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In this paper, a new Hopfield-model net called Compensated Fuzzy Hopfield Neu-
ral Network (CFHNN) is proposed for vector quantization in image compression. In
CFHNN, the compensated fuzzy c-means algorithm, modified from penalized fuzzy c-
means, is embedded into Hopfield neural network so that the parallel implementation for
codebook design is feasible. The vector quantization can be cast as an optimal problem
that may also be regarded as a minimization of a criterion defined as a function of the
average distortion between training vector and codevector. The CFHNN is trained to
classify the divided vectors on a real image into feasible class to generate an available
codebook when the defined energy function converges to near global minimum. The
training vectors on a divided image are mapped to a two-dimensional Hopfield neural
network. Also the compensated fuzzy c-means technique is used to update the quanti-
zation performance and to eliminate searching for the weighting factors. In the context
of vector quantization, each training vector on the divided image is represented by a
neuron which is fully connected by the other neurons. After a number of iterations,
neuron states are refined to reach near optimal result when the defined energy function
is converged.

Keywords: Hopfield neural network; fuzzy c-means; penalized fuzzy c-means; vector
quantization.

1. INTRODUCTION

Robust identification for image processing needs data compression that preserves

the features in the original image. In image compression, the process of codebook

design from training vectors of divided images is a very important step in vector

quantization. A great deal of literature based on vector quantization has been dis-

cussed in other articles.2,4,9,10,14,17–19,24,28 The goal of vector quantization is to

create a codebook for which the average distortion generated by a training vector

and a codevector in codebook is minimized. The minimization of average distor-

tion is widely used by a gradient descent-based iterative procedure. According to

the cluster centroid in the previous iteration and nearest neighbor rule, a positive

improvement to update the codebook is performed iteratively.

Image compression is the coding of transformed image using a code of fixed or

variable length. Vector quantization is a significant methodology in image compres-

sion, in which blocks of divided pixels are formed as training vectors rather than
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individual scales. Such a method results in the massive reduction of the image

information in image transmission. The image is reconstructed by replacing each

image block with its nearest codevector. The dimensions, with N × N pixels in

an image, can be divided into n blocks (vectors of pixels) and each block occu-

pies λ× λ(λ < N) pixels. A vector quantization is a technique that maps training

vectors {Xx, x = 1, 2, . . . , n} in Euclidean λ× λ-dimensional space Rλ×λ into a set

of {Yx, x = 1, 2, . . . , n} points in Rλ×λ, called a codebook. The mapping is usually

defined to minimize expected distortion measure, E[d(Xx,Yx)], using the mean

square error (MSE) given by d(x,y) = (x− y)T (x− y).

The codebook design is the primary problem in image compression based on

vector quantization. Codebook design can be considered as a clustering process in

which the training vectors are classified into the specific classes based on the min-

imization of average distortion between the training vectors and codebook vectors

(classes’ centers). Then the clustering algorithms perform a positive improvement

to update the codebook iteratively. In addition to the conventional technique, the

neural network technique has also been demonstrated to address codebook design

problems. In this article, a compensated Fuzzy Hopfield Neural Network (CFHNN)

is proposed for codebook design in vector quantization. In CFHNN, the problem of

the vector quantization is regarded as a process of the minimization of a cost func-

tion. This cost function is defined as the average distortion between the training

vectors in a divided image to the cluster centers represented by the codevectors in

the codebook. The structure of this network is constructed as a two-dimensional

fully interconnected array with the columns representing the number of code-

vectors (clusters) and the rows representing the training vectors in the divided

image. However, a training vector does not necessarily belong to one class. Instead,

a certain membership grade belonging to the proper class is associated with every

vector sample. In addition to the fuzzy reasoning strategy, a compensated term is

added as input bias to update the performance of the training process. In CFHNN,

an original Hopfield network is modified and the compensated fuzzy c-means strat-

egy is added. Consequently, the energy function can be quickly converged into a

near global minimum in order to produce a satisfactory codebook. Compared with

conventional techniques, the major strength of the presented CFHNN is compu-

tationally more efficient due to the inherent parallel structures and valuable com-

pensated fuzzy c-means strategy. In a simulated study, the CFHNN is described to

have the capability for vector quantization in image compression and show promis-

ing results.

The remainder of this paper is organized as follows. Section 2 discusses fuzzy c-

means, penalized fuzzy c-means and compensated fuzzy c-means techniques; Sec. 3,

proposes the vector quantization by the CFHNN; Sec. 4 presents several experimen-

tal results; Sec. 5 gives the discussion and conclusions; and finally the convergence

of the CFHNN is shown in Appendix.
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2. FUZZY C-MEANS, PENALIZED FUZZY C-MEANS AND

COMPENSATED FUZZY C-MEANS

The fuzzy set theory since introduced by Zadeh27 in 1965 has been applied in

various fields. The theory of fuzzy logic provides a mathematical environment to

capture the uncertainties much the same as human cognition processes. The fuzzy

c-means (FCM) clustering strategy was first described by Dunn,7 and an associated

conception and strategy was proposed by Bezdek.3 The fuzzy clusters are generated

by the partition of training samples in accordance with the membership functions

matrix U = [µx,i]. The component µx,i denotes the degree of possibility that a

training sample zx belongs to an ith fuzzy cluster. The objective function of FCM

is defined as

JFCM =
1

2

n∑
x=1

c∑
i=1

(µx,i)
m‖zx −$i‖2 (1)

where | · | is the Euclidean distance between the training sample and cluster center.

The penalized fuzzy c-means algorithm (PFCM), a penalty term embedded into

FCM, was demonstrated by Yang.25,26 It is a class of fuzzy classification extended

with the addition of a penalty term and based on the maximum likelihood proce-

dure. PFCM was demonstrated to be more meaningful and effective than FCM by

Yang.25 For the clustering problem, the PFCM energy function is defined as follows:

JPFCM =
1

2

n∑
x=1

c∑
i=1

µmx,i‖zx −$i‖2 −
1

2
ν

n∑
x=1

c∑
i=1

µmx,i lnαi

= JFCM −
1

2
ν

n∑
x=1

c∑
i=1

µmx,i lnαi (2)

where αi is a proportional constant of class i and ν ≥ 0 is also a constant. When

ν = 0, JPFCM equals the energy function of fuzzy c-means algorithm. The penalty

term, − 1
2ν
∑n
x=1

∑c
i=1 µ

m
x,i lnαi is added to the objective function and αi, $i and

µx,i are redefined as

αi =

∑n
x=1 µ

m
x,i∑n

x=1

∑c
i=1 µ

m
x,i

; i = 1, 2, . . . c (3)

$i =

∑n
x=1 µ

m
x,izx,i∑n

x=1 µ
m
x,i

(4)

and

µx,i =

(
c∑
`=1

(‖zx −$i‖2 − ν lnαi)
1/(m−1)

(‖zx −$`‖2 − ν lnα`)1/(m−1)

)−1

;

x = 1, 2, . . . , n ; i = 1, 2 . . . , c . (5)
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The PFCM algorithm is presented for the clustering problem as follows:

PFCM algorithm

Step 1: Randomly initialize class centers $i(2 ≤ i ≤ c) and fuzzy c-partition U (0).

Give fuzzification parameter m(1 ≤ m <∞), constant ν, and the value ε > 0.

Step 2: Compute α
(t)
i , $

(t)
i with U (t−1) using Eqs. (3) and (4). Calculate the

membership matrix U = [µx,j ] with α
(t)
i , $

(t)
i using Eq. (5).

Step 3: Compute ∆ = max(|U (t+1)−U (t)|). If ∆ > ε, then go to Step 2; otherwise

go to Step 4.

Step 4: Find the results for the final class centers.

Yang has proved the convergence of JPFCM in Ref. 25. But the penalty degree

is too heavy to rapidly converge. The penalty term − 1
2ν
∑n
x=1

∑c
i=1 µ

m
x,i lnαi in

PFCM is replaced by a compensated term + 1
2ν
∑n
x=1

∑c
i=1 µ

m
x,i tanh(αi) then the

energy function and membership function in a so-called Compensated Fuzzy C-

Means (CFCM) algorithm is defined as

JCFCM =
1

2

n∑
x=1

c∑
i=1

µmx,i‖zx −$i‖2 +
1

2
ν

n∑
x=1

c∑
i=1

µmx,i tanh(α)

= JFCM +
1

2
ν

n∑
x=1

c∑
i=1

µmx,i tanh(αi) (6)

and

µx,i =

(
c∑
`=1

(‖zx −$i‖2 + ν tanh(αi))
1/(m−1)

(‖zx −$`‖2 + ν tanh(α`))1/(m−1)

)−1

x = 1, 2, . . . , n ; i = 1, 2 . . . , c (7)

where αi and ν are the same definition as Eq. (5). Equation (6) can be rewritten as

JCFCM = JFCM +
1

2
ν

n∑
x=1

c∑
i=1

µmx,i tanh(αi)

= JFCM −
1

2
ν

n∑
x=1

c∑
i=1

µmx,i tanh(−αi) . (8)

Since 0 < αi < 1, we can find tanh(−αi) ⊂ ln(αi) which implies that JCFCM can

also be convergent.

3. COMPENSATED FUZZY HOPFIELD NETWORK FOR

VECTOR QUANTIZATION

The Hopfield neural network, with simple architecture and parallel potential, has

been applied in many fields.1,5,6,11,12,15,16,21–23 Chung et al.6 used the discrete
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Hopfield neural network with competitive learning (called CHNN) to polygonal

approximation. In Ref. 6, the winner-take-all scheme has been adopted in the

two-dimensional discrete Hopfield neural network to eliminate the need for find-

ing weighting factors in the energy function. Amatur et al.1 applied the continuous

Hopfield neural network with competitive learning for the segmentation of mul-

tispectral MR brain images. Endocardial boundary detection using the Hopfield

neural network was described by Tsai et al.22; Washizawa23 applied the Hopfield

neural network to emulate saccades; optimal guidance using the Hopfield neural

network was presented by Steck et al.21 Lin et al.15,16 proposed fuzzy Hopfield

neural network (called FHNN) to medical image segmentation. In the conventional

Hopfield network or CHNN, a neuron (x, i) in a firing state indicates that sample

zx belongs to class i. But, in the FHNN, a neuron (x, i) in a fuzzy state indi-

cates that sample zx belongs to class i with a degree of uncertainty described by a

membership function. Following the same ideal of FHNN, the author also used the

Hopfield neural network with compensated fuzzy c-means strategy (CFHNN) for

vector quantization in image compression. In this paper, the two-dimensional neu-

ron array is used. Each row is assigned to a training vector (n rows) with `×` pixels

and each column is regarded as a cluster center (codevector) in the CFHNN. If c

is the number of codevectors being prechosen, then the CFHNN consists of n × c
neurons which can be conceived as a two-dimensional array which occupies n rows

and c columns.

The CFHNN uses the Hopfield neural network architecture with CFCM strategy

to classify the training vectors in the divided image to generate a feasible codebook.

In order to increase the capability of the proposed approach, the energy function

is formulated on the basis of within-class scatter matrix, a concept widely used in

pattern classification. Here, the within-class scatter matrix is defined by the average

distortion between the training vector and codevector within the same class. Let

µx,i be the fuzzy state of the (x, i)th neuron and Wx,i;y,i present the interconnected

vector weight between neuron (x, i) and neuron (y, i). A neuron (x, i) in the network

receives weighted inputs Wx,i;y,i from each neuron (y, i) and a bias Ix,i from output.

The total input to neuron (x, i) is computed as

Netx,i =

∣∣∣∣∣zx −
n∑
y=1

Wx,i;y,i(µy,i)
m

∣∣∣∣∣
2

+ Ix,i . (9)

The modified Lyapunov energy function of the two-dimensional Hopfield neural

network using CFCM strategy is given by

E =
1

2

n∑
x=1

c∑
i=1

(µx,i)
m

∣∣∣∣∣zx −
n∑
y=1

Wx,i;y,i(µy,i)
m

∣∣∣∣∣
2

+
1

2

n∑
x=1

c∑
i=1

Ix,i(µx,i)
m (10)

where | · | is the average distortion between the training vector to cluster center on

the divided image,
∑n
y=1 Wx,i;y,i is the total weighted input received from neuron

(y, i) in row i, µx,i is the output state at neuron (x, i), and m is the fuzzification

parameter. Each column of this modified Hopfield network represents a class and

each row represents a training vector. The network reaches a stable state when the
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modified Lyapunov energy function is minimized. For example, a neuron (x, i) in a

maximum membership state indicates that training vector zx belongs to class i.

The objective function, used to generate a suitable codebook that has a min-

imum average distortion between training vector and the cluster centroid within

class, is given by

E =
A

2

n∑
x=1

c∑
i=1

(µx,i)
m

∣∣∣∣∣zx −
n∑
y=1

1∑n
h=1(µh,i)m

zy(µy,i)
m

∣∣∣∣∣
2

+
B

2

[(
n∑
x=1

c∑
i=1

µx,i

)
− n

]2

+
1

2
ν

n∑
x=1

c∑
i=1

(µx,i)
m tanh(αi)

(11)

where E is the total intra-class scatter energy that accounts for the scattered ener-

gies distributed by all training vectors in the same class with a membership grade,

and both zx and zy are the training vectors at rows x and y respectively. The pro-

portional constant of class i, αi and constant ν have the same definition as JCFCM.

The first term in Eq. (11) is the within-class scatter energy that is the average

distortion between training vector and the cluster centroid over c clusters. The

second term guarantees that the n training vectors in Z can only be distributed

among these c clusters. More specifically, the second term imposes constraints on the

objective function and the first term minimizes the intra-class Euclidean distance

from training vector to the cluster centroid in any given cluster. The last term is

the compensated term same as for the definition in Eq. (6) of CFCM algorithm.

As mentioned in Ref. 6, the quality of classification result is very sensitive to the

weighting factors. Searching for optimal values of these weighting factors is expected

to be tedious and time-consuming. To alleviate this problem, a 2-D Hopfield neural

network with compensated fuzzy c-means clustering strategy, called CFHNN is

proposed so that the constrain terms can be handled more efficiently. All the neurons

on the same row compete against one another to determine which neuron is the

maximum membership value belonging to class i. In other words, the summation of

the membership grade of states in the same row equals 1, and the total membership

states in all n rows equal n. It is also ensured that all training vectors will be

classified into these c classes. The modified Hopfield neural network CFHNN enables

the scatter energy function to converge rapidly into a minimum value. Then, the

scatter energy of the CFHNN can be further simplified as

E =
1

2

n∑
x=1

c∑
i=1

(µx,i)
m

∣∣∣∣∣zx −
n∑
y=1

1∑n
h=1(µh,i)m

zy(µy,i)
m

∣∣∣∣∣
2

+
1

2
ν

n∑
x=1

c∑
i=1

(µx,i)
m tanh(αi) . (12)

By using Eq. (12), which is a modification of Eq. (11), the minimization of energy

E is greatly simplified since it contains only two terms and hence the requirement

of having to determine the weighting factors A and B vanishes. Comparing Eq. (12)
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with the modified Lyapunov function Eq. (10), the synaptic interconnection weights

and the bias input can be obtained as

Wx,i;y,i =
1∑n

h=1(µh,i)m
zy (13)

and input bias

Ix,i = ν tanh(αi) . (14)

By introducing Eqs. (13) and (14) into Eq. (9), the input to neuron (x, i) can be

expressed as

Netx,i =

∣∣∣∣∣zx −
n∑
y=1

1∑n
h=1(µh,i)m

zy(µy,i)
m

∣∣∣∣∣
2

+ ν tanh(αi) . (15)

Consequently, the state (i.e. membership function) for the neuron (x, i) is given as

µx,i =

 c∑
j=1

(
Netx,i
Netx,j

)1/m−1
−1

for all i . (16)

Using Eqs. (13), (15) and (16), the CFHNN can classify c clusters in a parallel

manner that is described as follows:

CFHNN Algorithm

Step 1: Input a set of training vector Z = {z1, z2, . . . , zn}, fuzzification parameter

m(1 ≤ m < ∞), the number of clusters c, constant ν, and initialize the states for

all neurons U = [µx,i] (membership matrix).

Step 2: Compute αi and weighted matrix using Eqs. (3) and (13) respectively.

Step 3: Calculate the input to each neuron (x, i):

Netx,i =

∣∣∣∣∣zx −
n∑
y=1

1∑n
h=1(µh,i)m

zy(µy,i)
m

∣∣∣∣∣
2

+ ν tanh(αi) .

Step 4: Apply Eq. (16) to update the neurons’ membership values in a syn-

chronous manner:

µx,i =

 c∑
j=1

(
Netx,i
Netx,j

)1/m−1
−1

for all i .

Step 5: Compute ∆ = max(|U (t+1)−U (t)|). If ∆ > ε, then go to Step 2, otherwise

go to Step 6.

Step 6: Find the codebook for the final membership matrix.

In Step 3, the inputs are calculated for all neurons. In Step 4, the compensated

fuzzy c-means clustering method is applied to determine the fuzzy state with the

synchronous process. Here, a synchronous iteration is defined as an updated fuzzy

state for all neurons.
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Fig. 1. The membership grade curve of pattern z8 with c = 2 in different algorithms.

To see the performance of the FCM, PFCM, and the proposed algorithm

CFHNN, the Butterfly example given by Ruspini20 and Jou13 for fuzzy clustering

problem is considered. Patterns 7, 8 and 9 construct a bridge between the wings

of the butterfly with 15 input patterns in R2. The membership grades are nearly

symmetric with respect to pattern z8 in both data coordinate directions for all algo-

rithms. The CFHNN can rapidly result in a symmetric manner for the membership

grade of pattern z8 with respect to both clusters. This fact can be shown in Fig. 1,

where the curves above membership grade = 0.5 indicate the membership grades of

pattern z8 belonging to cluster 1 while the curves under membership grade = 0.5

denote the membership grades of pattern z8 belonging to cluster 2 with distinct m

from 1.05 to 2.0 for all strategies in this example. In accordance with Fig. 1, the

symmetric manner of membership grades can be rapidly reached for the critical

patterns in partition clusters using CFHNN.

4. EXPERIMENTAL RESULTS

In this paper, the quality of the image reconstructed from the designed codebooks

is compared using GLA, FCM, PFCM and CFHNN algorithms, respectively in

an IBM compatible Pentium computer. The training vectors were extracted from

256×256 real images with 8-bit gray levels, which were divided into 4×4 blocks to

generate 4096 nonoverlapping 16-dimensional vectors. Three codebooks of size 64,

128 and 256 were generated using these training vectors and the compression rates

were 0.5 bits per pixel (bpp), 0.4375 bpp and 0.375 bpp, respectively. The peak

signal to noise ratio (PSNR) was evaluated in the reconstructed images. Row 1 in
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Fig. 2. Original images and reconstructed images with compression ratio = 0.500 bpp using the
CCHNN algorithm: (row 1) are original images; (row 2) are reconstructed images with codebook
of size k = 256.

Table 1. PSNR of images reconstructed from codebook of various sizes by
CFHNN with fuzzification parameters m = 1.2 and m = 1.4, respectively.

Codebook size 64 128 256

m 1.2 1.4 1.2 1.4 1.2 1.4
F16 25.860 25.012 26.989 25.877 28.465 26.621
Baboon 23.321 21.928 24.029 22.330 24.758 22.419
Girl 29.672 28.792 30.694 29.681 31.805 30.270
Pepper 26.274 25.859 27.656 26.928 29.330 27.936
Boy girl 30.254 29.433 31.696 30.362 33.285 30.736
Lenna 27.756 25.974 28.827 26.771 29.977 27.313

Fig. 2 shows the training images. Row 2 in Fig. 2 shows the images reconstructed

from the codebook design by the proposed CFHNN based on within-class scatter

energy with 0.5 bpp. The average PSNRs for all reconstructed images completed by

the CFHNN is higher with 2 dB, 0.4 dB and 0.2 dB than those done by GLA, FCM

and PFCM, respectively. Table 1 shows the PSNR of the images reconstructed

from the various codebooks designed using the CFHNN algorithm with various

fuzzification parameters. In accordance with Table 1, better results can be obtained

with m = 1.2 in the proposed CFHNN algorithm. In summary, from the experiment

results, the proposed algorithm could satisfactorily produce the codebook design

while the network convergence is guaranteed.

The problem of determining the optimal values of the weighting factors is

avoided in the CFHNN. It is implied that this new approach is more efficient and

versatile than GLA, FCM and PFCM for vector quantization in image compression.

Since the CFHNN is highly interconnected and occupies parallel abilities; compu-

tation time can be largely reduced by way of parallel processing.
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5. DISCUSSION AND CONCLUSION

A two-dimensional Hopfiled neural network based on the within-class scatter matrix

using the compensated fuzzy reasoning strategy for vector quantization in image

compression has been presented in this paper. From the experimental results, the

proposed CFHNN algorithm produces reconstructed images more promising than

those reconstructed by the GLA, FCM and PFCM algorithms. The network differs

from the conventional Hopfield network in that a compensated fuzzy reasoning

strategy is imposed for updating the neuron states. In addition, in Sec. 3 was

demonstrated that the CFHNN was more meaningful and effective than PFCM

and FCM. Floreen et al.8 indicated that to determine the attraction radius of a

stable vector in a discrete (binary) Hopfield network is a NP-hard problem. It

might hamper the convergence of the discrete Hopfield net to train with complex

and large data sets. In the discrete Hopfield network, a neuron (x, i) in a firing

state indicates that sample zx belongs to class i. But, in the CFHNN, a neuron

(x, i) in a fuzzy state indicates that sample zx belongs to class i with a degree

of uncertainty described by a membership function. The CFHNN, which is also a

continuous model with membership function, can overcome the NP-hard problem

exhibit in binary Hopfield net.

The energy function used for the CFHNN is called the scatter energy function

that is formulated and based on a widely used concept in pattern classification. The

fuzzy reasoning method with a compensated term implemented by the CFHNN

greatly simplifies the scatter energy function so that there is no need to search

for the weighting factors imposed on the original energy function. As a result, the

proposed algorithm appears to converge rapidly to the desired solution. Moreover,

the designed CFHNN neural-network-based approach is a self-organized structure

that is highly interconnected and can be implemented in a parallel manner. It can

also be designed for hardware devices to achieve very high-speed implementation.

APPENDIX

It is always true that a stable state is to be converged in CFHNN evolutions. So,

proof of the convergence of the CFHNN is described as follows. The scatter energy

function is first considered.

E =
1

2

n∑
x=1

c∑
i=1

(µx,i)
m

∣∣∣∣∣zx −
n∑
y=1

1∑n
h=1(µh,i)m

zy(µy,i)
m

∣∣∣∣∣
2

+
1

2
ν

n∑
x=1

c∑
i=1

(µx,i)
m tanh(αi) (17)

since 0 ≤ (µx,i)
m ≤ 1 and 0 ≤ tanh(αi) ≤ 1; Eq. (17) which implies that

E ≤ 1

2

c∑
i=1

n∑
x=1

[
zx −

n∑
y=1

1∑n
h=1(µh,i)m

zy(µy,i)
m

]2

+
1

2
ν · n · c . (18)
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Equation (18) shows that the objective energy is less than or equal to the half of

the total distance between training patterns to the cluster centers plus a constant
1
2ν · n · c. This proves that E is bounded from below.

Equation (17), same as Eq. (6), is based on least-squared errors criteria, and it

is rewritten as follows:

E =
1

2

c∑
i=1

n∑
x=1

(µx,i)
m|zx −wi|2 +

1

2
ν

n∑
x=1

c∑
i=1

(µx,i)
m tanh(αi) (19)

and

wi =
n∑
y=1

1∑n
h=1(µh,i)m

zy(µy,i)
m (20)

where wi (center of cluster i) is the total interconnection weight received from all

neurons y in the same column i. As proved in Ref. 25 and described previously, the

energy of CFHNN equals JCFCM as follows

E = JCFCM . (21)

Thus the reassignment of a membership degree belonging to cluster i in training

vector zx will result in a decrease of the objective energy function whenever zx is

located closer to a feasible cluster center. In addition, the compensated term will

speed up the decrease of the objective function. Consequently, the CFHNN will

converge to a satisfactory result after several iterations of updating the reassign-

ment matrix.
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