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Abstract

In this paper we study a generalized version of the Weber problem of finding a point
that minimizes the sum of its distances to a finite number of given points. In our setting
these distances may be cut off at a given value C > 0, and we allow for the option of an
empty solution at a fixed cost C ′. We analyze under which circumstances these problems
can be reduced to the simpler Weber problem, and also when we definitely have to solve
the more complex problem with cutoff.

We furthermore present adaptions of the algorithm of [Drezner et al., 1991, Transpor-
tation Science 25(3), 183–187] to our setting, which in certain situations are able to
substantially reduce computation times as demonstrated in a simulation study. The sen-
sitivity with respect to the cutoff value is also studied, which allows us to provide an
algorithm that efficiently solves the problem simultaneously for all C > 0.

1 Introduction

For a given finite set A ⊆ Rk, a metric d on Rk and some q ≥ 1, we study the location problem

min
z∈Rk

∑
a∈A

min{d(a, z)q, C}, (1)

where C > 0 is a cutoff parameter. Additionally we allow the option not to choose any
location in Rk at a fixed cost per point in A. Without the cutoff C this problem is known
as Weber problem, one-median problem, minisum problem, Fermat-Torricelli problem or
(generalized) barycenter problem. In this paper we call an optimal solution to the problem a
barycenter. The barycenter problem is among the best studied problems in location theory,
see [LNdG20] for recent surveys of existing results and new developments in the field. Many
results exist for different metrics and for various extensions. The problem (1) introduces the
following two extensions to the classic problem.

The first extension is the cutoff C (as in [DMW91]) which makes the resulting barycenter
more robust against outliers. For q = 1 and e.g. d = `1 this robustness is naturally given,
but for other distances, outliers can have a huge effect on the location of the barycenter.
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A barycenter can be thought of as a typical representative of a given set of points. The
robustness helps containing this representative property even if outliers are present.
In the second extension we additionally allow the barycenter to be empty at a fixed cost which
is constant per point in A. This extends the representative property of the barycenter. If the
given points we want to represent are so scattered that no single point can represent them,
we allow for no representation.

Many application of the setting are possible where the cutoff C and the possibility of having
an empty barycenter come in naturally. An example is a community which has to decide
about building a new waste dump. Anyone can bring their domestic waste for free (but they
have the cost of transportation, given by the distance to the waste dump) or have it collected
for a fixed cost C. If no dump is built, the community has to pay a fixed fee per person to
have their waste collected from the waste dump in a nearby city.

In the paper we investigate the two extensions and compare their solutions to the solutions
of the classical problem. We identify cases in which solutions to the classical problem are
still optimal for the problem with cutoff and cases in which the empty barycenter is optimal.
We also treat the cutoff value C as part of the problem and investigate the sensitivity of an
optimal solution w.r.t C.

Algorithmically, the barycenter problem with cutoff has already been studied, see [DMW91],
[AHL12] and [Ven20] resulting in an O(n2)-algorithm for n being the number of existing
points in A. We refine this algorithm for the two extensions and experimentally show good
computation times.

The remainder of the paper is organized as follows: In the next section we formally introduce
the barycenter problem and its two extensions referring to existing literature. In Section 3
we look at some universal properties of the cutoff that will be helpful, when we investigate
the relation between the barycenter problem with and without cutoff in Section 4. Here,
we identify cases in which an optimal solution to the classic problem is also optimal for
the problem with cutoff. Section 5 looks closer at the problem with empty barycenter. We
analyze in which cases the empty barycenter is the best solution. In Section 6 we analyze
the sensitivity of the barycenter and the objective function value in terms of the cutoff value.
Section 7 sketches an application from statistical data analysis, where the barycenter problem
with cutoff and empty set occurs as a subproblem when we compute a “typical” point pattern
based on a given set of point patterns. In Section 8 we present a simulation study to compare
the runtime of the different algorithms. The paper ends with some discussions and outlook
to further research.

2 Extensions of the barycenter location problem: cutoff and
empty barycenter

From now on we will always assume that we are give a finite set of locations A ⊆ Rk,
|A| = n ∈ N. The diameter of A

diam(A) := max
a1,a2∈A

d(a1, a2)
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is the maximum distance between two points of A. For technical reasons we assume that
diam(Rk) =∞. In this paper we mainly consider norm-metrics, i.e., distances

dq(x, y) = (d(x, y))q = ‖y − x‖q, x, y ∈ Rk, q ≥ 1

derived from a norm ‖ · ‖ (and here in particular the Euclidean norm `2 and the Manhattan
norm `1), but many results are also true for general metrics d. When we consider `p norms
we allow p ∈ [1,∞], so the maximum norm is permitted.

(Bar(A)): The barycenter problem

The classic location problem is to find a point x ∈ Rk which minimizes the sum of distances
to the given points in A:

Z∗ := min
x∈Rk

f(x,A) :=
∑
a∈A

dq(x, a). (Bar(A))

We call this problem barycenter problem and denote its set of optimal solutions by X ∗. If
it is clear to which set A we refer to we may write f(x) for its objective function instead of
f(x,A).
(Bar) has already been introduced in the 17th century by Fermat for three points a1,a2, and
a3 and for n weighted facilities by Weber in 1909, see, e.g., the survey [DKSW02]. Actual
research concerns versions with p facilities [MBHMP07, DBMS15, MP20], barriers [Kla02],
obnoxious facility location [DDS18], different types of facilities to be placed [MS98, Sch20],
ordered median location problems [NP05, PRC20], location under uncertainty [CdG19], and
others, see [LNdG20] and references therein for a recent overview. Here, we consider the
following two extensions of (Bar).

(BarC(A)): The barycenter problem with cutoff

The first extension we consider is to introduce a cutoff in the distance function: Given a cutoff
value C > 0, we look at the cutoff distance function

dqC(x, y) := min{dq(x, y), C}, x, y ∈ Rk, (2)

i.e., the distance is not increased any more once it has reached the value C. The corresponding
location problem is given as

Z∗C := min
x∈Rk

fC(x,A) :=
∑
a∈A

min{dq(x, a), C}. (BarC(A))

It is called barycenter problem with cutoff. We denote its set of optimal solutions by X ∗C .
Again, if the set A is known, we may write fC(x) instead of fC(x,A). The problem is a
special case of the Weber problem with limited distance from [DMW91]. The latter problem
allows different cutoff values λi for each of the existing facilities while in (BarC) all λi = C.
It has also been studied in [AHL12] and [Ven20]. Recently, (BarC(A)) has been investigated
within a statistical application, namely for finding barycenters for point patterns, see [MSM20]
or Section 7. At the end of Section 3 we present the algorithm of [DMW91] for solving the
Weber problem with limited distances.
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Related work includes [FAAJ17] where the authors consider a discrete version of a barycenter
problem in which they restrict how many existing points have to be within the cutoff distance.
The problem is solved by a global optimization algorithm based on a decomposition of the
plane into regions for which we know which given points are within the cutoff value C. A
reversed approach in which one tries to cover as many points as possible within a given
threshold value C and measures only the distance to the non-covered points is investigated
in [BJKS15].

Note that the cutoff does not change the properties of the distances. Definiteness, symmetry
and triangle inequality are still satisfied.

Lemma 1 ([MSM20]). If d is a metric then dC is also a metric.

(BarC,α(A)): The empty barycenter as an option.

The largest distance to the new facility in (BarC(A)) is bounded by the cutoff value C. In the
second extension we go a step further and allow to place no facility (represented as x = ∅). In
this case, each demand point a ∈ A has to pay a price of C ′ := α ·C for some given α > 0. In
order to formulate this setting as location problem, we extend the metric space by the empty
set ∅ for which we define a constant “distance” between x = ∅ and any other point y ∈ Rk∪∅,
namely

dqC,α(∅, y) =

{
α · C if y 6= ∅
0 if y = ∅

and leave dqC,α(x, y) = dqC(x, y) for all x, y 6= ∅. The corresponding location problem

Z∗C,α := min
x∈Rk∪{∅}

fC,α(x,A) :=
∑
a∈A

dqC,α(x, a), (BarC,α(A))

is called barycenter problem with empty set (and cutoff). We denote its set of optimal solutions
by X ∗C,α and call ξ∗ = ∅ the empty barycenter. The problem has recently been introduced and
motivated in [MSM20] but to the best of our knowledge otherwises not been studied.

Adding the empty barycenter to the metric space with cutoff distance dC does not change
the properties of the metric space if α ≥ 1

2 .

Lemma 2. M ′ = (Rk ∪ ∅, dC,α) is a metric space if and only if α ≥ 1
2 .

Proof. The definiteness and the symmetry of the metric dC,α directly hold also for ∅. The
triangle inequality

dC,α(x, y) + dC,α(y, z) ≥ dC,α(x, z) (3)

can be shown by checking all possible cases:

• If x, y, z ∈M , (3) is satisfied since dC is a metric.

• If x = y = z = ∅, or if exactly two of the three points x, y, z are ∅, (3) follows directly
from the definition of dC,α.

• For only x = ∅ the triangle inequality holds since dC,α(y, z) ≥ 0. The same holds for
z = ∅.
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We are left with the case that y = ∅ and x, z ∈M . In this case, (3) transfers to

αC + αC ≥ dC,α(x, z) = dC(x, z). (4)

We have to show two directions:

=⇒ Let (4) hold for all x, z ∈ Rk. Choose x, z with d(x, z) > C, i.e., dC(x, z) = C. Then
we receive 2αC ≥ C, i.e., α ≥ 1

2 .

⇐= Let α ≥ 1
2 . Then we have that dC(x, z) ≤ C ≤ 2αC and (4) is satisfied.

Note that the proof also shows that for a strictly increasing metric d (such as `1 or `2)
without cutoff, (Rk ∪ {∅}, d∞,α) never is a metric space since (3) is always violated for y = ∅
and d(x, z) > 2αC. This is the reason why we do not treat location problems with empty set,
but without cutoff.

Relations between (Bar(A)), (BarC(A)), and (BarC,α(A))

We summarize a few observations on the relations between the optimal values of the three
problems.

Lemma 3. We always have

(i) Z∗C,α ≤ Z∗C ≤ Z∗

(ii) Z∗C ≤ (n− 1) · C

(iii) Z∗C,α ≤ C ·min{n− 1, n · α}.

Proof.

(i) Since dqC(x, y) ≤ dq(x, y) we get fC(x) ≤ f(x) for all x ∈ Rk, hence also minx∈Rk fC(x) ≤
minx∈Rk f(x) and Z∗C ≤ Z∗ holds.

Furthermore, the empty barycenter increases the set of feasible solutions, i.e., (BarC,α(A))
is a relaxation of (BarC(A)). We conclude Z∗C,α ≤ Z∗C .

(ii) Let a ∈ A. This is a feasible barycenter with objective value of fC(a) =
∑

a′∈A d
q
C(a, a′) ≤

0 + (n− 1) · C, hence an upper bound on (BarC(A)).

(iii) The empty barycenter is feasible and has an objective value of fC,α = n · α · C, hence
an upper bound on (BarC,α(A)). Together with (i) and (ii), the result follows.
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3 Exploiting the local structure of BarC

We start with some general properties of the cutoff. To this end we need some further
notation.

Definition 4. Let x ∈ Rk. Then

• activeC(x) := {a ∈ A : dq(x, a) ≤ C} denotes the active points w.r.t x and C, and

• constC(x) := A \ activeC(x) denotes the constant points w.r.t x and C, i.e., the points
whose distances remain locally constant.

When we know the value of C we just write active(x) and const(x).

We can now split the objective function into an active and a constant part,

fC(x,A) = fC(x, activeC(x)) + fC(x, constC(x))

=
∑

a∈activeC(x)

dq(x, a) + C · |constC(x)|

= f(x, activeC(x)) + C · |constC(x)|. (5)

This decomposition gives us a first basic result showing that the barycenter problem with
cutoff is equivalent to a problem of type (Bar), but w.r.t a subset of the existing points.
The following Lemma is an extension of Lemma 2 of [DMW91], who proved this result for
d ∈ {`1, `2}, but it is visible that the proof works more generally. For the sake of completeness
we present a proof for any metric d and any q ≥ 1.

Lemma 5. Let ξ∗ ∈ X ∗C be an optimal solution to (BarC(A)). Then the following hold:

(i) ξ∗ is an optimal solution to (Bar(active(ξ∗))).

(ii) All optimal solutions for (Bar(active(ξ∗))) are optimal solutions to (BarC(A)) i.e.,
X ∗(active(ξ∗)) ⊆ X ∗C(A).

Proof.

ad (i) Let ξ∗ ∈ Rk be a minimizer of fC(x,A), but assume f(y, active(ξ∗)) < f(ξ∗, active(ξ∗))
for some y ∈ Rk. Due to (5) we then receive fC(y,A) < fC(ξ∗,A), a contradiction to
the optimality of ξ∗.

ad (ii) For the second statement, take η∗ ∈ X ∗(active(ξ∗)). We consider active(ξ∗) and
const(ξ∗) = A \ active(ξ∗) separately:

fC(ξ∗, active(ξ∗)) = f(ξ∗, active(ξ∗)) = f(η∗, active(ξ∗)) ≥ fC(η∗, active(ξ∗))

fC(ξ∗, const(ξ∗)) =
∑

a∈const(ξ∗)

C ≥
∑

a∈const(ξ∗)

min{dq(η∗, a), C} = fC(η∗, const(ξ∗))

and together we receive that fC(η∗,A) ≤ fC(ξ∗,A), hence η∗ is also optimal.
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Algorithm 1: Algorithm for (BarC(A)), based on [DMW91].

Input : Set A = {a1, . . . , an}, cutoff C > 0
Output: A barycenter ξ∗ of (BarC(A)), objective function value Z∗C

1 Set ξ∗ ← a1, Z∗C ←∞;
2 for i← 1 to (n− 1) do
3 Inner Loop;
4 end
5 return ξ∗,Z∗C

Inner Loop:
6 for j ← (i+ 1) to n do
7 if dq(ai, aj) ≤ 2q · C then
8 Compute the centers c1, c2 of the balls with radius C that fulfill

dq(c1, ai) = dq(c1, aj) = dq(c2, ai) = dq(c2, aj) = C;
9 for k ← 1 to 2 do

10 Set S := {a ∈ A | dq(ck, a) ≤ C};
11 Compute for the four sets S, S \ {ai}, S \ {aj}, S \ {ai, aj} the barycenters

ξ1, . . . ξ4 and the corresponding objective function values d1, . . . d4;
12 l← min

l∈{1,...,4}
dl;

13 if dl < Z∗C then
14 Z∗C ← dl, ξ

∗ ← ξl;
15 end

16 end

17 end

18 end

This result is one of the main ideas needed for Algorithm 1 and its improved versions which are
described next. We state the approach of [DMW91] for our special case of cut off distances.
Note that the versions of [AHL12] and [Ven20] are not relevant for this setting.

The following observations are true in the plane. We know from Lemma 5 that any optimal
solution to (BarC(A)) is a solution to (Bar(A)) for a subset A ⊆ A. Algorithm 1 uses brute
force to calculate the optimal solutions for these subsets. But instead of enumerating all
theoretically possible 2n − 1 subsets, [DMW91] use the following geometric observation to
cut down the number of subsets to look at: Say we have an optimal solution ξ∗ ∈ X ∗C . Set
A := active(ξ∗). A is contained in a (2-dimensional) ball around ξ∗ with radius C. This ball
can be ”moved” so that two points, a1, a2 of A lie on the circumference of the ball and all
points of A are still inside. We hence can restrict our search to all balls with radius C that
are defined by two points of A on its circumference. [DMW91] proved that there are at most
O(n2) of these balls, so we only need to solve (Bar(A)) for O(n2) subsets. The arguments of
the proof hold for all norm metrics d and all q ≥ 1, although [DMW91] did not state these
cases explicitly.

Theorem 6 ([DMW91]). Let A ⊆ R2, let d be a norm-metric and say we can solve (Bar(A))
in h(n) time. Then Algorithm 1 solves the problem (BarC(A)) in O(n2 · h(n)) time.
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Proof. The result was proven in [DMW91] for d ∈ {`1, `2}. The proof is based on two
arguments. First the solution of (BarC(A)) is a solution to (Bar(A)) for some A ⊆ A. And
second the number of these subsets A we need to check for the optimal solution is of order n2.
Lemma 5 states the first argument for any metric d and any q ≥ 1. And the second argument
follows directly from the proof of Theorem 1 in [DMW91]. The argument in the proof works
for any ball defined by a norm-metric d. A ball that is defined by dq only differs in its radius
from a ball that is defined by d. So the number of candidate subsets A is of order n2 for any
norm-metric d and any q ≥ 1.

Remark. Algorithm 1 is presented only for finite subsets A of R2. The method of cutting
down the number of 2n−1 theoretically possible subsets of A to a polynomial number of subsets
also works in Rk for k ≥ 3. The k-dimensional ball with radius C is uniquely defined by k
points that define a k− 1 dimensional hyperplane. For k = 2 we need two points that are not
identical, for k = 3 we need three points that are not collinear. With the same arguments as
for the the 2-dimensional case, the number of candidate sets is bound by O(

(
n
k

)
) = O(nk).

Therefore Algorithm 1 can be solved in k dimensions in O(nk · h(n)) time.

We additionally suggest the following improvement that is obtained by replacing lines 1-5 by
Algorithm 2: Instead of investigating all ai, aj with d(ai, aj) ≤ 2qC we sort out points ai for
which we can be sure that they will not lead to a solution that improves our current best
objective function value. The sorting out is based on the following lemmas.

Lemma 7. Let a ∈ A and A′ := {a′ ∈ A | dq(a, a′) > 2qC}. Let x ∈ Rk s.t. dq(x, a) ≤ C.
Then

(i) A′ ⊆ const(x),

(ii) fC(x) ≥ C · |A′|.

Proof.

ad (i) Take a′ ∈ A′. We know by definition of A′ that

dq(a, a′) > 2qC ⇒ d(a, a′) > 2
q
√
C.

We also know that
dq(a, x) ≤ C ⇒ d(a, x) ≤ q

√
C.

With the triangle inequality we get that

d(a, a′)︸ ︷︷ ︸
>2 q√C

− d(a, x)︸ ︷︷ ︸
≤ q√C

≤ d(x, a′).

The left side of the inequality is > q
√
C. Hence q

√
C < d(x, a′) ⇒ C < dq(x, a′) ⇒ a′ ∈

const(x).

ad (ii) Now we know from (i) that A′ ⊆ const(x). Therefore fC(x) ≥ C · |const(x)| ≥ C · |A′|.

Lemma 8. Let a ∈ A, let z = fC(x) for some x ∈ Rk. Let A′ := {a′ ∈ A | dq(a, a′) > 2qC}
like in Lemma 7. If C · |A′| > z then no set S 3 a constructed in Algorithm 1 will lead to an
optimal solution ξ∗ ∈ X ∗C .
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Proof. Let ξ∗ ∈ X ∗C be an optimal solution to (BarC(A)). We know from Lemma 5 that any
optimal ξ∗ ∈ X ∗C is a solution of (Bar(active(ξ∗))). Say we have constructed a set S containing
a ∈ A in line 10 of Algorithm 1. Suppose there is a ξ ∈ X ∗C , such that active(ξ) = S. We
know then that fC(ξ) ≥ C · |A \ S|. With Lemma 7(i) and the construction of the set S we
know that A \ S ⊇ A′. Therefore fC(ξ) ≥ C · |A \ S| ≥ C · |A′| > z ≥ Z∗C . Therefore no set
S that we construct in Algorithm 1 that contains the point a, nor any of its subsets are the
active set of an optimal solution.

Algorithm 2: Improvement of Algorithm 1

Input : Set A = {a1, . . . , an}, cutoff C > 0
Output: A barycenter ξ∗ of (BarC(A)), objective function value Z∗C

1 Set ξ∗ ← a1, Z∗C ←∞, B ← A;
2 for i← 1 to (n− 1) do
3 continue ← true;
4 m← |{a ∈ B | dq(ai, a) ≤ 2qC}|;
5 if (n−m) · C ≥ Z∗C then
6 B ← B \ {ai};
7 continue ← false;

8 end
9 if continue then

10 Inner Loop;
11 end

12 end
13 return ξ∗,Z∗C

Theorem 9. Let A ⊆ R2, let d be a norm-metric and say we can solve (Bar(A)) in h(n)
time. Then Algorithm 2 solves the problem (BarC(A)) in O(n2 · h(n)) time.

Proof. We have to prove two things: first the runtime and second the correctness.
First: The calculation of m takes O(n) time and hence does not increase the runtime of the
algorithm.
Second: For the correctness we have to prove that although we skip the Inner Loop for some
ai we still compute the optimal solution. Lemma 8 implies that we can skip any point ai if
for A′ := {a′ ∈ A | dq(ai, a′) > 2qC} the value |A′| ·C = (n−m) ·C is larger than the current
best objective function value. In addition the proof of Lemma 8 yields that ai 6∈ active(ξ∗)
for ξ∗ ∈ X ∗C . It is therefore justified to permanently remove ai from the candidate set of
potentially active points in line 4 of Algorithm 2.

Later in Section 5, where we solve (BarC,α(A)), we can further reduce the computation time
with the knowledge that also any point ai for which m ≤ (1− α) · n can also be disregarded,
compare Lemma 19.

Other consequences of Lemma 5

Apart from its algorithmic implication, Lemma 5 has several other consequences since it
transfers properties that depend on the local structure from (Bar(A)) to (BarC(A)). This
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holds for properties which are only based on the metric and on the existing facilities. Such
properties then also hold for subsets of the existing facilities, and in particular for active(ξ∗)
where ξ∗ is an optimal solution of (BarC(A)). A first example of such a condition which will
be used later in Theorem 17 is the property (conv) for (Bar(A)) that there always exists an
optimal solution ξ∗ to the barycenter problem which is contained in the convex hull conv(A)
of the existing facilties.

For any subsetA ⊆ A : X ∗(A) ∩ conv(A) 6= ∅ (conv)

If (conv) holds for (Bar(A)) then it also holds for (BarC(A)).

Lemma 10. If (conv) then X ∗C(A) ∩ conv(A) 6= ∅.

Proof. Let ξ∗ ∈ X ∗C(A). From Lemma 5 we know that ξ∗ is optimal for Bar(active(ξ∗)).
There exists η∗ ∈ X ∗(active(ξ∗)) with η∗ ∈ conv(active(ξ∗)) ⊆ conv(A). From the second
part of Lemma 5 we know that η∗ ∈ X ∗C(A). Together, the result follows.

Condition (conv) is satisfied for many location problems. We list cases in which it holds
below.

• In R2 (and in R1) (conv) holds for all distances d dervied from norms [Pla84].

• For k > 2, (conv) only holds in general if d is a norm which is linearly equivalent to the
`2-norm [Pla84].

• (conv) holds for d = `22, since the (unique) optimal solution of (Bar(A)) is in this case
the coordinate-wise mean of the points in A which is always contained in conv(A).

There are many other examples of conditions which can be transferred form (Bar(A)) to
(BarC(A)). Among them are:

• There exists a finite candidate set for (BarC(A)) if d is derived from a polyhedral norm.
This candidate set can be found by using the intersection points of the fundamental
directions.

• For problems (BarC(A)) with restricted set R all optimal solutions are either optimal
solutions for the unrestricted problem or are contained in the boundary of R.

Above we stated the property (conv), which will enable us to make a connection between
(Bar(A)) and (BarC(A)) in Theorem 17. We now state a weaker assumption that also allows
for a connection between (Bar(A)) and (BarC(A)).

There exists a ball B = B(x, r) such that:

for all A ⊆ A : X ∗(A) ∩B 6= ∅ (B)

Lemma 11. Condition (B) implies that A ⊆ B.

Proof. For any point a ∈ A the singleton {a} is a subset of A. The optimal solution ξ∗ of
(Bar({a})) is ξ∗ = a. Therefore B must contain all points a ∈ A.

10



The set A is finite. That means there are only finitely many subsets A ⊆ A and a ball B that
fulfills (B) always exists. We consider the smallest one.

Definition 12. We define a ball with center x ∈ Rk and radius r > 0 by B := B(x, r) :=
{y ∈ Rk | d(x, y) ≤ r}. We denote by
B0 = B(x0, r0) a smallest ball (in terms of radius) that fulfills (B).

We can now make a connection between the optimal objective function values Z∗ and Z∗C .

Theorem 13. If 2r0 ≤ q
√
C, then Z∗ = Z∗C

Proof. Take an optimal solution ξ∗ of (BarC(A)) inside B0 and an optimal solution η∗ of
(Bar(A)) inside B0. Both solutions must exist due to (B). We prove that Z∗ = f(η∗) =
fC(ξ∗) = Z∗C .
We know that ξ∗ ∈ B0. That means for every a ∈ A that d(ξ∗, a) ≤ d(ξ∗, x0) + d(x0, a) ≤
2r0. Then dq(ξ∗, a) ≤ (2r0)

q ≤ C and hence fC(ξ∗) = f(ξ∗). Analogously we get that
f(η∗) = fC(η∗). From the optimality of both ξ∗ and η∗ it follows that fC(ξ∗) ≤ fC(η∗) and
f(η∗) ≤ f(ξ∗) and therefore f(ξ∗) = fC(ξ∗) ≤ fC(η∗) = f(η∗) ≤ f(ξ∗), i.e. f(ξ∗) = f(η∗).

We will see in the next section in Lemma 14 that Z∗ = Z∗C also implies that X ∗ ⊆ X ∗C .

4 Comparing BarC and Bar

In this section we have a closer look at the barycenter problem with cutoff in comparison to
the barycenter problem without cutoff. In general, problem (Bar(A)) has an easier structure
than problem (BarC(A)). While (Bar(A)) is a convex problem for every norm-metric d, the
cutoff destroys convexity and can, e.g., lead to non-connected optimal solution sets. In the
following we identify conditions under which solving (Bar(A)) gives us the objective function
value of (BarC(A)) or even an optimal solution of the latter.

(a) (Bar) has the same objective function value as (BarC), i.e. Z∗ = Z∗C .

(b) Any solution to (Bar) is a solution to (BarC), i.e., X ∗ ⊆ X ∗C .

If the second condition holds then it is sufficient to solve (Bar). We first show that condition
(b) already follows from (a) (but not vice versa), so either condition is useful.

Lemma 14. If condition (a) holds then (b) holds as well.

Proof. Let ξ∗ ∈ X ∗ be an optimal solution to (Bar(A)) and η∗ ∈ X ∗C an optimal solution to
(BarC(A)). From condition (a) we know that f(ξ∗) = fC(η∗). In order to show that ξ∗ ∈ X ∗C ,
we compute

fC(ξ∗) ≤ f(ξ∗) = fC(η∗) ≤ fC(ξ∗).

Consequently, fC(ξ∗) = fC(η∗) and hence ξ∗ ∈ X ∗C .

With this result we know, that as soon as condition (a) holds, we can solve the problem (Bar)
and automatically get a solution to (BarC).
The implication (b)⇒ (a) is not true in general, as a simple one-dimensional example shows:
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Example 1 (Counterexample to (b) ⇒ (a)). Let 4 points in R be given, a1 = a2 = 0,
a3 = C + ε and a4 = −C − ε and let q = 1. The solution to both problems, (Bar(A)) and
(BarC(A)) is X ∗ = X ∗C = {0}, but Z∗ = 2(C + ε) > 2C = Z∗C .

We now show that for a set A with a large diameter, condition (a) is not met. To this end,
we use that for two points, a barycenter is given by their arithmetic mean.

Lemma 15. For two points a, b ∈ Rk, for any `p-norm and for all q ≥ 1, a minimizer of
‖a− x‖q + ‖b− x‖q is x = a+b

2 .

Proof. For `p-norms this can be treated as a one-dimensional problem, since the optimal
solutions are on the line between a and b. W.l.o.g say a = 0, b = 1. Every other case follows
by scaling. The resulting objective function is f(x) = xq + (1 − x)q whose minimium is
attained at x̄ = 1

2 .

The next theorem identifies cases in which condition (a) does not hold; i.e., cases in which
the objective function value of (BarC(A)) is strictly smaller than that of (Bar(A)).

Theorem 16. (BarC(A)) has a strictly smaller objective function value than (Bar(A)) in the
following two cases:

(i) diam(A) > 2C, q = 1 and d is a metric,

(ii) diam(A) > 2 q
√
C, q > 1 and d is derived from an `p-norm.

Proof. Since A is finite there exist two points a, b ∈ A such that d(a, b) = diam(A) > 2 q
√
C.

ad (i): for any point x ∈ Rk the triangle inequality directly gives d(x, a)+d(x, b) ≥ d(a, b) > 2C.

ad (ii): we use Lemma 15, namely that a minimizer of ‖a− x‖q + ‖b− x‖q is given by x̄ = a+b
2 .

We receive that for any point x ∈ Rk:

dq(a, x) + dq(x, b) = ‖a− x‖q + ‖x− b‖q ≥ ‖a− x̄‖q + ‖x̄− b‖q

= 2−(q−1)‖a− b‖q > 2−(q−1) · 2qC = 2C.

In both cases, at least one of the distances dq(a, x) or dq(x, b) is larger than the cutoff C for
any x ∈ Rk. This holds especially for a barycenter ξ∗ ∈ X ∗. Therefore

f(ξ∗) =
∑
a∈A

dq(ξ∗, a) >
∑
a∈A

min{dq(ξ∗, a), C} = fC(ξ∗).

Let η∗ ∈ X ∗C . We know that fC(ξ∗) ≥ fC(η∗). Hence,

Z∗ = f(ξ∗) > fC(ξ∗) ≥ fC(η∗) = Z∗C .

The next theorem identifies a setting in which condition (a) and hence also condition (b)
hold, i.e., in which (Bar(A)) can be used to obtain an optimal solution to (BarC(A)).

Theorem 17. Consider a location problem (Bar(A)) which satisfies property (conv). If
diam(A) ≤ q

√
C, then Z∗ = Z∗C and X ∗ ⊆ X ∗C .

12



Proof. Let ξ∗ ∈ X ∗ be an optimal solution to (Bar(A)) and η∗ ∈ X ∗C be an optimal solution
to (BarC(A)). By (conv) and Corollary 10 we may choose both, ξ∗ and η∗ ∈ conv(A).
For any point x ∈ conv(A) and for all a ∈ A we have that d(x, a) ≤ diam(A) ≤ q

√
C, therefore

dq(x, a) ≤ C and thus f(x) = fC(x). In particular, we receive

f(ξ∗) = fC(ξ∗)

fC(η∗) = f(η∗).

Hence we obtain
fC(ξ∗) = f(ξ∗) ≤ f(η∗) = fC(η∗) ≤ fC(ξ∗),

i.e., Z∗ = f(ξ∗) = fC(η∗) = Z∗C . By Lemma 14, we also get X ∗ ⊆ X ∗C .

We hence know that Z∗ = Z∗C if the diameter of the set A is smaller or equal to q
√
C and that

Z∗ > Z∗C if the diameter is greater than 2 q
√
C. The following examples demonstrate that for

the remaining cases, q
√
C < diam(A) ≤ 2 q

√
C everything may happen.

Example 2. [Example where (a) holds for q = 1 and C < diam(A) ≤ 2C] Let n + 2 points
in R be given, n ≥ 2. Say a1 = . . . = an = 0, an+1 = C − ε, an+2 = −(C − ε). The diameter
of this set is diam(A) = d(an+1, an+2) = 2C − 2ε. Now X ∗ = X ∗C = {0} and Z∗ = Z∗C .

In this case the solution of (Bar) is also a solution of (BarC). But there are simple examples,
where X ∗ 6⊆ X ∗C .

Example 3. [Example where (b) does not hold for q = 1, d = `1 and C < diam(A) ≤ 2C]

a1

a2

a3

a4

a5

η

Let 5 points a1 to a5 in R2 be given with coordinates a1 = (− ε
2/

ε
2), a2 = (− ε

2/ −
ε
2), a3 =

(0/0), a4 = (C− ε
4/

ε
4), a5 = (C− ε

4/−
ε
4) for some ε > 0. The placement is pictured above. We

get the following distances: d(a3, a4) = d(a3, a5) = C, d(a1, a3) = d(a2, a3) = ε. The diameter
of this set is d(a1, a5) = d(a2, a4) = d(a1, a3) + d(a3, a5) = C + ε. The optimal solution of
(Bar(A)) is a3 with Z∗ = 2C+2ε = fC(a3). For η = (− ε

2/0) we get fC(η) = 3ε
2 +2C < fC(a3).

Thus a3 ∈ X ∗ but a3 6∈ X ∗C .

Example 4. [Example where (b) does not hold for q = 1, d = `2 and C < diam(A) ≤ 2C]

a1

a2

ξ a3η

13



Let 3 points a1 to a3 in R2 be given with coordinates a1 = (−C
2 /
√
3C
2 ), a2 = (−C

2 /−
√
3C
2 ), a3 =

(C/0). They form an equilateral triangle with sidelength
√

3C. The placement is sketched
above. The diameter of this set is equal to the length of one side of the triangle which is
larger than C but smaller than 2C. The optimal solution to (Bar(A)) is ξ = (0/0) with
Z∗ = 3C = fC(ξ). But for η = (−C

2 /0) we get fC(η) = (
√

3 + 1)C < fC(ξ). Therefore
ξ ∈ X ∗ but ξ 6∈ X ∗C . (Optimal solutions to (BarC(A)) would be each of the points a1 to a3
with Z∗C = 2C.)

Example 5. [Example where (b) is not true for q = 2, d = `2 and
√
C < diam(A) ≤ 2

√
C]

Take the same situation as in Example 4, but for simplicity set C = 1. The diameter of
this set is equal to the length of one side of the triangle which is 2

√
3 ≈ 1.732 and therefore

smaller than 2. The optimal solution to (Bar(A)) is ξ = (0/0) with Z∗ = 3 = fC(ξ). But for

η =
(
−1

2/0
)

we get fC(η) =

(
2 ·
(√

3
2

)2
+ 1

)
= 5

2 < fC(ξ). Therefore ξ ∈ X ∗ but ξ 6∈ X ∗C .

We remark that in the last three examples above we have f(ξ∗) = fC(ξ∗) for the (respec-
tive) optimal solution ξ∗ to (Bar(A)) but still ξ∗ 6∈ X ∗C , i.e., this solution is not optimal for
(BarC(A)).

In the following table we summarize the results for metrics d and q ≥ 1:

diam(A) ≤ q
√
C q

√
C < diam(A) ≤ 2 q

√
C diam(A) > 2 q

√
C

(a) Z∗ = Z∗C holds if (conv), may or may not hold, never for q = 1,
see Thm 17 see Examples 2 to 5 never for q > 1 for `p-norms,

see Thm 16

(b) X ∗ ⊆ X ∗C holds if (conv), may or may not hold, may or may not hold,
follows from Lem 14 see Examples 2 to 5 see Examples 1 and 3

Furthermore, we have seen in Theorem 13 that (a) and (b) are always true if 2r0 ≤ q
√
C,

where r0 is the radius of a smallest ball B such that X ∗(A) ∩B 6= ∅ for all A ⊆ A.

For a very small cutoff C relative to the distances between the points of A and for a large
cutoff compared to the diameter of A we can say something about the optimal solutions to
(BarC(A)):

Lemma 18. Let ξ∗ be an optimal solution to (BarC(A)).

(i) If C < 1
2q min
a1 6=a2∈A

dq(a1, a2) we have ξ∗ ∈ A and |active(ξ∗)| = 1.

(ii) If q
√
C ≥ 2 · diam(A) we have |active(ξ∗)| = n, implying Z∗ = Z∗C and X ∗ = X ∗C .

Proof. (i) We show that there is no better barycenter than a point a ∈ A. The cutoff is
smaller than the shortest distance between two points of A. Therefore for any a ∈ A :
fC(a,A) = (n− 1) · C.
Suppose |activeC(a)| = 1 and there is a point ξ ∈ Rk : fC(ξ,A) < (n − 1) · C, then
|active(ξ)| ≥ 2. Take two different points a1, a2 ∈ active(ξ). Then d(a1, ξ) + d(ξ, a2) ≥
d(a1, a2) > 2 q

√
C. Therefore one of the distances d(a1, ξ), d(ξ, a2) is larger than q

√
C

and thus one of the distances dq(a1, ξ), d
q(ξ, a2) is larger than C. This contradicts the

assumption that both points are in active(ξ).
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(ii) We prove that if |active(ξ∗)| < n, then ξ∗ is not optimal for (BarC(A)). Suppose
|active(ξ∗)| < n. Then there is a point a1 ∈ A such that dq(ξ∗, a1) > C ≥ 2q · diam(A)q

and therefore
d(ξ∗, a1) > 2 · diam(A).

Thus for any a ∈ A

d(ξ∗, a) ≥ d(ξ∗, a1)︸ ︷︷ ︸
>2 diam(A)

− d(a1, a)︸ ︷︷ ︸
≤diam(A)

> diam(A).

We know now that for all a ∈ A: dq(ξ∗, a) ≥ diam(A)q. Therefore
fC(ξ∗) ≥ n · diam(A)q > (n − 1) · diam(A)q ≥ fC(a1), which means ξ∗ is not optimal
for (BarC(A)).

Thus under the conditions of (ii) we do have |active(ξ∗)| = n. So we know that ξ∗

is a barycenter of all points in A and therefore an optimal solution to (Bar(A)) with
Z∗C = fC(ξ∗) = f(ξ∗) = Z∗. Since ξ∗ ∈ X ∗C was arbitrary, we obtain X ∗C ⊆ X ∗ and
Lemma 14 implies X ∗ ⊆ X ∗C , hence X ∗ = X ∗C .

5 Comparing BarC with BarC,α

From an applied point of view it might be interesting to consider the empty barycenter as
a valid solution. The barycenter of a set of points is representative for said set. Having no
barycenter can then be interpreted as ”the points are so widely spread, that no single point
represents them”.
After solving (BarC(A)) it is easy to check if the empty barycenter is a better solution. But
it would save computation time if we knew before the calculations that the empty barycenter
must be better. In this section we compare (BarC(A)) with (BarC,α(A)) and work out criteria
under which we know that either the empty barycenter is the optimal solution to (BarC,α(A))
or that the empty barycenter cannot be the optimal solution.

If the empty barycenter is not the best solution to (BarC,α(A)) we know that the points of
A must contain a cluster which has a certain density. That means that there must exist a
subset A ⊆ A with diam(A) ≤ 2 q

√
C containing at least (1− α) · n points:

Lemma 19. The empty barycenter is an optimal solution if there is no ball B with radius
q
√
C that contains more than (1− α) · n points.

Proof. Suppose such a ball does not exist. Let ξ∗ ∈ Rk be an optimal solution to (BarC,α(A)).
We know for all a ∈ active(ξ∗) that d(ξ∗, a) ≤ q

√
C. Therefore there exists a ball B with radius

q
√
C that contains all points of active(ξ∗) and no points of const(ξ∗). Since, by assumption, B

can not contain more than (1− α) · n points, we know that active(ξ∗) does not contain more
than (1−α)·n points, i.e., |active(ξ∗)| ≤ (1−α)·n. But then |const(ξ∗)| ≥ n−(1−α)·n = α·n.
So the points in const(ξ∗) alone contribute at least α ·C ·n = fC,α(∅,A) to fC,α(ξ∗,A), hence
fC,α(ξ∗,A) ≥ α ·C ·n = fC,α(∅,A). If ∅ /∈ X ∗C,α, then fC,α(ξ∗,A) < α ·C ·n, which contradicts
the optimality of ξ∗.
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In Lemma 19 we could argue with active(ξ∗) alone. If |active(ξ∗)| ≤ (1 − α) · n, then the
empty barycenter is an optimal solution. But we do not know ξ∗ and therefore active(ξ∗)
before solving (BarC(A)). Checking if such a ball exists might in general be computationally
more easy than solving (BarC(A)). E.g. for data in R2 and the Euclidean distance, i.e.
d = `2, q = 1, it can be checked in O(n2) time if such a ball exists, see [CL86].

We further improve Algorithm 2 by using the empty barycenter as an upper bound on
the optimal solution to (BarC,α(A)). For the empty barycenter we know directly the value
fC,α(∅,A) = n · α · C and initialize the algorithm with this value as current best solution.

Algorithm 3: Second improvement of Algorithm 1

Input : Set A = {a1, . . . , an}, cutoff C > 0, α > 0
Output: A barycenter ξ∗ of (BarC,α(A)), objective function value Z∗C,α

1 Set ξ∗ ← ∅, Z∗C,α ← n · α · C, B ← A;

2 for i← 1 to (n− 1) do
3 continue ← true;
4 m← |{a ∈ B | dq(ai, a) ≤ 2qC}|;
5 if (n−m) · C ≥ Z∗C,α then

6 B ← B \ {ai};
7 continue ← false;

8 end
9 if continue then

10 Inner Loop;
11 end

12 end
13 return ξ∗,Z∗C,α

Theorem 20. Let A ⊆ R2, let d be a norm-metric and say we can solve (Bar(A)) in h(n)
time. Then Algorithm 3 solves the problem (BarC(A)) in O(n2 · h(n)) time.

Proof. The runtime and the correctness of the algorithm follow directly from the proof of
Theorem 9. Formally, the only difference is that Algorithm 3 is initialized with the empty
barycenter as the current best solution.

Compared with Algorithm 2 we replace the initial ξ∗ in the declaration from ξ∗ ← a1 with
ξ∗ ← ∅. This is of course only better, if fC,α(∅,A) ≤ fC(a1,A), which implies α ≤ n−1

n ,
compare Lemma 3. We will see in the following Lemma that for α close enough to 1, the
empty barycenter cannot be an optimal solution to (BarC,α(A)):

Lemma 21. If α > n−1
n then the empty barycenter is never an optimal solution.

Proof. Referring to Lemma 3 we compare fC,α(∅,A), with α > n−1
n , to the upper bound of

Z∗C : fC,α(∅,A) = α · n · C > n−1
n · n · C = (n− 1) · C ≥ Z∗C .

Hence a point ξ∗ ∈ Rk exists, such that fC(ξ∗,A) < fC,α(∅,A).

To determine if the empty barycenter is a better solution than any solution in Rk before
solving (BarC(A)), we can look at the pairwise distances between the points of A.
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If the points of A are close to each other compared to C, it is more likely that the cost of an
empty barycenter exceeds the cost of a solution in Rk. If on the other hand the points are far
apart, it is more likely that the empty barycenter is optimal. We define the mean pairwise
distance between points of A and study its relation to the optimal solution of (BarC,α(A))
w.r.t n, α and C.

Definition 22. Let A = {a1, . . . , an} ⊆ Rk. We define the mean pairwise distance

mpd(A) :=
1

n(n− 1)

n∑
i=1

n∑
j=1

dqC(ai, aj) =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

dqC(ai, aj).

The following statements are immediately clear.

Lemma 23. We always have

• 0 ≤ mpd(A) ≤ C,

• 0 ≤ mpd(A) ≤ diam(A)q.

The mean pairwise distance can be computed in O(n2) time. If it is ‘small’ compared to
the cutoff C and α and n, we know that the empty barycenter can again not be an optimal
solution to (BarC,α(A)). Let us hence study mpdC(A) := 1

C mpd(A) ∈ [0, 1] as percentage of
C. We can strengthen Lemma 21 as follows:

Lemma 24. If α > mpdC(A)·n−1n , then for at least one point a ∈ A : fC,α(a,A) < fC,α(∅,A),
i.e. the empty barycenter is never an optimal solution.

Proof. Suppose such a point a does not exist. We show that then mpdC(A) · n−1n > α: For
any i ∈ {1, . . . , n}:

∑n
j=1 d

q
C(ai, aj) = fC,α(ai,A) > fC,α(∅,A) = α ·C ·n. The mean pairwise

distance then is

mpd(A) =
1

n(n− 1)

n∑
i=1

n∑
j=1

dqC(ai, aj)

>
1

n(n− 1)

n∑
i=1

α · C · n =
1

n(n− 1)
· α · C · n2 = α · C · n

n− 1
,

hence mpdC(A) · n−1n > α.

We can directly transfer this result to the diameter diam(A) which we used in Section 4, since
the mean pairwise distance is never larger than the diameter raised to the power q.

Corollary 25. If α > diam(A)q
C · n−1n then the empty barycenter is never an optimal solution.

Proof. From α > diam(A)q
C · n−1n it follows that α > mpdC ·n−1n . With Lemma 24 we know

that then the emtpy barycenter is not an optimal solution to (BarC,α(A)).

We can reformulate Lemma 24 and Corollary 25 to get a condition for the diameter and the
mean pairwise distance for the empty barycenter not being optimal: mpd(A) < α ·C · n

n−1 or
diam(A)q < α · C · n

n−1 then ∅ is not optimal.
On the other hand we show that for small α the empty barycenter is always an optimal
solution to (BarC,α(A)):
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Lemma 26. If α ≤ min
{

1
2q

diam(A)q
n·C , 1n

}
then the empty barycenter is an optimal solution to

(BarC,α(A)).

Proof. Let ξ∗ ∈ X ∗C be an optimal solution to (BarC(A)). We know from the triangle
inequality that there exists a point a ∈ A such that d(ξ∗, a) ≥ 1

2 diam(A). Therefore
dqC(ξ∗, a) ≥ min{ 1

2q diam(A)q, C} and hence Z∗C ≥ min{ 1
2q diam(A)q, C}. Then

fC,α(∅,A) = n · α · C ≤ min

{
1

2q
diam(A)q, C

}
⇔ α ≤ min

{
1

2q
diam(A)q

n · C
,

1

n

}

Remark. When diam(A) ≥ 2C then min
{

1
2q

diam(A)q
n·C , 1n

}
= 1

n . And thus for α ≤ 1
n and

diam(A) ≥ 2C the empty barycenter is an optimal solution to (BarC,α(A)).

The following lemma and example show that for larger mpd(A) both cases, ∅ ∈ X ∗C,α or
∅ 6∈ X ∗C,α, are possible.

Lemma 27. Let α = 1
2 , q = 1. Then for any ε > 0 there exists a set A ⊆ Rk such that

mpd(A) = 1
2 · C + ε, but where fC, 1

2
(∅,A) < fC, 1

2
(x,A) for any x ∈ Rk.

Proof. We construct a set A = {a1, . . . , a2n} ⊆ R, where n > C
4ε+ 1

2 and set δ := 2n(2n−1)ε−nC
4(n−1) .

The points have the coordinates a1 = −δ, a2 = . . . = an = 0, an+1 = . . . = a2n−1 = C, a2n =

C + δ. Then mpd(A) = n2C+2(n−1)δ
n(2n−1) = nC

2n−1 + 2(n−1)δ
n(2n−1) = C

2 + C
2(2n−1) + 2(n−1)δ

n(2n−1) .With the

specified δ we have mpd(A) = C
2 + ε and since n > C

4ε + 1
2 we have δ > 0.

An optimal solution of (BarC(A)) is any of the points a2, . . . a2n−1. The optimal objective
function value Z∗C = fC, 1

2
(a2,A) = nC + δ is larger than nC = fC, 1

2
(∅,A). So the empty

barycenter is a better solution than the best solution in R.

We have seen in Lemma 24 that for mpd(A) < α · C · n
n−1 the empty barycenter is not

optimal. Yet, Lemma 27 proves that the mpd can be arbitrarily close to α · C and still the
empty barycenter is an optimal solution. The following example proves on the other hand
that there exist sets with an mpd arbitrarily close to C, for which the empty barycenter is
not an optimal solution.

Example 6. [Example for large mpd(A) where ∅ 6∈ X ∗C,α for α ≥ 1
2 .]

Let two points in R be given, a1 = 0, a2 = q
√
C − ε for some ε > 0. Now fC,α(a1,A) = C−ε <

C ≤ 2 · α · C = fC,α(∅,A).

Note that the situation of this example is the same if we replace the mpd by the minimum
or median distance between points, since both values are C − ε.
We finally summarize our findings. We know that the empty barycenter is an optimal solution
to (BarC,α(A)) if

• there is no ball B with radius q
√
C that contains at least (1−α) ·n points, see Lemma 19,
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• α ≤ min
{

1
2q

diam(A)q
n·C , 1n

}
, see Lemma 26.

On the other hand we know that the empty barycenter is not an optimal solution if

• α > n−1
n , see Lemma 21,

• α > mpdC(A) · n−1n or α > diam(A)q
C · n−1n , see Lemma 24 and the subsequent Corollary.

In the other cases we do not know in advance if the empty barycenter is optimal, c.f. Lemma 27
and Example 6.

6 Sensitivity analysis w.r.t C

So far we have assumed that the cutoff value C is a priori specified, but there is a wide range
of scenarios where this is not the case.
In the application described in Section 7 we often (but not always) know the order of mag-
nitude of a reasonable cutoff C due to the physical reality of the data, but this typically still
leaves a large interval of possible choices which may lead to very different outcomes.
In a more direct location problem setting the actual C may be determined by another
player trying to maximize her profit based on knowledge of the entire function g = [C 7→
minξ fC(ξ,A)] (or [C 7→ minξ fC,α(ξ,A)], where we still assume α > 0 to be fixed). Taking
up the waste dump example from the introduction, it may be that in the decision process the
local transportation company is asked for the price C, at which it would offer to transport
domestic waste to the dump. A profit maximizing choice of C depends on detailed knowledge
of the function g.
This function is what we study in the present section.

Definition 28. Let x ∈ Rk be a fixed point. Define the two functions

(i) gx : R+ → R, C 7→ fC(x,A)

(ii) g : R+ → R, C 7→ fC(A) := min
ξ∈Rk

fC(ξ,A).

The function gx maps the cutoff C to the objective function value fC(x,A), while the function
g maps the cutoff to the optimal objective function value Z∗C , compare with (BarC(A)).

We study how the barycenter ξ∗ = ξ∗C and the values of gx and g change with changing C.

Example 7. [Example for discontinuity of the optimal solution to (BarC(A)) w.r.t C]

a1 a2 a3 a4 a5

Let 5 points in R be given, a1 = 0, a2 = 0.5, a3 = 5, a4 = 6, a5 = 7. Consider q = 1 and d = |·|.
The location of the points is sketched above. The following gives a complete description of
X ∗C for various C. Note that at the boundaries of the ranges the union of the barycenters in
the lower and the higher range are in X ∗C . For 0 ≤ C ≤ 0.5 any of the points a1 to a5 is
optimal for (BarC(A)). For 0.5 ≤ C ≤ 1.5 any point on the interval [a1, a2] is optimal, for
1.5 ≤ C ≤ 5.25 a4 is optimal, for 5.25 ≤ C a3, the barycenter of the problem without cutoff,
is optimal.

19



As seen in the example, the optimal solution set for (BarC(A)) can change abruptly in C. On
the other hand we will see that g, i.e. the objective function C 7→ fC(A) is quite well-behaved
and can be computed efficiently.

Lemma 29. Let x ∈ Rk be some fixed point, A = {a1, . . . , an} ⊆ Rk. Sort the points increa-
singly by their distance to x and define di := dq(x, ai), so that d1 ≤ d2 ≤ . . . ≤ dn. Then the
function gx is

(i) of the form

gx(C) =

j∑
i=1

di + (n− j) · C, with j = |activeC(x)| (6)

gx is therefore piecewise linear with kinks in di.

(ii) continuous,

(iii) non-decreasing,

(iv) concave.

Proof. (i) W.l.o.g we assume that x 6= ai for all i ∈ {1, 2, . . . , n}. Otherwise we eliminate the
first j points from our list, where j := max{i ∈ {1, . . . , n} | di = 0}, use n′ = n − j in the
proof and re-enumerate aj+1, . . . , an to a1, . . . , an′ .

By definition

gx(C) = fC(x,A) =
n∑
i=1

min{di, C}.

We can split this sum into sums over indices of active and constant points, as defined in
Section 3. Let m = mC = |activeC(x)|. Then d1 ≤ . . . ≤ dmC ≤ C and C < dmC+1 ≤ . . . ≤ dn
and

gx(C) =

n∑
i=1

min{di, C} =

mC∑
i=1

di +

n∑
i=mC+1

C =

mC∑
i=1

di + (n−mC) · C.

For any j ∈ {1, . . . , n} the sum over the di is constant for dj ≤ C < dj+1 so gx is piecewise
linear. The slope of the j-th line segments is (n− j).

(ii) We know that gx is piecewise linear with kinks in di. On these line segments, i.e. di <
C < di+1, the function is continuous. We have to check for the kinks of gx, i.e. C = dj for
some j, if the two line segments for C = dj − ε and C = dj + ε, ε > 0, intersect at gx(dj).

Take j ∈ {1, . . . , n}. For dj−1 < C < dj : gx(C) =
∑j−1

i=1 di +
∑n

i=j C. For j = 1 the first sum

is 0. For dj < C < dj+1: gx(C) =
∑j

i=1 di +
∑n

i=j+1C. For j = n the second sum is 0.

For C = dj :
∑j−1

i=1 di +
∑n

i=j C =
∑j−1

i=1 di + dj +
∑n

i=j+1C =
∑j

i=1 di +
∑n

i=j+1C. So the
two line segments intersect and therefore is gx continuous.

(iii) Take two cutoffs C1 < C2. Since C1 < C2 we also have min{di, C1} ≤ min{di, C2} for
all i ∈ {1, . . . , n}. Now gx(C1) =

∑n
i=1 min{di, C1} ≤

∑n
i=1 min{di, C2} = gx(C2), so gx is

non-decreasing.

(iv) With larger C the cardinality mC of activeC(x) increases. Therefore the slope (n−mC)
of the line segments decreases with growing C, so gx is also concave.
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We can now extend the results for gx which hold for all x ∈ Rk to the function g.

Theorem 30. The function g is continuous, non-decreasing and concave.

Proof. For calculating the function g we need to solve (BarC(A)) for every C. For a fixed C
an optimal solution to (BarC(A)) is a solution of (Bar(A)) for some subset A ⊆ A, compare
Lemma 5.
Since A is finite, there are only finitely many subsets of A. There is therefore only a finite
set S of candidates for an optimal solution to (BarC(A)). The function g is the minimum of
the functions gξ, i.e. g(C) = minξ∈S gξ(C).
The minimum of finitely many continuous functions is continuous. The same holds for the
properties “non-decreasing” and “concave”.

Recall the piecewise linear form of the function gx. The function g as minimium of finitely
many piecewise linear functions is then itself piecewise linear. The slopes of the line segments
are given by the cardinalities of the sets activeC(ξ∗) for optimal solutions ξ∗ = ξ∗C ∈ X ∗C for
the different C. Those slopes are integers between n − 1 and 0. Since g is continuous and
concave the function consists of at most n linear pieces. The slope only changes at the kinks
of the function g. And only there does the cardinality of the set active(ξ∗) change. Let us say
we have kinks at C1 < C2 and no kinks in between. Let C ∈ (C1, C2). Any solution ξ∗C ∈ X ∗C
defines the same function gξ∗C on the interval (C1, C2). The function g has its next kink at
C2, so C2 is the smallest value greater than C1 where any of the functions gξ∗C can have a
kink. It follows that any solution ξ∗C ∈ X ∗C is optimal on the whole interval [C1, C2].
But that means if we find all values C at which g has a kink, and a corresponding optimal
solution ξ∗ for each of those C, we have an optimal solution to (BarC(A)) and the value of g
for any 0 ≤ C <∞.

We describe in Algorithm 4 how we can calculate these optimal solutions ξ∗ and values of g in
at most n− 1 steps, by finding the different line segments. The function bar(C,A) calculates
an optimal solution ξ∗ of (BarC(A)) and the corresponding value Z∗C for a given cutoff C.
bar(∞,A) returns an optimal solution to (Bar(A)).
Let the set S ⊆ {0, . . . , n − 1} contain the slopes of the line segments that we have already
found and the set O ⊆ {0, . . . , n− 1} \ S the slopes of the segments that we still might find,
the open slopes. Each of the lines ln−1, . . . , l0 is defined by a point (C,Z∗C) and the slope i,
which is indicated by its index. The algorithm will calculate (up to) n different lines. These
lines are tangents for the function g. By calculating the intersection points of lines li and
li+1 we get the kinks of g and thereby the complete function g(C), which is a combination of
segments of the lines ln−1, . . . , l0.

Theorem 31. Say we can solve (BarC(A)) in hC(n) time. Then Algorithm 4 computes the
function g in O(n · hC(n)) time.

Proof. We have to prove two things: first the runtime and second the correctness.
First: The function bar(C,A) is called at most n− 1 times. Once in line 2 and once in every
iteration of the while-loop, lines 4 to 18. The while-loop is called at most n − 2 times. The
computation of the (at most) n− 1 intersection points in line 19 to 22 is done in O(n) time.
Together we have a runtime of O(n · hC(n) + n) = O(n · hC(n)).
Second: We know by Lemma 29 that g starts in (0, 0) with slope n − 1 and will eventually
get constant, taking the value g(C) = Z∗0 = bar(∞,A). So the lines l0 and ln−1 defined in

21



Algorithm 4: Calculate fC(A) for all C

Input : The set A = {a1, . . . , an}
Output: The function g(C) and up to n− 1 barycenters corresponding to the

different values of C.

1 Set S ← {0, n− 1}, O← {1, . . . , n− 2};
2 (ξ∗0 ,Z∗0 )← bar(∞,A), (ξ∗n−1,Z∗n−1)← (a1, 0);
3 Define the lines l0 by the point (0,Z∗0 ) and the slope 0 and ln−1 by the point (0, 0)

and the slope n− 1 ;
4 while O 6= ∅ do
5 Take smallest index o from O;
6 Take the largest i ∈ S : i < o and the smallest j ∈ S : o < j;
7 Calculate the intersection point (C, y) of lines li and lj ;
8 (ξ∗C ,Z∗C)← bar(C,A) ;
9 if Z∗C = y then

10 O← O \ {i+ 1, i+ 2, . . . , j − 1};
11 end
12 else
13 Set m← |active(ξ∗C)|, ξ∗n−m ← ξ∗C , Z∗n−m ← Z∗C ;
14 Define ln−m by the point (C,Z∗n−m) and slope n−m;
15 O← O \ {n−m};
16 S ← S ∪ {n−m};
17 end

18 end
19 for i ∈ S \ {n− 1} do
20 j ← min{k ∈ S | k > i};
21 Calculate the intersection point (Ci, g(Ci)) of lines li and lj ;

22 end
23 (Cn−1, g(Cn−1))← (0, 0);
24 return {(Ci, g(Ci)) | i ∈ S}, {ξ∗i |i ∈ S}

line 3 contain the outermost line segments of g and bound g above due to its concavity.
We have to prove that the algorithm finds all line segments in between. Suppose we have two
line segments li and lj . Now we compute the intersection of those lines in line 7. We know
that this intersection point (C, y) must lie on or above g by concavity. We now calculate the
value Z∗C for this C and get a point (C,Z∗C) that is on g. There are two possibilities:

• Either y = Z∗C , which means the intersection point of the lines is already on g. But
that means that the function g can have no line segments with slopes between i and j,
so all these values are removed from the set O in line 10.

• Or we found a point on g that is below the intersection point (C, y). For the found
barycenter ξ∗ we look at the cardinality m of active(ξ∗). The slope of the line ln−m,
which is a tangent on g, is given by the non-active points. So the next line ln−m is given
by the slope n −m and the point (C,Z∗c ). This line is saved and we add n −m to S
and delete n−m from O.
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So with every iteration of lines 4 to 18 we either find out that li and lj intersect on g or we
find one new line segment that is a tangent for g. The function g is uniquely defined by these
tangents.

Note that Algorithm 4 can be parallelized. When the intersection of two lines is calculated
in line 7, the problem can then be split into a subproblem to the left of this point and to the
right of this point.

Remark. Having computed g, the function g(α) : R+ → R, C 7→ minξ∈Rk∪{∅} fC,α(ξ,A) is

easily derived, since g(α)(C) = min{g(C), α ·n ·C}. Provided that α < n−1
n , which means α ·n

is smaller than the initial slope of g, we obtain from the concavity of g and the fact that it
must eventually be constant, that there is exactly one C0 > 0 where the graph of g intersects
with the linear function [C 7→ α · n · C]. We then have g(α)(C) = α · n · C to the left of C0

and g(α)(C) = g(C) to the right of C0. If α ≥ n−1
n , we have g(α) = g everywhere.

7 Applications

The original motivation for investigating (BarC,α(A)) comes from [MSM20], where two of
the current authors studied barycenters of finite collections of point patterns for their use as
summary statistics. We briefly describe here the relevant details, because we think that the
involved concepts and their algorithmic implications may well be of interest in the context
of location problems where e.g. an optimal supply chain is to be maintained to a number of
companies that each have several branch offices.
For the present purpose we define a point pattern as a finite subset of Rk and denote the set
of all such patterns by N. Then for given point patterns ξ1, . . . , ξm ∈ N, a barycenter is any
minimizer of the Fréchet functional

F (ζ) =

m∑
j=1

τ(ξj , ζ)q (7)

over ζ ∈ N. Here τ is the transport-transform (TT) metric on N introduced in [MSM20].
Basically, τ(ξj , ζ)q is the minimal “cost” of matching a subset of ξj and a subset of ζ, where
each pairing of a point x ∈ ξj and a point z ∈ ζ incurs a cost of d(x, z)q and each unmatched
point of either pattern incurs a cost of 1

2C.
If we consider point patterns as discrete measures by identifying ξ = {x1, . . . , xn} with∑n

i=1 δxi for pairwise distinct xi, we can re-interpret the TT metric as a special case of
an unbalanced Wasserstein metric, see [CPSV18] for the definition of the latter or [MSM20],
Remark 3, for the full argument.
Intuitively, a barycenter can be thought of as a “typical” representative, in a sense an “average
point pattern” that reflects common properties of the data point patterns. In [MSM20]
barycenters were applied to point patterns of crime locations in two cities, with the goal of
detecting systematic differences over the years or between different seasons. Another goal
might be for planning the efficient deployment of police officers according to the time of the
day (or year) and maybe other side constraints (predictive policing).
[BP21] prove that the computation of a sparse Wasserstein barycenter is NP-hard for three
point patterns with the same number of points in R2 and q = 2. In the authors’ setting the
barycenter can be a more general discrete finite measure (not necessarily with unit weights),
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but their sparseness condition limits the number of support points. There does not seem to
be a direct theoretical result for our problem (7), but based on the current state of theoretical
and applied research, we assume that this problem is insolvable for all practical purposes.
Therefore [MSM20] proposed a heuristic algorithm based on an equivalent form of the TT
metric: First fill up the point patterns ξ1, . . . , ξm so that they all have the same cardinality
n, say, by adding points at a single “virtual” location ℵ 6∈ Rk at distance (12C)1/q apart from
any locations in Rk. For ξj = {xj1, . . . , xjn} and ζ = {z1, . . . , zn} (multisets since they may
include ℵ several times), we may then express the metric τ equivalently as

τ(ξj , ζ)q = min
π∈Sn

n∑
i=1

d′(xji, zπ(i))
q, (8)

where Sn denotes the set of permutations on {1, . . . , n} and

d′(x, z)q =


min

{
d(x, z)q, C} if x, z ∈ Rk;

1
2C if ℵ ∈ {x, z}, x 6= z;

0 if x = z = ℵ;

(9)

see [MSM20], Theorem 1. We may then find a local optimum of the Fréchet functional (7)
by alternating between forming pairwise disjoint clusters of the form C = {x1,i1 , . . . , xm,im},
i1, . . . , im ∈ {1, . . . , n}, including exactly one (maybe virtual) point from each data pattern
via optimal matching, and computing suitable “centers” for each such cluster C by minimizing

f(z) =

m∑
j=1

d′(xj,ij , z)
q (10)

over z ∈ Rk ∪ {ℵ}. In the algorithm of [MSM20] this minimization was only performed
approximately, using some crude but fast heuristics. However, except for the fact that xj,ij =
ℵ may hold for individual j, the minimization (10) corresponds to problem (BarC,α(A)) with
α = 1

2 . Noting that the contribution from xj,ij = ℵ is constant as long as z ∈ Rk, we may
therefore use a slightly adapted version of Algorithm 3 to compute the centers exactly.

8 Simulation study

For comparing Drezners algorithm with the two improvements Algorithm 2 and Algorithm 3
, we created six test scenarios of point patterns inside the unit square and compared runtimes
and solutions of the algorithm. For scenarios (1) to (5) we chose rectangles and generated
the coordinates of the points inside each rectangle uniformly at random, independently of one
another. In scenario (2) to (5) we combined two of those rectangles. The number of points
in every rectangle follows a Poisson distribution with parameters chosen in such a way that
the expected number of points is 600 in each scenario. The scenarios are (from left to right,
top to bottom):
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(1) one unit square

(2) two squares with edge length 0.5 that
overlap in a square of size 0.1× 0.1, half
of the points in each square

(3) one small square with edge length 0.4 in-
side the unit square, half of the points in
each square

(4) one small square with edge length 0.3 in-
side the unit square, half of the points in
each square

(5) two rectangles overlapping on one strip of
width 0.2. Height for both rectangles is
0.5, width 0.5 and 0.6, half of the points
in each rectangle

(6) 4 small clusters with background noise.
The clusters are two-dimensional Gaus-
sians with σ = 0.025. The cluster cen-
ters are uniformly drawn for each pattern
individually. The expected number of
points in the clusters is 90%, an expected
number of 10% are uniformly drawn in
the unit square.

We ran a simulation study with 100 patterns from each scenario to compare the three algo-
rithms. The results are in Table 1. As expected, all three algorithms find the exact solution
every time.
In these calculations we set α = 0.5, so the cost of an empty barycenter is C · |A|2 . We have
d = `2 and q = 2. For the computation we used the publicly available R-package ttbary,
see [MS21].
The runtime depends highly on the point pairs from which barycenter candidates are calcu-
lated. The larger the cutoff C, the more point pairs are taken into account and barycenter
candidates have to be checked. Therefore the runtime gets higher with larger cutoff. For
Algorithm 1 for the smallest cutoff C = 0.01 the runtime is about 4− 12 seconds for the 100
patterns combined. In Scenario 6 the runtime for C = 0.01 is about 81 seconds for the 100
runs, because even with the small cutoff due to the small clusters many barycenter candidates
have to be calculated. For all the scenarios the runtime goes up to 1709 − 2574 seconds for
C = 0.3. We also counted how many barycenter candidates had to be calculated by this
algorithm in total for each scenario. In Table 1 we compare the runtime of the two improved
Algorithms 2 and 3 to the ‘original’ runtime and compare how many barycenter candidates
could be skipped by the improved algorithms.
The column ‘skipped points’ presents for each scenario and cutoff the relative number of
barycenter candidates that were skipped by this algorithm.
The values correspond to Algorithm 2/Algorithm 3/Algorithm 1 (first and second improve-
ment and original algorithm). For example in Scenario 1, C = 0.01 the 0.450/1.000/0 means
that Algorithm 2 was able to skip 45% of the barycenter candidates, Algorithm 3 skipped
100% of the barycenter candidates, and of course Algorithm 1 skipped nothing.
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Similarly the column ‘time’ presents for each scenario and cutoff the relative time the algo-
rithms took for the 100 point patterns compared to the runtime of the original Algorithm 1.
For example in Scenario 1, C = 0.01 the 0.702/0.252/1 means that Algorithm 2 was about
30% faster and Algorithm 3 was about 75% faster than Algorithm 1.

We can clearly see the connection between the amount of skipped barycenter candidates and
the amount of time that is saved. The first improvement, Algorithm 2, is almost never slower
than the original algorithm and can for smaller cutoffs C save up to 30% of the runtime.
The second improved version, Algorithm 3, is much faster than the other two. The empty
barycenter is in these scenarios for small cutoffs always the optimal solution. For cutoffs up
to C = 0.1 almost all point pairs can be skipped a priori. In scenario 1 even for C = 0.2 the
runtime is below 1% of the runtime of the original algorithm.

Scenario 1 Scenario 2 Scenario 3

C = skipped points time skipped points time skipped points time

0.01 0.450/1.000/0 0.702/0.252/1 0.383/1.000/0 0.703/0.144/1 0.289/1.000/0 0.778/0.133/1

0.02 0.273/1.000/0 0.773/0.082/1 0.128/1.000/0 0.911/0.044/1 0.105/1.000/0 0.911/0.038/1

0.03 0.094/1.000/0 0.940/0.040/1 0.027/1.000/0 0.970/0.020/1 0.087/1.000/0 0.917/0.018/1

0.05 0.006/1.000/0 0.999/0.015/1 0.004/1.000/0 0.992/0.008/1 0.081/1.000/0 0.922/0.007/1

0.075 0.001/1.000/0 1.005/0.007/1 0.001/1.000/0 1.001/0.004/1 0.073/1.000/0 0.931/0.003/1

0.1 0.000/1.000/0 1.005/0.004/1 0.000/1.000/0 1.001/0.002/1 0.064/1.000/0 0.938/0.002/1

0.2 0.000/0.995/0 1.002/0.006/1 0.000/0.762/0 1.000/0.239/1 0.049/0.287/0 0.953/0.716/1

0.3 0.000/0.263/0 1.000/0.738/1 0.000/0.009/0 1.001/0.991/1 0.018/0.041/0 0.983/0.960/1

Scenario 4 Scenario 5 Scenario 6

C = skipped points time skipped points time skipped points time

0.01 0.189/1.000/0 0.854/0.095/1 0.397/1.000/0 0.683/0.125/1 0.056/1.000/0 0.954/0.012/1

0.02 0.071/1.000/0 0.952/0.026/1 0.137/1.000/0 0.886/0.036/1 0.023/1.000/0 0.979/0.004/1

0.03 0.070/1.000/0 0.945/0.012/1 0.044/1.000/0 0.963/0.017/1 0.012/1.000/0 0.990/0.002/1

0.05 0.072/1.000/0 0.933/0.005/1 0.008/1.000/0 0.993/0.006/1 0.015/1.000/0 0.986/0.002/1

0.075 0.076/1.000/0 0.926/0.002/1 0.004/1.000/0 0.999/0.003/1 0.080/0.987/0 0.920/0.014/1

0.1 0.079/0.981/0 0.925/0.021/1 0.002/1.000/0 0.998/0.002/1 0.181/0.953/0 0.820/0.048/1

0.2 0.116/0.231/0 0.887/0.772/1 0.000/0.171/0 1.000/0.831/1 0.127/0.528/0 0.875/0.473/1

0.3 0.028/0.032/0 0.972/0.968/1 0.000/0.000/0 1.001/1.000/1 0.042/0.132/0 0.960/0.870/1

Table 1: Comparison of the runtime of the two improved Algorithms 2 and 3 to the ‘original’
runtime of Algorithm 1 and how many barycenter candidates were skipped by the improved
algorithms. The column ‘skipped points’ presents for each scenario and cutoff the relative
number of barycenter candidates that were skipped by this algorithm. The values corre-
spond to Algorithm 2/Algorithm 3/Algorithm 1 (first and second improvement and original
algorithm). Similarly the column ‘time’ presents for each scenario and cutoff the relative
time the algorithms took for the 100 point patterns compared to the runtime of the original
Algorithm 1.

8.1 Consequences for the barycenter algorithm of [MSM20]

As mentioned in Section 7 problem 10, that stems from [MSM20], is identical to (BarC,α(A))
with α = 1

2 . In the algorithm of [MSM20] this problem was solved by a fast heuristic:
Starting with a point x ∈ Rk we calculate active(x), solve Bar(active(x)) with optimal so-
lution ξ∗ and set x ← ξ∗. The heuristic uses the idea that is proven in Lemma 5, that
the optimal solution of (BarC(A)) must be an optimal solution of (Bar) for some subset of
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A. With this heuristic the objective function value cannot increase, since the distances to
active(x) are optimized and the distances to const(x) cannot increase by definition of const(x).

An implementation of the original algorithm of [MSM20] can be found in the publicly available
R package ttbary, [MS21]. We implemented Algorithm 3 in the algorithm of [MSM20] to
replace the heuristic. In a simulation study we compared the implementation in [MS21] with
our version in which the heuristic is replaced with Algorithm 3.
It turned out that doing the exact calculation instead of the heuristic for solving problem 10
does not improve the algorithm of [MSM20] in general. In the algorithm the size of A in
(BarC,α(A)) depends on the number of point patterns. The set A consists of exactly one point
(including ℵ, see Section 7) of every pattern. We compared the runtime and the resulting
objective function value (cost) of the computed pseudo-barycenters. For the three ‘groupsizes’
of 20, 50 and 100 point patterns per group we created 600 groups each. Both algorithms had
the same input for each of the 1800 groups. In our tests about half of the costs with the
exact solutions of problem 10 were smaller and half of the costs were larger compared to the
heuristic. At the same time the runtime for the algorithm with the exact subroutine for 10 is
about 3.5, 13.5 or 42 times larger for the groupsizes of 20, 50 and 100 respectively. Since the
heuristic is a lot faster and does not yield a worse solution we recommend to stay with the
original version of the algorithm as it is presented in [MSM20].

9 Discussions and outlook

In this paper we presented the problems (Bar(A)), also known as the Weber-problem, and
the extension (BarC(A)), which is related to a problem studied by [DMW91]. Additionally
we introduced the new barycenter problem (BarC,α(A)), where we extend the classic prob-
lem by the option to have an empty solution. In Sections 4 and 5 we investigated under
which conditions an optimal solution of (Bar(A)) is also an optimal solution to (BarC(A)) or
(BarC,α(A)). We also investigated under which conditions an optimal solution to (Bar(A))
cannot be an optimal solution to (BarC(A)) or (BarC,α(A)). Most results are based solely
on the geometric structure of the dataset, like the diameter of the set or the mean pairwise
distance between its points. The summaries of the results can be found in Table 4 and the
statements thereafter and at the end of Section 5.

For the average problem we typically do not know if we can reduce (BarC(A)) or (BarC,α(A))
to (Bar(A)). We presented two improvements of the algorithm introduced by [DMW91] to
solve (BarC(A)) and (BarC,α(A)) more efficiently. We furthermore gave an algorithm for
solving (BarC(A)) simultaneously for all C ≥ 0 by solving O(n) problems of type (BarC(A))
for specified values of C.

For future research it might be interesting to generalize the improved algorithms to the original
problem stated by [DMW91], who allowed different cutoffs for every point.
Another interesting topic is to find new criteria to determine beforehand if solving (Bar(A)) is
sufficient. Another algorithmic idea is to split the original problem into subproblems that can
be solved independently, where one optimal solution of the subproblems is guaranteed to be
the optimal solution of the original problem. One could also study how (BarC(A)) simplifies
for special cases like the `1-metric, where we can optimize separately over the k dimensions.
These findings could help to solve the problems (BarC(A)) and (BarC,α(A)) faster in the
future.
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