξ2, x3(ξ1, ξ2), ξ3, x4(ξ1, ξ2, ξ3), ξ4, x5(ξ1, ξ2, ξ3, ξ4),

where x5 is the terminal response. Denote

ξ = (ξ1, ξ2, ξ3, ξ4)T ∈ R4,

then the number of the possible values of ξ, i.e. the number of scenarios, is 54 = 625.

Besides, denote

x(ξ) = (x1(ξ), x2(ξ), x3(ξ), x4(ξ), x5(ξ)),

then one can find that x(·) is in the following nonanticipativity set:

N := {x(·) : xi(ξ) dose not depend on ξi, · · · , ξ4 ∀ i = 1, . . . , 4}. (24)

Decision variables and parameters involved in this model are listed in the follow-

ing and the corresponding detailed data are presented in Tables 2-4 in the Appendix.

Decision variables:

x1(ξ) ∈ R45: surface water irrigation area target of each crop in every subarea before

random variable ξ is realized (ha);

x2(ξ), x3(ξ) ∈ R15: actual irrigation area of wheat in every subarea during period 1

and period 2 under scenario ξ (ha);

x4(ξ) ∈ R45: actual irrigation area of each crop in every subarea during period 3

under scenario ξ (ha);

x5(ξ) ∈ R30: actual irrigation area of maize and cotton in every subarea during

period 4 under scenario ξ (ha);

Parameters:

bi: net benefit per unit of area that water allocated in period i (i = 1, 2, 3, 4)

(RMB/ha);

ci: extra cost per unit of area not irrigated during period i (i = 1, 2, 3, 4) (RMB/ha);

ai: irrigation quota for each crop during period i (i = 1, 2, 3, 4) (m3/ha);

qi(ξ) ∈ R: random variable of total water availability for irrigation during period i
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(i = 1, 2, 3, 4) (m3);

lb, ub ∈ R45: the lower and upper bounds of the irrigation area target (ha).

We can formulate this irrigation planning problem into the MLPM minimization

(5), i.e.,

min E
(
f(x(ξ), ξ)

)
+ βE

(
f(x(ξ), ξ)− E

(
f(x(ξ), ξ)

))m
+

s.t. x(·) ∈ C ∩ N , (25)

with N defined as (24) and

f(x(ξ), ξ) = −
4∑
i=1

bTi xi+1(ξ) +

4∑
i=1

cTi (x1(ξ)− xi+1(ξ)),

C(ξ) :=


x :

∑i
k=1 a

T
k xk+1 ≤

∑i
k=1 qk(ξ), ∀ i = 1, 2, 3, 4,

xi ≤ x1(1 : 15), i = 2, 3,

x4 ≤ x1,

x5 ≤ x1(16 : 45),

lb ≤ x1 ≤ ub,


.

where x1(j : k) means a subvector consisted from the j-th element to the k-th

element of vector x1. It should be pointed out that when reformulated this prob-

lem into a large-scale nonlinear programming, the dimension of variable is at least

24870, while adopting the proposed LPHA (Algorithm 3), one need to solve 625

subproblems with dimension being 152 at each iteration.

Next, we apply Algorithm 3 to solve the MLRM minimization problem (25) and

in comparison with the expectation minimization problem, i.e. Problem (25) with

β = 0, solving by Algorithm 1. The test code is written in Matlab R2015b and run

on a PC with an Intel(R) Core(TM) i7-7500U 2.90 GHz CPU and 16 GB of RAM

under WINDOWS 10 operating system. Parameters are set as β = 1, m = 2, r = 1.

And the initial point is set by

ẑ0(ξ) = argmin z(ξ)∈C2(ξ)h(z(ξ), ξ) ∀ξ,
z0(·) = PN2

(ẑ0(·)), u0(·) = 0, w0(·) = 0, v0(·) = 0.

The stopping criterion is taken as

‖(Zν+1,W ν+1)− (Zν ,W ν)‖r
‖(Zν ,W ν)‖r

≤ 1.0e− 5 or MaxIt > 500,

where MaxIt presents the maximal number of iterations.

Table 4 lists the first-stage solutions and the optimal values of problem (25)

with β = 1,m = 2 and β = 0, in which fval means the optimal value, iter means

the number of convergence iterations, time(s) means the total time for solve the

problems in seconds, and Avg-time(s) means the average time of each iteration in

seconds. One can find that the decision made by problem (25) is more conservative
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than the decision made by expectation minimization, and the optimal value of

problem (25) is greater than that of expectation minimization which verifies the

risk-averseness of the risk measure LMR. Besides, for this problem, the number of

iteration for converging by Algorithm 3 is 126 while the number of convergence

iteration by original PHA for expectation minimization problem is 368. The time

cost by solving MLRM minimization is 3220 seconds, which is longer than the time

for solving expectation minimization problem, which is 2970 seconds.

Table 2. Numerical results

MLRM (β = 1,m = 2) Expectation Minimization
Region Wheat Maize Corn Wheat Maize Corn

1 1730 1770 870 1730 1870 1000
2 2570 2000 1050 2570 2200 1150

3 1430 1050 550 1430 1200 650

4 2730 1716 1820 2730 1820 2080
5 2550 2280 144 2550 2490 174

6 1145 1145 95 1145 1250 117.5
7 4860 4400 600 4860 4740 734

8 2070 990 55.5 2070 1072.5 55.5

9 1980 2010 120 1980 2160 120
10 420 420 6 420 450 12

11 645 630 4.5 645 675 7.5

12 1950 1590 225 1950 1680 225
13 8000 9167.5 450 8000 10000 450

14 1354.7 437 89.7 1354.7 483 128.8

15 255 240 0 255 270 0

fval -5.2 × 107 -9.1 × 107

iter 126 368

time(s) 3220 2970

Avg-time(s) 25 8

5. Conclusion

This paper is concerned with a popular risk-averse multistage stochastic optimiza-

tion problem in financial engineering and business management. We develop mono-

tone stochastic variational inequality models for this problem. Based on a delinkage-

and-decomposition idea, a Lagrangian progressive hedging algorithm is designed to

solve the stochastic variational inequalities. The proposed algorithm decomposes

the original problem into hindside optimization problems for each scenario and then

updates the iterative solution by a projection procedure to maintain its nonantic-

ipativity. It is shown that this algorithm is convergent if the original model has a

solution and satisfies a constraint qualification condition. A numerical real-world

example is solved by the proposed algorithm. The computational results show that

the Lagrangian progressive hedging algorithm can be effectively used in practice.
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Appendix

Table 3. Unit net benefit and extra cost per area during each period

(RMB/ha)

Unit net benefit bi Unit extra cost ci
b1 b2 b3 b4 c1 c2 c3 c4

194 291 1940 2550 42.5 85 722.5 520

211.2 316.8 2112 3200.25 42.5 85 722.5 520

207.6 311.4 2076 3106.75 42.5 85 722.5 520
227.2 340.8 2272 3259.75 42.5 85 722.5 520

199.2 298.8 1992 2541.5 42.5 85 722.5 520

195.6 293.4 1956 2584 42.5 85 722.5 520
226.4 339.6 2264 3285.25 42.5 85 722.5 520

206 309 2060 2779.5 42.5 85 722.5 520
209.6 314.4 2096 2528.75 42.5 85 722.5 520

219.2 328.8 2192 2911.25 42.5 85 722.5 520

209.6 314.4 2096 3043 42.5 85 722.5 520
122.4 183.6 1224 2159 42.5 85 722.5 520

216.8 325.2 2168 2707.25 42.5 85 722.5 520

203.6 305.4 2036 2834.75 42.5 85 722.5 520
229.2 343.8 2292 2800.75 42.5 85 722.5 520

450 1869 130 357.5

564.75 2432.5 130 357.5
548.25 1827 130 357.5

575.25 1904 130 357.5

448.5 1760.5 130 357.5

456 1841 130 357.5

579.75 1893.5 130 357.5
490.5 1389.5 130 357.5

446.25 1022 130 357.5

513.75 1981 130 357.5
537 2366 130 357.5

381 1270.5 130 357.5

477.75 1200.5 130 357.5
500.25 1956.5 130 357.5

494.25 0 130 357.5

801 292.5
1042.5 292.5

783 292.5
816 292.5

754.5 292.5

789 292.5
811.5 292.5

595.5 292.5

438 292.5
849 292.5

1014 292.5

544.5 292.5
514.5 292.5

838.5 292.5

0 292.5
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Table 4. Irrigation quota during each period (103m3/ha), lower

bound and upper bound (ha)

Irrigation quota ai lower bound upper bound

a1 a2 a3 a4 lb ub
0.165 0.33 2.805 1.76 1730 1830

0.165 0.33 2.805 1.76 2570 2680

0.165 0.33 2.805 1.76 1430 1570
0.165 0.33 2.805 1.76 2730 2925

0.165 0.33 2.805 1.76 2550 2670

0.165 0.33 2.805 1.76 1145 1207.5
0.165 0.33 2.805 1.76 4860 5140

0.165 0.33 2.805 1.76 2070 2175

0.165 0.33 2.805 1.76 1980 2025
0.165 0.33 2.805 1.76 420 450

0.165 0.33 2.805 1.76 645 675
0.165 0.33 2.805 1.76 1950 2070

0.165 0.33 2.805 1.76 8000 8667.5

0.165 0.33 2.805 1.76 1354.7 1430.6
0.165 0.33 2.805 1.76 255 270

0.44 1.21 1770 1870

0.44 1.21 2000 2200
0.44 1.21 1050 1200

0.44 1.21 1716 1820

0.44 1.21 2280 2490
0.44 1.21 1145 1250

0.44 1.21 4400 4740

0.44 1.21 990 1072.5
0.44 1.21 2010 2160

0.44 1.21 420 450
0.44 1.21 630 675

0.44 1.21 1590 1680

0.44 1.21 9167.5 10000
0.44 1.21 437 483

0.44 1.21 240 270

0.99 870 1000
0.99 1050 1150

0.99 550 650

0.99 1820 2080
0.99 144 174

0.99 95 117.5
0.99 600 734

0.99 55.5 64.5

0.99 120 150
0.99 6 12

0.99 4.5 7.5

0.99 225 255
0.99 450 492.5

0.99 89.7 128.8

0.99 0 0


