
ar
X

iv
:2

01
1.

13
60

9v
1

 [
cs

.L
G

]
 2

7
N

ov
 2

02
0

Eigenvalue-corrected Natural Gradient Based on a

New Approximation

Kai-Xin Gao1∗, Xiao-Lei Liu1∗, Zheng-Hai Huang1∗, Min Wang2,

Shuangling Wang2, Zidong Wang2, Dachuan Xu3†, Fan Yu2

1 School of Mathematics, Tianjin University
2 Central Software Institute, Huawei Technologies

3 Department of Operations Research and Information Engineering, Beijing University of Technology

Abstract

Using second-order optimization methods for training deep neural networks
(DNNs) has attracted many researchers. A recently proposed method, Eigenvalue-
corrected Kronecker Factorization (EKFAC) (George et al., 2018), proposes an in-
terpretation of viewing natural gradient update as a diagonal method, and corrects
the inaccurate re-scaling factor in the Kronecker-factored eigenbasis. Gao et al.
(2020) considers a new approximation to the natural gradient, which approxi-
mates the Fisher information matrix (FIM) to a constant multiplied by the Kro-
necker product of two matrices and keeps the trace equal before and after the
approximation. In this work, we combine the ideas of these two methods and pro-
pose Trace-restricted Eigenvalue-corrected Kronecker Factorization (TEKFAC).
The proposed method not only corrects the inexact re-scaling factor under the
Kronecker-factored eigenbasis, but also considers the new approximation method
and the effective damping technique proposed in Gao et al. (2020). We also discuss
the differences and relationships among the Kronecker-factored approximations.
Empirically, our method outperforms SGD with momentum, Adam, EKFAC and
TKFAC on several DNNs.

1 Introduction

Deep learning has made significant progress in various natural language and computer
vision applications. But as models becoming more and more complex, deep neural net-
works (DNNs) usually have huge parameters (for example, VGG16 has over 1.5 million

∗Equal contribution
†Corresponding author, Email: xudc@bjut.edu.cn

1

http://arxiv.org/abs/2011.13609v1

parameters) to be trained, which takes a long time. Therefore, the research of more
efficient optimization algorithms has attracted many researchers.

Among the algorithms for training DNNs, the most popular and widely used method
is Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951). During training, the
goal of SGD is to find the optimal parameters ω to minimize the objective function h(ω).
The parameters ω are updated by: ω ← ω − η∇ωh, where η is the learning rate. To
achieve better training performance, many variants of SGD also have been proposed, such
as momentum (Qian, 1999), Nesterov’s acceleration (Nesterov, 1983) and etc. However,
SGD only considers first-order gradient information, which leads to some deficiencies,
including relatively-slow convergence and sensitivity to hyper-parameter settings.

To avoid these problems, the second-order optimization algorithm may be a good
choice. More importantly, second-order optimization algorithms can greatly accelerate
convergence by using curvature matrix to correct gradient through training. The pa-
rameters update rule is: ω ← ω − ηF−1∇ωh, where F−1 is the inverse of curvature
matrix. The curvature matrix F is defined differently in second-order optimization al-
gorithms. For Newton’s method, F is the Hessian matrix which represents second-order
derivatives. For natural gradient method (Amari, 1998), F is the Fisher information
matrix (FIM) which represents covariance of second-order gradient statistics. However,
the curvature matrix and its inverse dramatically increase computing and storage costs.
It is impractical to compute and invert an exact curvature matrix directly. Therefore,
many approximate methods have been proposed.

A simple but crude method is diagonal approximation, such as AdaGrad (Duchi et al.,
2011), RMSprop (Tieleman and Hinton, 2012), Adam (Kingma and Ba, 2014) and etc.
These algorithms are computationally tractable but lose much curvature matrix infor-
mation. More elaborate algorithms are no longer limited to diagonal approximation.
For Newton’s methods, quasi-Newton method (Dennis and Moré,1977; Le et al.,2011;
Berahas et al.,2019; Goldfarb et al.,2020) can be used to approximate the Hessian ma-
trix and its advantages over Newton’s method is that the Hessian matrix does not need
to be inverted directly. Hessian-Free optimization approach (Martens,2010; Kiros,2013;
Pan et al.,2017) provides a matrix-free conjugate-gradient algorithm for approximat-
ing the Hessian matrix. For natural gradient methods, Kronecker-factored Approxi-
mate Curvature (KFAC) (Martens and Grosse, 2015) presents efficient block diagonal
approximation and block tri-diagonal approximation of the FIM in fully-connected neu-
ral networks. This method has been further extended to convolutional neural networks
(Grosse and Martens, 2016), recurrent neural networks (Martens et al., 2018) and vari-
ational Bayesian neural networks (Bae et al., 2018; Zhang et al., 2018). KFAC has also
been used in large-scale distributed computing for deep neural networks (Ba et al.,2017;
Osawa et al.,2019; Pauloski et al.,2020; Yang et al.,2020).

In particular, George et al. (2018) proposes a new explanation for the natural gra-
dient update, in which the natural gradient update is viewed as diagonal method in
Kronecker-factored eigenbasis. And under this interpretation, the re-scaling factor un-
der the KFAC eigenbasis is not exact. So Eigenvalue-corrected Kronecker Factorization

2

(EKFAC) is proposed to correct the inaccurate re-scaling factor. Recently, Gao et al.
(2020) adopts a new model to approximate the FIM called Trace-restricted Kronecker
Factorization (TKFAC). TKFAC approximates the FIM as a constant multiple of the
Kronecker product of two matrices. In experiments, TKFAC has better performance
than KFAC. Therefore, it is natural for us to consider the TKFAC’s model under the
interpretation proposed in EKFAC.

In this work, we combine the ideas of EKFAC and TKFAC, then present Trace-
restricted Eigenvalue-corrected Kronecker Factorization (TEKFAC). Our contribution
can be summarized as follows:

• Instead of approximating FIM to the Kronecker product of two smaller matrices,
we consider EKFAC based on the approximation model adopted by TKFAC. So,
we change the Kronecker-factored eigenbasis in EKFAC and propose TEKFAC,
which not only corrects the inexact re-scaling factor but also takes the advantages
of TKFAC.

• We discuss the relationships and differences among the several methods, including
KFAC, EKFAC, TKFAC and TEKFAC. Empirically, we compare TEKFAC with
SGD with momentum (SGDM), Adam, EKFAC and TKFAC using the SVHN,
CIFAR-10 and CIFAR-100 datasets on VGG16 and ResNet20. Our method has
more excellent performance than these baselines.

2 Methods to Approximate the Natural Gradient

2.1 Natural Gradient

During the training process of DNNs, the purpose is to minimize a loss function h(ω).
Throughout this paper, we use E[·] to represent the mean of the samples (x, y) and the
cross-entropy loss function is computed as

h(ω) = E[− log p(y|x, ω)],
where ω is a vector of parameters, x is the input, y is the label, and p(y|x, ω) represents
the density function of the neural network’s predictive distribution Py|x(ω).

Natural gradient was first proposed by Amari (1998). It gives the steepest descent
direction in the distribution space rather than the space of parameters. In distribution
space, the distance between two distributions P (ω) and P (ω +∆ω) is measured by the
K-L divergence: DKL(P (ω)‖P (ω+∆ω)) ≈ 1

2
ω⊤Fω, where F is the FIM, and is defined

as
F = E[∇ω log p(y|x, ω)∇ω log p(y|x, ω)⊤]. (2.1)

The natural gradient is usually defined as F−1∇ωh, and it provides the update di-
rection for natural gradient descent. So, the parameters are updated by

ω ← ω − ηF−1∇ωh, (2.2)

where η is the learning rate.

3

2.2 KFAC

For DNNs which have millions or even billions of parameters, it is impractical to compute
the exact FIM and its inverse matrix. KFAC provides an useful approximation. Consider
a DNN with L layers and denote the inputs al−1 which are the activations of the previous
layer, outputs sl, and weight Wl for the l-th layer. Then, we have sl = Wlal−1. For
simplicity, we will use the following notation:

Dt := ∇t log p(y|x, ω), ul := Dsl,

where t is an arbitrary parameter. Therefore, the gradient of weight is DWl = al−1ul,
and the Eq. (2.1) can be written as F = E[DωDω⊤].

Firstly, KFAC approximates the FIM F as a block diagonal matrix

F ≈ diag(F1, F2, · · · , FL) = diag(E[Dω1Dω⊤
1],E[Dω2Dω⊤

2], · · · ,E[DωLDω⊤
L]), (2.3)

where ωl = vec(Wl) for any l ∈ {1, 2, · · · , L}.
Then, each block matrix of the FIM can be written as

Fl = E[DωlDω⊤
l] = E[(al−1⊗ul)(al−1⊗ul)

⊤] ≈ E[a⊤l−1al−1]⊗E[u⊤
l ul] = Al−1⊗Ul, (2.4)

where ⊗ represents the Kronecker product, Al−1 = E[al−1a
⊤
l−1] and Ul = E[ulu

⊤
l]. Due to

the properties of Kronecker product (Al−1⊗Ul)
−1 = A−1

l−1⊗U−1
l and (Al−1⊗Ul)vec(X) =

vec(UlXA⊤
l−1) for any matrix X , decomposing Fl into Al−1 and Ul not only saves the cost

of storing and inverting the exact FIM, but also enables tractable methods to compute
the approximate natural gradient

(Al−1 ⊗ Ul)
−1∇ωl

h = (Al−1 ⊗ Ul)
−1vec(∇Wl

φ) = vec(U−1
l (∇Wl

φ)A−1
l−1).

2.3 EKFAC

George et al. (2018) proposes an other interpretation of the natural gradient update
F−1∇ωh. Let F = QFΛFQ

⊤
F be the eigendecomposition of the FIM, where Λ is a diagonal

matrix with eigenvalues and Q is an orthogonal matrix whose columns correspond to
eigenvectors. Then, the natural gradient update will be

F−1∇ωh = QF

(b)
︷ ︸︸ ︷

Λ−1
F Q⊤

F∇ωh
︸ ︷︷ ︸

(a)
︸ ︷︷ ︸

(c)

. (2.5)

The Eq. (2.5) can be explained by three steps: (a) multiplying ∇ωh by Q⊤
F , which

projects the gradient vector ∇ωh to the eigenbasis QF ; (b) multiplying by the diagonal
matrix ΛF , which re-scales the coordinates in that eigenbasis by the diagonal inverse

4

matrix Λ−1
F ; (c) multiplying by QF , which projects the re-scaled coordinates back to

the initial basis. The re-scaling factor can be computed by (ΛF)ii = E[(Q⊤
F∇ωh)

2
i],

whose entries are the second moment of the vector Q⊤
F∇ωh (the gradient vector in the

eigenbasis). Under this interpretation, for a diagonal approximation of the FIM, the
re-scaling factor is (ΛF)ii = E[(∇ωh)

2
i] and the eigenbasis can be chosen as the identity

matrix I. Although the re-scaling factor is efficient, obtaining an exact eigenbasis is
difficult, the eigenbasis I is too crude which leads to great approximation error.

KFAC decomposes the FIM F into two Kronecker factors Al−1 and Ul. Because
Al−1 and Ul are real symmetric positive semi-define matrices, they can be expressed as
Al−1 = QAl−1

ΛAl−1
Q⊤

Al−1
and Ul = QUl

ΛUl
Q⊤

Ul
by eigendecomposition. By the property

of Kronecker product, Eq. (2.4) can be written as

Fl ≈ Al−1 ⊗ Ul = (QAl−1
ΛAl−1

Q⊤
Al−1

)⊗ (QUl
ΛUl

Q⊤
Ul
)

= (QAl−1
⊗QUl

)(ΛAl−1
⊗ ΛUl

)(QAl−1
⊗QUl

)⊤.
(2.6)

According to this interpretation, QAl−1
⊗QUl

gives the eigenbasis of the Kronecker prod-
uct Al−1 ⊗ Ul. Compared with diagonal approximations, KFAC provides a more exact
eigenbasis approximation of the full FIM eigenbasis. However, the re-scaling factor is not
accurate under the KFAC eigenbasis, that is (ΛAl−1

⊗ΛUl
)ii 6= E[((QAl−1

⊗QUl
)⊤∇ωl

h)2i].
EKFAC corrects this inexact re-scaling factor by defining

(Λ∗
l)ii = E[((QAl−1

⊗QUl
)⊤∇ωl

h)2i].

Then, Fl can be approximated as

Fl ≈ (QAl−1
⊗QUl

)Λ∗
l (QAl−1

⊗QUl
)⊤. (2.7)

2.4 TKFAC

Recently, Gao et al. (2020) proposed a new approximation of Fl, which approximates Fl

as a Kronecker product scaled by a coefficient σl, i.e.,

Fl ≈ σlΦl ⊗Ψl, (2.8)

where 0 < σl <∞ is an unknown parameter, Φl and Ψl are two unknown matrices with
known traces. Denote Λl−1 = al−1a

⊤
l−1 and Γl = ulu

⊤
l . Then, the factors in Eq. (2.8)

can be computed by

σl =
E[tr(Λl−1)tr(Γl)]

tr(Φl)tr(Ψl)
,Φl =

tr(Φl)E[tr(Γl)Λl−1]

E[tr(Λl−1)tr(Γl)]
,Ψl =

tr(Ψl)E[tr(Λl−1)Γl]

E[tr(Λl−1)tr(Γl)]
. (2.9)

An important property of TKFAC is to keep the traces equal, i.e., tr(Fl) = tr(σlΦl ⊗
Ψl) = σltr(Φl)tr(Ψl). Theoretically, the upper bound of TKFAC’s approximation error
is smaller than KFAC in general cases. What’s more, experimental results show that

5

TKFAC can keep smaller approximation error than KFAC during training. In practice,
to reduce computing costs, we can assume that tr(Φl) = tr(Ψl) = 1. So, Eq. (2.9) can
be simplified as

σl = E[tr(Λl−1)tr(Γl)], Φl =
E[tr(Γl)Λl−1]

E[tr(Λl−1)tr(Γl)]
, Ψl =

E[tr(Λl−1)Γl]

E[tr(Λl−1)tr(Γl)]
. (2.10)

3 Methods

3.1 TEKFAC

EKFAC corrects the inexact re-scaling factor in KFAC based on the model that Fl is
approximated the Kronecker product of two smaller matrices. If we think of TKFAC in
terms of the interpretation adopted by EKFAC, the re-scaling factor in TKFAC is also
inexact. So, in this section, we combine the ideas of these two methods and propose a
new method called TEKFAC, which can keep track of the diagonal variance in TKFAC
eigenbasis.

TKFAC approximates Fl as a Kronecker product of two factors Φl,Ψl and scaled by
the coefficient σl. It is easy to know that Φl and Ψl are symmetric positive semi-define
matrices, according to eigendecomposition, we can obtain

Fl ≈ σlΦl ⊗Ψl = σl(QΦl
ΛΦl

Q⊤
Φl
)⊗ (QΨl

ΛΨl
Q⊤

Ψl
)

= σl(QΦl
⊗QΨl

)(ΛΦl
⊗ ΛΨl

)(QΦl
⊗QΨl

)⊤,
(3.1)

where ΛΦl
,ΛΨl

are two diagonal matrices with eigenvalues of Φl,Ψl and QΦl
,ΛΦl

are
two orthogonal matrices whose columns are eigenvectors of Φl,Ψl, respectively. As the
interpretation in subsection 3.2, QΦl

⊗ QΨl
gives the TKFAC eigenbasis, and the re-

scaling factor can be selected as σl(ΛΦl
⊗ΛΨl

). However, this re-scaling factor is also not
guaranteed to match the second moment of the gradient vector in TKFAC eigenbasis,
that is (ΛΦl

⊗ ΛΨl
)ii 6= E[((QΦl

⊗ QΨl
)⊤∇ωl

h)2i]. Therefore, combined with the idea of
EKFAC, we redefine the re-scaling factor by

(Θl)ii = E[((QΦl
⊗QΨl

)⊤∇ωl
h)2i], (3.2)

where Θl is a diagonal matrix. Eq. (3.2) defines a more accurate re-scaling factor. Then,
we can obtain the new approxiamtion defined as follows

Fl ≈ (QΦl
⊗QΨl

)Θl(QΦl
⊗QΨl

)⊤. (3.3)

Similar to the analysis process of EKFAC, we can proof that Θl is the optimal
diagonal scaling factor under the TKFAC eigenbasis. That is Θl is the optimal solution
to the following problem.

min
Λl

‖Fl − (QΦl
⊗QΨl

)Λl(QΦl
⊗QΨl

)⊤‖F

6

s.t. Λl is a diagonal matrix

According to this conclusion, we can easily prove the following theorem. For simplicity,
we omit the subscript in the following theorem.

Theorem 3.1. Let FTKFAC and FTEKFAC are the approximate matrices of the FIM F ,

i.e.,

FTKFAC = (QΦ ⊗QΨ)(σΛΦ ⊗ ΛΨ)(QΦ ⊗QΨ)
⊤,

FTEKFAC = (QΦ ⊗QΨ)Θ(QΦ ⊗QΨ)
⊤,

then, we have ‖F − FTEKFAC‖F ≤ ‖F − FTKFAC‖F .

Proof. Because
Θ = argmin

Λ
‖F − (QΦ ⊗QΨ)Λ(QΦ ⊗QΨ)

⊤‖F

and for the diagonal matrices ΛΦ ⊗ ΛΨ, Θl

(ΛΦ ⊗ ΛΨ)ii 6= E[((QΦ ⊗QΨ)
⊤∇ωh)

2
i] = Θii.

Therefore, we have

‖F − (QΦ ⊗QΨ)Θ(QΦ ⊗QΨ)
⊤‖F ≤ ‖F − (QΦ ⊗QΨ)(σΛΦ ⊗ ΛΨ)(QΦ ⊗QΨ)

⊤‖F

that is
‖F − FTEKFAC‖F ≤ ‖F − FTKFAC‖F .

The proof is complete.

So, TEKFAC provides a more accurate approximation for the FIM than TKFAC in
theory. To use the second-order optimization methods effectively in practice, a suitable
damping technique is also necessary. Crucially, powerful second-order optimizers like
KFAC and EKFAC usually require more complicated damping techniques, otherwise,
they will tend to fail completely. KFAC introduces an effective damping technique by
adding

√
λI to the Kronecker factors Al−1 and Ul. In EKFAC, since the re-scaling factor

has been revised and redefined, it is no longer useful to add damping to the Kronecker
factors, and the damping should be added to the re-scaling factor. TKFAC adopts
the same damping technique as KFAC for FNNs and proposes a new automatic tuning
damping for CNNs. For TEKFAC, we also use the same damping technique as EKFAC
for FNNs and the new damping technique adopted in TKFAC for CNNs, i.e.,

Fl ≈ (QΦl
⊗QΨl

)(Θl + λI)(QΦl
⊗QΨl

)⊤ (3.4)

where λ is a reasonably large positive scalar for FNNs and

λ =
max{tr(Θl), ϑ}

dim(Θl)
(3.5)

7

for CNNs. In Eq. (3.5), ϑ is a reasonably large positive scalar and dim denotes the num-
ber of the rows (or columns) of Θl. What’s more, in order to keep pace with convolution
layers, we expanded the FIM of the fully connected layer in CNNs by a factor of β as de-
scribed in Gao et al. (2020), where β = maxl∈{convolutional layers} {max{tr(Θl), ϑ}/dim(Θl)}.
This damping technique for CNNs was first used in Gao et al. (2020). The purpose is
to dynamically adjust the damping based on the FIM’s trace during training, so the
damping can be adapted to the FIM’s elements to avoid the problem that the damping
is large enough to transform the second-order optimizer into the first-order one during
training.

Algorithm 1 TEKFAC algorithm

Require: η : learning rate
Require: λ : damping parameter
Require: β1 : exponential moving average parameter of the re-scaling factor Θl

Require: β2 : exponential moving average parameter of factors Φl and Ψl

Require: TFIM, TEIG, TRE : FIM, eigendecomposition and re-scaling update intervals
k ← 0
Initialize {δl}Ll=1, {Φl}Ll=1, {Ψl}Ll=1 and {Θl}Ll=1

while convergence is not reached do

if k ≡ 0 (mod TFIM) then
Update the factors {δl}Ll=1, {Φl}Ll=1 and {Ψl}Ll=1 using Eq. (2.10)

end if

if k ≡ 0 (mod TEIG) then
Compute the eigenbasis QΦl

and QΨl
using Eq. (3.1), (3.7) and (3.9)

end if

if k ≡ 0 (mod TRE) then
Update the re-scaling factor {Θl}Ll=1 using Eq. (3.2), (3.4) and (3.6)

end if

∇(k)
l ← (Q⊤

Φl
⊗Q⊤

Ψl
)(k)∇ωl

h(k)

∇(k)
l ← ∇

(k)
l /(vec(Θ

(k)
l + λI)) (element-wise scaling)

∇(k)
l ← (QΦl

⊗QΨl
)(k)∇(k)

l

ω
(k)
l ← ω

(k−1)
l − η∇(k)

l

k ← k + 1
end while

For each layer, EKFAC estimates the Kronecker factors Al−1, Ul and the re-scaling
factor (Λ∗

l)ii using exponential moving average. Similarly, we can obtain the exponential
moving average updates for TEKFAC in Eq. (3.3).

(Θl)
(k+1)
ii ← β1(Θl)

(k+1)
ii + (1− β1)(Θl)

(k)
ii , (3.6)

Φ
(k+1)
l ← β2Φ

(k+1)
l + (1− β2)Φ

(k)
l , (3.7)

8

Ψ
(k+1)
l ← β2Ψ

(k+1)
l + (1− β2)Ψ

(k)
l , (3.8)

where β1 and β2 are two exponential moving average parameters of the re-scaling factor
and Kronecker factors. Finally, TEKFAC updates the parameters by

ω
(k+1)
l ← ω

(k)
l − η(QΦl

⊗QΨl
)(k+1)[(Θl + λI)(k+1)]−1(Q⊤

Φl
⊗Q⊤

Ψl
)(k+1)∇ωl

h(k+1). (3.9)

Drawing inspiration of EKFAC and TKFAC, we present TEKFAC. Using TEKFAC
for training DNNs mainly involves: a) computing the TEKFAC eigenbasis by eigende-
composition; b) estimating the re-scaling factor Θl as defined in Eq. (3.2); c) computing
the gradient and updating model’s parameters. The full algorithm of TEKFAC is given
in Algorithm 1, in which the Kronecker product can be computed efficiently by the
following identity: (A⊗ U)vec(X) = vec(U⊤XA).

3.2 Discussion of different methods

Because the scale of the curvature matrix for DNNs is too large, it is impractical to
compute the exact curvature matrix and its inverse matrix for DNNs. In order to
effectively use natural gradient descent in training DNNs, KFAC was firstly proposed in
(Martens and Grosse, 2015), then EKFAC (George et al., 2018) and TKFAC (Gao et al.,
2020) were presented gradually. In the last subsection, we propose TEKFAC. In this
subsection, we will discuss the relationships and differences of these methods.

1F

LF

FIM full matricesblock

1

L

1 L

1F

LF

1 L

1

L

1lA lU

1lA lUl

KFAC

TKFAC

)(
1 ll UA QQ T

UA ll
QQ)(

1

T

l

EKFAC

)(
ll

QQ T

ll
QQ)(

l

TEKFAC

stepfirst the
TKFAC and KFAC

 of step second the

TEKFAC and EKFAC

 of step second the

Figure 1: Illustration of the approximation process of KFAC, EKFAC, TKFAC and
TEKFAC.

The approximation process of these methods can be divided into two steps. In the
first step, they all decompose the FIM into block matrices according to layers of DNNs.
By assuming that parameters of different layers are independent, the inverse of the full
FIM is simplified as the inverse of these small block matrices. This step doesn’t make any
difference for all these methods. In the second step, KFAC approximates different block
matrices as the Kronecker product of two much smaller matrices, EKFAC reinterprets the
KFAC by eigenvalue decomposition and corrects the inaccurate re-scaling factor under
the KFAC eigenbasis, TKFAC approximates different block matrices as a Kronecker

9

product scaled by a coefficient, TEKFAC corrects the inaccurate re-scaling factor under
the TKFAC eigenbasis based on the ideas of EKFAC. The two approximate processes of
these methods are illustrated in Figure 1. We also summarize the different approximate
models and re-scaling factors of these methods in Table 1.

Table 1: Summary of some optimizers

optimizer Fl re-scaling factor

KFAC(Martens and Grosse, 2015) Al−1 ⊗ Ul ΛAl−1
⊗ ΛUl

EKFAC(George et al., 2018) Al−1 ⊗ Ul diag(E[((QAl−1
⊗QUl

)⊤∇ωl
h)2])

TKFAC(Gao et al., 2020) σlΦl ⊗Ψl σl(ΛΦl
⊗ ΛΨl

)

TEKFAC σlΦl ⊗Ψl diag(E[((QΦl
⊗QΨl

)⊤∇ωl
h)2])

In TKFAC, an important property is to keep the traces equal before and after the
approximation. For TEKFAC, this property can be still kept because

tr(F
(TEKFAC)
l) = tr((QΦl

⊗QΨl
)Θl(QΦl

⊗QΨl
)⊤) = tr(Θl)

=
∑

i

(Θl)ii =
∑

i

E[((QΦl
⊗QΨl

)⊤∇ωl
h)2i]

= tr(E[(QA ⊗QU)
⊤∇ωh(∇ωh)

⊤(QA ⊗QU)])

= tr(E[∇ωh(∇ωh)
⊤]) = tr(Fl),

where F
(TEKFAC)
l represents the approximation defined by Eq. (3.3) and Fl is the ex-

act FIM. Similar to this conclusion, EKFAC can also keep the traces equal. However,
we should note that EKFAC is based on the KFAC (Eq. (2.4)) and correcting the
re-scaling factor, then the traces can be kept equal. TKFAC proposes a different ap-
proximation (Eq. (2.8)) and uses a trace operator to get the calculation formula under
the condition that the trace is equal. The motivations for EKFAC and TKFAC are
different. Finally, the relationships among these methods are summarized in Figure 4.

FIM F

FKFAC

FTKFAC

FEKFAC

FTEKFAC

tr(FEKFAC)

= tr(FTKFAC)different

approximation

based on different

approximation

Figure 2: Illustration of the relationships of
KFAC, EKFAC, TKFAC and TEKFAC.

4 Experiments

To show the effectiveness of TEKFAC, we
empirically demonstrate its performance
on several standard benchmark datasets
for some deep CNNs. Experimental re-
sults are given in the following subsection.

10

4.1 Setup

Datasets and models: In this paper, we employ three commonly used image
classification datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and SVHN
(Netzer et al., 2011). These datasets all consist of colored images with 32 × 32 pix-
els. More details of these datasets are described in Table 2. We adopt a standard data
augmentation scheme including random crop and horizontal flip for CIFAR-10/100, and
we do not use data augmentation for SVHN. We consider the performance of different
methods on two widely used deep CNNs: VGG16 (Simonyan and Zisserman, 2014) and
ResNet20 (He et al., 2016).

Table 2: Statistics of the datasets used in experiments.

Dataset #classes #training set #testing set

CIFAR-10 10 50000 10000

CIFAR-100 100 50000 10000

SVHN 10 73257 26032

Baselines and hyper-parameters selection: Our method mainly modify the EK-
FAC eigenbasis according to the model adopted in TKFAC, so we mainly focus on the
performance of TEKFAC compared with EKFAC and TKFAC. Therefore, we choose
SGDM, Adam, EKFAC and TKFAC as baselines. We mainly refer to the parameters
setting 1 2 in recent related articles (Bae et al., 2018; Gao et al., 2020; Zhang et al.,
2019). For all experiments, the hyper-parameters are tuned as follows:

• learning rate η: {1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1, 3e-1, 1, 3}. The initial
learning rate is multiplied by 0.1 every 20 epochs for SVHN and every 40 epochs
for CIFAR10/100.

• damping λ: {1e-8, 1e-6, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1, 3e-1}.
• the parameter to restrict trace ϑ: {1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100}.
• moving average parameterβ1, β2 : β1 = β2 = 0.95.

• momentum: 0.9.

• TFIM = TEIG = 50, TINV = 200.

• batch size: 128 for SVHN, CIFAR-10/100.

For all methods, we use batch normalization and don’t use weight decay. All ex-
periments are run on a single RTX 2080Ti GPU using TensorFlow and repeated three
times.

1https://github.com/pomonam/NoisyNaturalGradient
2https://github.com/gd-zhang/Weight-Decay

11

4.2 Results of experiments

Results of CIFAR-10, CIFAR-100 and SVHN: We perform extensive experiments
on three standard datasets to investigate the effectiveness of TEKFAC. The main results
on SVHN and CIFAR10/100 are shown in Figure 3 and Table 3. Figure 3 shows the
results of SGDM, Adam, EKFAC, TKFAC and TEKFAC on these three datasets in terms
of testing accuracy. In Figure 3 , we can see that all the second order optimizers (EKFAC,
TKFAC and TEKFAC) converge faster than SGDM and Adam. On SVHN and CIFAR-
10, TEKFAC achieves same or faster convergence as TKFAC (faster than EKFAC clearly
on all datasets) while achieving better accuracy. On CIFAR-100, although TEKFAC
converges slower in the first few epochs, it can achieve same convergence as TKFAC
after about 30 epochs with better accuracy. The final testing accuracies are summarized
in Table 3.

0 20 40
0.90

0.92

0.94

0.96

te
st

in
g

ac
cu

ra
cy

epoch

 SGDM
 Adam
 EKFAC
 TKFAC
 TEKFAC

(a) VGG16 on SVHN

0 20 40 60 80 100
0.7

0.8

0.9

te
st

in
g

ac
cu

ra
cy

epoch

 SGDM
 Adam
 EKFAC
 TKFAC
 TEKFAC

(b) VGG16 on CIFAR-10

0 20 40 60 80 100
0.4

0.5

0.6

0.7

te
st

in
g

ac
cu

ra
cy

epoch

 SGDM
 Adam
 EKFAC
 TKFAC
 TEKFAC

(c) VGG16 on CIFAR-100

0 20 40
0.90

0.92

0.94

0.96

te
st

in
g

ac
cu

ra
cy

epoch

 SGDM
 Adam
 EKFAC
 TKFAC
 TEKFAC

(d) ResNet20 on SVHN

0 20 40 60 80 100
0.7

0.8

0.9

te
st

in
g

ac
cu

ra
cy

epoch

 SGDM
 Adam
 EKFAC
 TKFAC
 TEKFAC

(e) ResNet20 on CIFAR-10

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

te
st

in
g

ac
cu

ra
cy

epoch

 SGDM
 Adam
 EKFAC
 TKFAC
 TEKFAC

(f) ResNet20 on CIFAR-100

Figure 3: The curves of testing accuracy with epochs for SGDM, Adam, EKFAC, TKFAC
and TEKFAC on SVHN, CIFAR-10 and CIFAR-100. The models we used here are
VGG16 and ResNet20. All results are repeated three runs and the curves show the
average results.

Table 3 illustrates the testing accuracies of various methods (SGDM, Adam, EKFAC,
TKFAC and TEKFAC) with different models (VGG16 and ResNet20) on the SVHN ,
CIFAR-10 and CIFAR-100 datasets. These experiments are repeated for three times
and the results are reported in mean ± standard deviation. As shown in Table 3, TEK-
FAC can achieve higher average accuracy than other baselines in all cases. Compared
with EKFAC, TEKFAC greatly improves the testing accuracies of all datasets. For ex-

12

ample, TEKFAC improves 0.96% and 3.06% than EKFAC on the CIFAR-100 dataset.
Compared with TKFAC, TEKFAC is also able to improve the testing accuracies. For
TEKFAC, on the one hand, the idea of EKFAC is combined to correct the inexact
re-scaling factor; on the other hand, the new approximation method and the effective
damping technique proposed in TKFAC are considered, so a more effective algorithm is
obtained. These results also illustrate this point.

Table 3: Results of the SVHN, CIFAR-10 and CIFAR-100 datasets on VGG16 and
ResNet20 for SGDM, Adam, EKFAC, TKFAC and TEKFAC. We give the final testing
accuracies (mean ± standard deviation over three runs) after 40 epochs for SVHN and
100 epochs for CIFAR.

Dataset Model SGDM Adam EKFAC TKFAC TEKFAC

SVHN VGG16 94.98± 0.09 95.80± 0.11 95.87± 0.13 95.75± 0.21 95.93± 0.16

SVHN ResNet20 95.78± 0.15 95.93± 0.12 95.16± 0.07 96.20± 0.39 96.45± 0.14

CIFAR-10 VGG16 91.19± 0.15 92.21± 0.14 92.67± 0.22 92.83± 0.13 93.35± 0.17

CIFAR-10 ResNet20 92.79± 0.14 93.22± 0.18 92.66± 0.17 94.38± 0.04 94.56± 0.12

CIFAR-100 VGG16 67.29± 0.28 69.47± 0.25 70.41± 0.26 70.82± 0.12 71.37± 0.18

CIFAR-100 ResNet20 72.94± 0.11 73.70± 0.18 73.98± 0.21 76.73± 0.18 77.04± 0.15

Sensitivity to hyper-parameters: We also consider the performance of TEKFAC
with different hyper-parameters. For TEKFAC, a parameter ϑ is added to avoid the
traces becoming too small during training as TKFAC, so the parameter ϑ needs to be
tuned during traing. Therefore, we mainly consider the effect of the learning rate η
and the parameter ϑ. We present the results of TEKFAC with different settings on
CIFAR-100 with ResNet20.

Table 4: Testing accuracies of different parameter ϑ on CIFAR-100 with ResNet20 for
TEKFAC.

Parameter ϑ 0.0001 0.001 0.01 0.1

Testing accuracy 76.81± 0.28 76.65± 0.12 77.04± 0.15 76.71± 0.17

Parameter ϑ 1 10 100

Testing accuracy 76.03± 0.26 74.74± 0.11 73.68± 0.09

Table 4 shows the testing accuracies with different settings of ϑ, where ϑ is set to
0.0001, 0.001, 0.01, 0.1, 1, 10 and 100, respectively. The learning rate set to 0.001.
Figure 4 shows the curves of the testing accuracies with epochs for different ϑ. It is clear
that the final testing accuracy is similar when ϑ ∈ {0.0001, 0.001, 0.01, 0.1}. However,
the testing accuracy decreases rapidly when ϑ ≥ 1. On the other hand, we can see that
ϑ also affects the speed of training from Figure 4. When ϑ ∈ {0.0001, 0.001, 0.01, 0.1, 1},

13

TEKFAC converges slower but may have higher accuracy if ϑ is smaller. When ϑ ∈
{10, 100}, TEKFAC converges slowly and has lower accuracy. Therefore, we need to
select ϑ carefully to achieve good performance with the balance of training speed and
final accuracy. For example, we choose ϑ = 0.01 on ResNet20 in this paper. Of course,
0.01 is not suitable for all networks, and ϑ should be changed for different DNNs.

10-4 10-3 10-2 10-1 100 101 102

72

73

74

75

76

77

76.81
76.65

77.04

76.71

76.03

74.74

73.68

76.38

77.04

76.08

72.47

te
st

in
g

 a
cc

u
ra

cy

parameter

 parameter for trace

 learning rate

(a)

0 20 40 60 80 100
0.5

0.6

0.7

0.8

te
st

in
g

ac
cu

ra
cy

epoch

 0.0001
 0.001
 0.01
 0.1
 1
 10
 100

(b)

Figure 4: Results of different parameters. (a) The final testing accuracies of different
parameter ϑ and learning rate η with epochs for TEKFAC; (b) The curves of testing
accuracies of different ϑ with epochs for TEKFAC. The ϑ is set to 0.0001, 0.001, 0.01,
0.1, 1, 10, 100 and η is set to 0.0001, 0.001, 0.01, 0.1.

Table 4 shows the testing accuracies with different settings of the learning rate η,
where η is set to 0.0001, 0.001, 0.01, and 0.1, respectively. The parameter ϑ is set to 0.01.
We can see that the learning rate also has a great influence on the results of TEKFAC.
For CIFAR-100 on ResNet20, 0.001 is a good selection.

Table 5: Testing accuracies of different learning rate η on CIFAR-100 with ResNet20 for
TEKFAC.

Learning tate η 0.0001 0.001 0.01 0.1

Testing accuracy 76.38± 0.15 77.04± 0.15 76.08± 0.14 72.47± 0.23

5 Conclusions

Inspired by the idea of EKFAC and the new approximation of natural gradient adopted
by TKFAC, we proposed TEKFAC algorithm in this work. It not only corrected the
inexact re-scaling factor under the TKFAC eigenbasis but also changed the EKFAC
eigenbasis based on the new approximation. The relationships of recent methods have
also been discussed. Experimental results showed that our method outperformed SGDM,
Adam, EKFAC and TKFAC. Of course, the performance of our method on other DNNs
or more complex large-scale training tasks needs to be further studied.

14

References

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation,
10(2):251–276, 1998.

Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization
using kronecker-factored approximations. In International Conference on Learning

Representations, 2017.

Juhan Bae, Guodong Zhang, and Roger Grosse. Eigenvalue corrected noisy natural
gradient. In Workshop of Bayesian Deep Learning, Advances in Neural Information

Processing Systems, 2018.

Albert S Berahas, Majid Jahani, and Martin Takáč. Quasi-Newton methods for deep
learning: Forget the past, just sample. arXiv preprint arXiv:1901.09997, 2019.

J. E. Dennis and Jorge J. Moré. Quasi-Newton methods, motivation and theory. SIAM
Review, 19(1):46–89, 1977.

John Duchi, Hazan Elad, and Singer Yoram. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):
2121–2159, 2011.

Kaixin Gao, Xiaolei Liu, Zhenghai Huang, Min Wang, Zidong Wang, Dachuan Xu,
and Fan Yu. Trace-restricted kronecker factorization to approximate natural gradient
descent for convolution neural networks. arXiv preprint arXiv:2011.10741, 2020.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent.
Fast approximate natural gradient descent in a kronecker factored eigenbasis. In
Advances in Neural Information Processing Systems, pages 9550–9560, 2018.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-Newton methods for
training deep neural networks. arXiv preprint arXiv: 2006.08877v1, 2020.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for
convolution layers. In International Conference on Machine Learning, pages 573–582,
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 770–778, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2014.

Ryan Kiros. Training neural networks with stochastic Hessian-free optimization. In
International Conference on Learning Representations, 2013.

15

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Y
Ng. On optimization methods for deep learning. In International Conference on

Machine Learning, pages 265–272, 2011.

James Martens. Deep learning via Hessian-free optimization. In International Conference

on Machine Learning, pages 735–742, 2010.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored
approximate curvature. In International Conference on Machine Learning, pages
2408–2417, 2015.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approxi-
mations for recurrent neural networks. In International Conference on Learning Rep-

resentations, 2018.

Yurii Nesterov. A method for solving the convex programming problem with convergence
rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS 2011

Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi
Matsuoka. Large-scale distributed second-order optimization using kronecker-factored
approximate curvature for deep convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 12359–12367,
2019.

Wenyong Pan, Kristopher A Innanen, and Wenyuan Liao. Accelerating Hessian-free
Gauss-Newton full-waveform inversion via l-BFGS preconditioned conjugate-gradient
algorithm. Geophysics, 82(2):R49–R64, 2017.

J. Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T. Foster.
Convolutional neural network training with distributed K-FAC. arXiv preprint

arXiv:2007.00784v1, 2020.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural

Networks, 12(1):145–151, 1999.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals

of Mathematical Statistics, pages 400–407, 1951.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

16

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for Machine

Learning, 4(2):26–31, 2012.

Minghan Yang, Dong Xu, Yongfeng Li, Zaiwen Wen, and Mengyun Chen. Sketchy
empirical natural gradient methods for deep learning. arXiv preprint arXiv:

arXiv:2006.05924, 2020.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural
gradient as variational inference. In International Conference on Machine Learning,
pages 5847–5856, 2018.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of
weight decay regularization. In International Conference on Learning Representations,
2019.

17

	1 Introduction
	2 Methods to Approximate the Natural Gradient
	2.1 Natural Gradient
	2.2 KFAC
	2.3 EKFAC
	2.4 TKFAC

	3 Methods
	3.1 TEKFAC
	3.2 Discussion of different methods

	4 Experiments
	4.1 Setup
	4.2 Results of experiments

	5 Conclusions

