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The excessive computational resources required by the Nearest Neighbor rule are a
major concern for a number of specialists and practitioners in the Pattern Recognition
community. Many proposals for decreasing this computational burden, through reduction
of the training sample size, have been published. This paper introduces an algorithm
to reduce the training sample size while preserving the original decision boundaries as
much as possible. Consequently, the algorithm tends to obtain classification accuracy
close to that of the whole training sample. Several experimental results demonstrate
the effectiveness of this method when compared to other reduction algorithms based on
similar ideas.
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1. Introduction

The Nearest Neighbor (NN) rule is one of the oldest and better-known algorithms
for performing supervised nonparametric classification. The entire training set (TS)
is stored in the computer memory. To classify a new pattern, its distance to each one
of the stored training patterns is computed. The new pattern is then assigned to the
class represented by its nearest training pattern. From this definition, it is obvious
that this classifier suffers from a main drawback: large memory requirement to store
the whole TS and the also large response time needed. This disadvantage is more
critical in contexts like Data Mining where huge databases are commonly dealt with
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in Refs. 4 and 22. Nevertheless, the NN rule is very popular mainly because: (a)
conceptual simplicity; (b) easy implementation; (c) known error rate bounds; and
(d) potentiality to compete favorably in accuracy with other classification methods
in practice.

The above mentioned drawback has been considerably cut down by the
development of suitable data structures and associated search algorithms and also
by proposals to reduce the TS size. Hart’s idea13 of a consistent subset has become
a milestone in the latter research line, stimulating a sequel of new algorithms aimed
at eliminating as many training patterns as possible without seriously affecting the
predictive accuracy of the classifier. Most of the research done in this direction is
reviewed in Refs. 27 and 29 from slightly different viewpoints.

The present work is concerned with reducing the TS size while trying to maintain
(or even improve) the accuracy rate of the NN rule. A novel reduction technique
based on some features of the Selective Subset,23 the Modified Selective Subset
(MSS), is presented. In comparison to the original Selective algorithm, the MSS
yields a better approximation of the decision boundaries as induced by the plain
NN rule when using the whole training sample. As a byproduct, an algorithm much
simpler (in terms of storage and computational time requirements) is obtained. This
algorithm may be of crucial interest in situations in which particularly good decision
boundaries need to be accurately represented by a reduced set of prototypes.

In the following section, we briefly review the basic characteristics of both the
Condensed13 and Selective23 subsets. Next, the Modified Selective Subset is intro-
duced in Sec. 3 where a detailed derivation of the new algorithm from the (Mini-
mum) Selective Subset is also given. Experimental results with synthetic and real
datasets are presented in Sec. 4. The results allow to compare in both classification
accuracy and reduction rate the proposed algorithm with regard to several similar
methods. The final section presents some concluding comments.

2. Techniques for Reducing the TS Size

It is generally acknowledged that the NN rule is able to properly generalize in a
variety of practical situations either as it is or as part of a composite classifier.
However, since it must store all the available training patterns and search through
all of them to identify a new pattern, it has large memory requirements and may
become too slow in the classification phase. Practical importance of this subject is
obvious in many domains, such as data mining, text categorization, remote sensing,
and retrieval of multimedia databases, to name a few. As a consequence, a vast
catalogue of methods to reduce the TS size (as one of the possibilities of overcoming
this drawback) has been proposed in the literature.

TS size reduction approaches can be classified into two categories3,29 accord-
ing to which it is possible to distinguish between those schemes that select a
subset of the original training patterns, and those that generate new ones. The
former is the case of Hart’s algorithm,13 the Selective Subset23 approach, the



August 30, 2005 14:9 WSPC/115-IJPRAI SPI-J068 00433

Decision Boundary Preserving Prototype Selection for NN Classification 789

Proximity Graph-based editing and condensing methods,24 the Minimal Consis-
tent Subset8 condensing, Tomek’s algorithms,25 and the Reduced NN.11 Among
the proposals aimed at creating new prototypes, the following can be mentioned:
merging schemes,3,6 clustering-based methods,20 the LVQ methods,16 and the Boot-
strap technique introduced in Ref. 12.

In this paper, as in Ref. 29, we concentrate on those techniques that reduce the
TS size by retaining only a subset of the original training patterns. This option is
mandatory in many cases in which there is no vector space available to support
prototype generation or when the newly generated prototypes make no sense in
the particular application domain. These selection algorithms primarily operate by
removing irrelevant and redundant patterns while retaining only critical cases using
different philosophies.29 Within this group, to take note is the set of approaches
based on the concept of consistency. A consistent subset of a TS is any subset
that correctly classifies every pattern in TS using the 1-NN. Even though consis-
tency implicitly assumes that the original TS has no noise and is good enough
at classification,29 selecting a proper consistent subset has been an active area of
research that recently has also received a theoretical justification in the context
of Structural Risk Minimization theory.15 Almost all the methods named above
are based on consistency and, in particular, Hart’s13 and Ritter’s23 approaches
which are particularly important for the present work. In most consistency-based
approaches, the goal has been intimately related to obtaining a minimum cardinal-
ity subset. In the present work, however, the goal will be related with obtaining a
sufficiently reduced subset (not necessarily minimal) that most accurately preserves
the original classification boundaries.

2.1. The condensed subset

Hart’s algorithm is the earliest attempt at minimizing the number of stored patterns
by retaining only a consistent subset of the original TS. This algorithm finds a
condensed subset (CS) from the training set, TS. This scheme begins by randomly
selecting one pattern belonging to each class from the TS and putting them into
CS. Each remaining pattern in TS is then classified using the prototypes in the
current CS. If a pattern in the TS is misclassified, it is added to CS. This process
is repeated until there are no patterns in the TS that are misclassified by CS. An
algorithmic description of this procedure is shown in Fig. 1.

The process ensures that all prototypes in TS are classified correctly. That
is, the resulting CS is a consistent subset. But the algorithm does not guarantee
minimality. Moreover, both the quality and the size of the condensed subset depend
on the order in which the training patterns are presented to the algorithm. Patterns
that are examined early in the process tend to be added to CS. Consequently, not
all the training patterns close to the decision boundaries are maintained in the
reduced subset and some redundant (internal) prototypes are unnecessarily kept.
Notwithstanding, Hart’s idea has prompted a series of subsequent studies, aiming
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Fig. 1. Algorithmic description of the method proposed by Hart.13

at solving these problems without changing the main idea (e.g. Refs. 2, 7, 8, 11
and 25).

As a particular example, the Gowda–Krishna Algorithm (GKA)7 consists of a
straightforward extension in which prototypes are taken into account according to
their closeness to the decision boundaries. The position of a prototype in the ordered
list of neighbors of its Nearest Neighbor from an Opposite class (NNO) is used as a
way to measure closeness to boundaries.7 Another particularly interesting approach
is Tomek’s Second Algorithm (TSA)25 in which Gabriel graphs26,27 are implicitly
used to identify pairs of prototypes that are close to the decision boundaries. The
way in which pairs of prototypes are selected makes the algorithm very good at
preserving the original decision boundaries.

2.2. The selective subset

Ritter et al.23 extended Hart’s condensing idea by introducing a condition stronger
than consistency in order to be able to search for prototypes in an order independent
and more convenient way. They define a subset, SS, as selective if

1. it is consistent;
2. all prototypes in the original TS are nearer to a selective neighbor (a member of

SS) of the same class than to any prototype from a different class in TS.

This second condition (which in fact makes the first unnecessary) is the main
difference between the condensed and the selective subsets. The consistency def-
inition of Hart (condition 1) could be formulated exactly as condition 2 in the
following way:

All prototypes in the original TS must be nearer to a condensed neighbor (a
member of CS) of the same class than to any prototype from a different class
in CS.
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We will refer later to this second condition as the selective property. Ritter et al.
included minimality as a part of the previous definition but we will make here the
distinction between any selective set and minimal selective subsets.

An interesting fact which represents another remarkable difference with regard
to Hart’s consistency, is that prototypes for the selective subset can be selected
(or not) independently in each class. This is because the selective property refers
only to the nearest enemy which need not be another member of the selective
subset. Consequently, the search of the nearest enemy is independent of selective
prototypes from different classes. The nearest enemy of xi is the training pattern
y that has been found as the nearest neighbor of xi when considering only those
training patterns from all the classes other than that of xi. This concept has been
extensively used in the literature with different names as, for example, Nearest
Unlike Neighbor (NUN)8 or Nearest Neighbor from the Opposite class (NNO).25

Ritter et al. introduced the following definitions:

(a) a prototype xj is a related neighbor of another prototype xi, both from the
same class, if xj is closer to xi than the nearest enemy of xi;

(b) the set of all related neighbors of xi is represented by Yi, the relative neighbor-
hood of xi;

(c) the (minimum) selective subset will be the smallest subset of TS which contains
at least one member of Yi for each prototype xi in TS.

Although Ritter et al., in their paper stated the importance of selecting
“patterns near the decision boundaries”, the best approximation to these bound-
aries is not guaranteed in their procedure because of this third definition which
gives precedence to minimality.

To get this minimal selective subset, Ritter et al. proposed a backtracking algo-
rithm which can also be seen as a branch and bound procedure that systematically
searches for possible solutions in a directed way. This is an algorithm very exten-
sive and complex (in memory and execution time). The original formulation of the
algorithm describes the details in terms of a binary n×n matrix and elementary bit
operations involving rows and columns. In the present work, we present it in a (more
descriptive) form suitable to later formulate our alternative proposal using nota-
tion that involves prototypes and sets of prototypes and hiding the implementation
details.

Let TS = {xi}n
i=1 be the original training set of prototypes and SS be the

resulting selective subset initially set as SS = ∅. Both subsets are referred to a
particular class, since the algorithm processes each class separately from the others.
Additionally, we will also use as auxiliary sets:

C: a set of candidates initially set to TS, from which prototypes are taken to
construct SS.
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S: a set of prototypes that still have to fulfill the selective property. Initially, as
SS = ∅, the set S is also set to TS. (Recall that the goal is that all prototypes
in TS must fulfill the selective property at the end with the resulting SS).

The procedure proposed by Ritter et al. proceeds then by moving elements from
C (candidates) to SS (results) in such a way that those prototypes in S that (as
the result of these movements) fulfill the selective property are removed until S is
exhausted. As intermediate steps, the algorithm eliminates elements from S and C

as much as possible in order to save computation time.
As in the original paper, the (current) relative neighborhood of each prototype

xi will be represented as Yi ⊆ C. Additionally, in this work, the set of prototypes
with respect to which xj is a relative neighbor will be denoted as Sj ⊆ S. That is,
Sj = {xk ∈ S|xj ∈ Yk}. This set will be later referred to as the inverse relative
neighborhood of xj .

The idea of the auxiliary sets Yi and Sj (which correspond to columns and rows
of the auxiliary matrix in the original description of the algorithm) is illustrated in
Fig. 2, in which both sets are represented.

With the previous definitions, the procedure to obtain the minimum selective
subset can be informally described as follows (a slightly more formal algorithmic
description of the procedure is given in Fig. 4):

1. Identify candidate prototypes (that is, from C), xj , which are the only (remain-
ing) relative neighbors of some xi in S. Add xj to SS (and take it out from C)
because this is the only possibility for xi to fulfill the selective property. Also, as
xj is now in SS, remove from S all prototypes in Sj (among which there is xi)
that will now satisfy the selective property due to xj .

2. Identify candidate prototypes, xj in C, whose inverse relative neighborhood, Sj ,
is included in some other Sk. If this is the case, xk will fulfill the property (at

xi

Yi

NUN

xj

Sj

Fig. 2. Graphical representation of sets Yi and Sj . The relative neighborhoods Yi are represented
by circles centered at the corresponding prototype and whose radii are defined by the corresponding
nearest enemies (NUN). The inverse relative neighborhood Sj is shown as a region that contains
those centers whose circles intersect the corresponding prototype.
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Fig. 3. (a) (Step 2) Inverse relative neighborhood Sj is contained into another inverse relative
neighborhood Sk: xj need not be considered as a candidate any more. xk will do so. (b) (Step
3) Relative neighborhood Yi includes another relative neighborhood Yk: xi need not fulfill the
selective property. It will happen when xk fulfills it.

Fig. 4. Algorithmic description of the method proposed by Ritter et al.23

least) of the same prototypes in S than xj so that we can safely remove the
latter from the candidate set, C. This situation is illustrated in Fig. 3(a).

3. Identify prototypes xi that still do not have a relative in SS (that is, from S)
whose relative neighborhood, Yi, contains another Yk. If this is the case, when
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selecting a relative neighbor of xk, it will be also a relative neighbor of xi and it
will be implicitly taken into account by xk. (That is, xi will fulfill the property
when the current SS ensures xk fulfills it.) Consequently, remove xi from S. This
situation is also graphically illustrated in Fig. 3(b).

4. Stop with the current SS as a result if S is exhausted. Otherwise repeat steps
1–3 until there are no changes in S and C.

(a) Compute Mj for each xj as a lower bound on the minimum number of candidate
prototypes still needed to globally fulfill the selective property if xj is included
in SS. This bound is computed by selecting the minimum number of prototypes
whose resulting inverse neighborhood sizes, |Sk − Sj |, sum up to at least the
resulting number of prototypes in S, that is, |S − Sj|. Let M be the minimum
of the Mj.

(b) For each xj such that Mj = M , tentatively add it to SS (and update C and
S accordingly) and backtrack (go to 1). Return if a solution is obtained with
exactly M more prototypes.

(c) If no solution with M has been found in (b) but there is one with M +1, return
it. Otherwise, increase M , and go to (b).

The n × n matrix proposed by Ritter et al. efficiently represents the sets S, C

and all Yi and Sj at the same time. It is worth noting that Yi consists of elements
from C. That is, the set of possible candidates to SS. Consequently, Sj contains
elements from S, the set of prototypes waiting to fulfill the selective property. As C

and S change in the algorithm, all Yi and Sj need to be recomputed or efficiently
represented correspondingly.

The step numbers in both descriptions of the algorithm correspond to the same
numbers in the original formulation of the algorithm. The fact that it is a back-
tracking algorithm is put forward by writing it as a recursive procedure whose
parameters are assumed to be passed by value. This description makes explicit the
complexity of the algorithm in the worst case which is exponential. The spatial
complexity of the algorithm cannot be assessed from our formulation because that
is much more dependent on the implementation. Nevertheless, it must be noted
that, according to the implementation proposed by Ritter et al., a large (binary)
matrix that contains information about all related neighbors to any prototype must
be defined and processed.

3. The Modified Selective Subset

Although there is not any proof, it is quite likely that the algorithm of Ritter et al.
really gives a minimal selective subset as a solution because it really performs an
implicit exhaustive search. In fact, it has been proved that the problem of selecting
the minimum selective subset is NP-complete.28 The aim of this algorithm is the
same as in several approaches which try to obtain minimal consistent subsets,5,8,17

but using instead the selective property.
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Although challenging, minimality is not necessarily a good property for real
problems in practice. A slightly larger subset of (selective or not) prototypes can
represent more accurately the original (optimal) decision boundaries. Accordingly,
an adequate size reduction method must consider both storage requirement decrease
and classification accuracy with the obtained reduced subset. The convenience of
using minimality (with regard to consistency) has also been recently discussed.9,30

In the reduction technique here proposed, the MSS rests upon a modification of
the definition of the Selective Subset in the preceding section. We keep definitions
(a) and (b) as in the work of Ritter et al., but definition (c) is changed in the
following way:

(c′) the modified selective subset (MSS) is defined as that subset of TS
which contains, for every xi in TS, that element of its Yi that is the nearest
to a class other than that of xi (that is, the closest to its nearest enemy).

The main purpose of this modification is to strengthen the condition to be ful-
filled by the reduced subset in order to attain a better approximation of the decision
boundaries. Also, when stated in this way, it is possible to introduce a greedy algo-
rithm which tries to obtain selective prototypes in such a way that preference is
given to training patterns which lie close to the original (as defined by the whole
TS) NN decision boundaries. This algorithm constitutes an efficient alternative to
the Selective algorithm of Ritter et al. and is usually able to select better (closer
to the boundary) prototypes as will be empirically shown later. Similar ideas have
already been used with different flavors to obtain consistent subsets.7,25 The crite-
rion that will be used here to measure the closeness to the boundary is the distance
to its nearest enemy. Using this measure, it is possible to define the best selective
subset as the one that contains the best related neighbor for each prototype in the
TS. In this context, best means lower distance to its nearest enemy.

The proposed algorithm (shown in Fig. 5), selects prototypes from the original
TS according to this measure, and updates the sets S and C correspondingly. S

and C are here employed with the same meaning as in the preceding section. SS
is replaced now by MSS. We use Dj to refer to the distance from xj to its nearest
enemy. An informal description of the algorithm is also included in the same figure
using comments.

The conceptual simplicity of the proposed algorithm contrasts with the one in
Fig. 4. In fact, the implementation is also much more straightforward. There is no
need to compute related neighborhoods or to maintain any matrix in memory. A
possible efficient implementation of this algorithm makes use of a sorting algorithm
followed by two nested for loops as shown in Fig. 6. Note that in this implementa-
tion, the sets C, Yi and Sj are no longer needed. Recall also that both algorithms,
Selective Subset and Modified Selective Subset, are applied to each class separately.
Consequently, the value n in the algorithm in Fig. 6 refers to the number of proto-
types in a particular class.
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Fig. 5. Algorithmic description of the proposed modified selective subset.

Fig. 6. Efficient implementation of the proposed modified selective algorithm.

Once the prototypes have been sorted, a unique pass through the set suffices
to select the above defined best selective subset. At the end of iteration i of the
first loop, at least the prototypes 1 to i are guaranteed to fulfill the property.
To do this, an inner loop starting at prototype i is used to decide whether or
not to include xi in the solution. This algorithm requires a quadratic number of
basic operations like checking set membership, distance calculation or retrieval,
and set updates. Consequently, with an appropriate implementation, the proposed
method constitutes a worst-case quadratic algorithm to obtain a selective subset.
The obtained subset will not be necessarily minimal, but will usually give better
classification accuracy, as will be shown in the experiments.

4. Experimental Results

In this section, several experiments with both synthetic and real databases are
presented. Firstly, an artificial dataset will be employed to assess the quality of the
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decision boundaries produced by different prototype selection algorithms. On the
other hand, experiments over different real datasets will be carried out in order
to compare the MSS scheme with other condensing methods, both in classification
accuracy and reduction rate.

Apart from the proposed MSS algorithm and Ritter’s Selective Subset (SS)
approach from which MSS has been developed, other prototype selection algorithms
have been considered in this experimental section for different reasons. First, Hart’s
Condensed Set (CS) and GKA because they can be considered as the counterpart
to the SS–MSS pair but dealing with consistency instead of selectiveness. Also,
TSA because it clearly aims at boundary preserving as our MSS. Finally, Aha’s
IB2 algorithm1 which is very popular in the Machine Learning community and
DROP3 which has been recently proposed by Wilson and Martinez29 have also
been considered as reference. These two algorithms can be seen as representatives
of a straightforward and elaborate approach to prototype selection, respectively.
While in most cases, IB2 results are basically indistinguishable from Hart’s CS,
DROP3 has been shown to give very good and reasonably convenient results in a
variety of different situations.29

4.1. Illustrative experiments with a synthetic database

In order to illustrate the behavior of both selective algorithms with regard to other
prototype selection methods, a variation of the XOR problem has been considered.
Random bivariate patterns have been generated following a uniform distribution
in a square of length two, centered at zero (apart from a strip of width 0.1 along
both axes). The patterns have been labeled at each quadrant to reproduce the well-
known XOR problem. More specifically, the label of each point (x, y) is computed
as sign(x) · sign(y). Different training sets of increasing sizes (400; 800; 1,200; and
1,600) have been considered.

The results of applying several different algorithms to TS of size 800 are depicted
in Figs. 7(a)–7(f). In this particular illustrative experiment, IB2 results are not
shown because they were very similar to Harts’s CS.

Figure 7(a) illustrates how consistency only (Hart’s procedure) gives rise to an
induced boundary which lies relatively far from the optimal one. The main difference
between the two selective sets shown in Fig. 7(e) (SS) and Fig. 7(f) (MSS), lies in
the fact that MSS manages to obtain more accurate boundaries in this example,
at the price of retaining slightly more prototypes. The two approaches that involve
boundary closeness measures (TSA and GKA, in Figs. 7(c) and 7(d), respectively)
also improve the decision boundaries obtained by Hart’s procedure. Particularly
interesting is the result given by TSA which gives a very close approximation to
the original decision boundary. Nevertheless, this algorithm retains a very large
number of prototypes (twice or more than any other techniques). The number of
prototypes retained by each one of the algorithms in this particular run was 31,
38, 73, 28, 21 and 34, respectively. Note that SS obtains in fact the best result in
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Subsets of prototypes and induced decision boundaries (thick solid lines) obtained by six
different algorithms: (a) CS; (b) DROP3; (c) TSA; (d) GKA; (e) SS; and (f) MSS. The optimal
boundaries are also shown as thin dotted lines.
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terms of size reduction (as expected). It is also worth noting that the (relatively)
high number of prototypes retained by DROP3 in this case is not enough to obtain
sufficiently good boundaries. This is partially motivated by the fact that DROP3
is a composite approach aiming both at reducing the training set size and also to
clean it.

In order to approximately measure the quality of each reduced subset, an inde-
pendent test set with 40,000 prototypes has been generated. The corresponding
accuracies for different TS sizes are depicted in Fig. 8(a) in which higher classi-
fication accuracy corresponds to better approximation to the decision boundary.
Both, TSA and MSS give consistently the best results for all TS sizes. Figure 8(b)
shows the number of retained prototypes in which both MSS and DROP3 exhibit
a slightly increasing behavior with regard to CS, GKA and SS approaches. On the
other hand, TSA not only retains more prototypes but also its number increases in
a quicker way.

Apart from boundary preserving and reduction rate shown in Fig. 8, another
aspect that is important to assess the relative merits of prototype selection algo-
rithms is the computing time they need. Figure 9 shows the computing times needed
by each prototype selection algorithm with increasing TS sizes. It can be observed
that all methods gave similar results for the lowest size, but there is a clear separa-
tion in their behavior as the TS size increases. Even though these results cannot be
representative of all situations mainly because some of the algorithms are strongly
dependent on input data, very different behaviors can be identified. Apart from
CS (and IB2) which are basically linear algorithms, the most efficient algorithms
(in this and further experiments) were GKA and MSS approaches which have a
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Fig. 8. (a) Classification accuracy and (b) reduced subset size with varying training set sizes.
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Fig. 9. Computing times for different training set sizes.

worst-case time complexity of O(n2). The (constant) difference between them can
be partially attributed to differences in implementation (GKA was implemented
using static memory in C while MSS manages memory dynamically in Java). We
used our own implementation of an algorithm for TSA which has an empirical
behavior close to O(n2) as in Refs. 24, 26 and 27. Finally, for SS, IB2, CS and
DROP3, we used the implementations referenced in Ref. 29.
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4.2. Experimental evaluations with real datasets

Experiments with several real datasets taken from the UCI Repository19 were done
to compare some prototype selection algorithms, mainly in classification accuracy.
The last dataset (i.e. the Image database) has been previously employed in a real
application to locate oranges in outdoor scenes under daylight conditions.21 These
datasets have been selected to cover a wide range of different practical situations.
Five-fold cross validation was employed for the experiments in each dataset. Char-
acteristics of the datasets are summarized in Table 1 including the effective training
and test sizes used in the experiments.

Table 2 shows the different accuracies obtained by the NN rule using the different
subsets of prototypes obtained by each method. The NN rule working with the whole
TS is also reported as the baseline classifier.

Experimental results in Table 2 show MSS as the reduction technique with
the higher classification accuracy and as the closest to the performance of the
NN rule, in most datasets and also in average. More importantly, figures in Table 3
corroborate that MSS is significantly better than CS, IB2 and SS in our experiments.
In particular, MSS is significantly better in 8, 8 and 9 datasets, respectively. With
regard to GKA, MSS is better in 5 datasets and is never worse. The more elaborate
(with an internal cleaning procedure) DROP3 algorithm is better than MSS only in
2 datasets while MSS is significantly better in 4. Finally, MSS is better than TSA
in 3 datasets and vice versa which in fact reflects the previously observed behavior.
That is, both algorithms manage to accurately preserve the original (1-NN) decision
boundaries.

Table 1. Characteristics of the employed real datasets.

Iris Glass Liver Pima Vowel Wine Vehicle Texture Phoneme Image

TS size 120 170 268 614 422 142 542 4,400 4,324 6,283
Test set size 30 43 67 154 106 36 136 1,100 1,081 1,571
No. classes 3 6 2 2 11 3 4 11 2 3
No. features 4 9 6 8 10 13 18 40 5 2

Table 2. Accuracy rates of the experiments with the reduction algorithms and eight real
datasets. Basic NN rule is reported as the baseline classifier.

Iris Glass Liver Pima Vowel Wine Vehicle Texture Phoneme Image Average

NN 95.3 67.4 63.8 70.2 96.9 94.7 67.6 99.0 70.3 98.2 82.3
CS 90.6 66.0 60.5 65.4 91.7 94.7 64.0 69.6 66.2 97.2 76.6
SS 90.6 64.3 61.0 66.2 92.9 92.9 65.2 69.5 63.2 97.8 76.4
IB2 90.6 66.5 60.5 65.4 91.2 94.1 64.0 69.5 66.4 97.2 76.5
DROP3 94.7 63.1 64.3 74.3 78.7 93.5 66.7 70.0 72.7 98.1 77.6
TSA 96.0 71.4 65.8 67.2 97.9 73.1 64.4 99.0 69.8 98.4 80.3
GKA 96.0 65.8 63.2 66.0 94.7 69.6 63.3 97.3 68.7 98.1 78.3
MSS 95.3 67.0 63.2 69.5 97.0 93.8 69.1 98.9 67.7 98.4 82.0
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Table 3. Confidence levels for the statistical significance (one-tailed t tests) of the differences in
accuracy of MSS with the other techniques. Numbers in parentheses indicate lower accuracy of
MSS.

Iris Glass Liver Pima Vowel Wine Vehicle Texture Phoneme Image

NN no no no no no no no (0.05) (0.005) no
CS 0.005 no 0.005 0.001 0.001 (0.10) 0.001 0.001 0.05 0.01
SS 0.005 0.01 0.005 0.001 0.001 0.10 0.005 0.001 0.001 0.01
IB2 0.001 no 0.001 0.001 0.001 no 0.001 0.001 0.01 0.01
DROP3 no 0.001 no (0.001) 0.001 no 0.001 0.001 (0.001) no
TSA no (0.005) no 0.005 no 0.001 0.001 (0.05) (0.005) no
GKA no no no 0.001 0.001 0.001 0.001 0.05 no no

Table 4. Storage requirement (%) after each prototype selection technique.

Iris Glass Liver Pima Vowel Wine Vehicle Texture Phoneme Image Average

CS 9.4 41.1 44.5 36.8 23.5 9.2 39.4 6.4 15.9 0.1 22.6
SS 12.1 42.9 52.7 43.2 21.4 14.3 44.3 5.7 16.8 0.3 25.4
IB2 9.1 39.5 44.5 36.8 23.6 9.1 39.5 6.4 15.6 0.1 22.4
DROP3 12.4 23.1 23.9 16.7 46.4 15.9 24.8 7.0 12.4 0.2 18.3
TSA 28.2 84.7 97.5 85.6 95.1 54.2 92.7 66.5 53.6 1.9 66.0

GKA 12.8 46.4 61.0 49.2 22.7 39.7 64.9 7.2 20.7 0.1 32.5
MSS 17.7 58.8 57.5 49.0 69.3 22.9 78.8 21.9 24.0 0.3 40.0

On the other hand, results concerning size reduction shown in Table 4, indicate
that the two algorithms that are the best in preserving the decision boundaries
(MSS and TSA) produce reduction rates not very impressive compared to the min-
imum sizes obtained. It is evident that the worst behavior corresponds to the TSA
technique. This algorithm retains 66% of the initial prototypes in average. This
behavior is similar to that shown in Fig. 8(b) corresponding to the artificial dataset.

5. Some Conclusions and Future Work

This paper introduces a method for effective reduction of the TS size. The proposed
method (Modified Selective Subset) is primarily based on the concept of selective
subset (that satisfies a condition stronger than consistency) and tries to keep the
decision boundaries associated with the selected subset as close to the original ones
as possible. Consequently, the most important aim of this method is to obtain an
appropriate trade-off between preserving the classification accuracy of the NN rule
and yielding a close to minimal training subset. As a very interesting subproduct,
the greedy algorithm proposed for obtaining the reduced subset is quite simple in
terms of storage and computational time requirements.

The experiments reported in this paper show the convenience of the Modi-
fied Selective Subset technique with regard to other reduction methods for several
real and representative datasets. These experimental results corroborate that the
proposed prototype selection method yields classification accuracy close to that
obtained when employing the whole TS. Still more empirical evaluation is needed
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to properly assess the relative merits of the proposed method in a variety of different
situations in practice. Also, comparison with other reduction algorithms not con-
sidered here could be of interest. In particular, reduction algorithms such as those
aimed at merging several training patterns6 or at adaptively modifying the loca-
tion of some instances,14 and those based on the genetic algorithms approach.18,31

Comparison and combination with other nonparametric models constitutes another
line of further work that has already been started.10
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