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Psychophysical researches on the human visual system have shown that the points of
high curvature on the contour of an object play an important role in the recognition
process. Inspired by these studies we propose: (i) a novel algorithm to select points of
high curvature on the contour of an object which can be used to construct a recognizable
polygonal approximation, (ii) a test which evaluates the effect of deletion of contour
segments containing such points on the performance of contour based object recognition
algorithms. We use complete contour representations of objects as a reference (training)
set. Incomplete contour representations of the same objects are used as a test set. The
performance of an algorithm is reported using the recognition rate as a function of
the percentage of contour retained. We consider two types of contour incompleteness
obtained by deletion of contour segments of high or low curvature. We illustrate the test
procedure using two shape recognition algorithms that deploy a shape context and a
distance multiset as local shape descriptors. Both algorithms qualitatively mimic human
visual perception in that the deletion of segments of high curvature has a stronger
performance degradation effect than the deletion of other parts of the contour. This
effect is more pronounced in the performance of the shape context method.

Keywords: Contour deletion; distance multiset; high curvature points; ICR test; perfor-
mance evaluation; robustness to incompleteness; shape context; shape recognition.

1. Introduction

Psychologist Gollin? investigated the human ability to recognize objects from
incomplete contour representations. The main objective of his study was to deter-
mine the influence of developmental characteristics, such as mental and chronolog-
ical age and intelligence quotient. As subjects of his experiments he chose children
of different age groups and a group of adults. In his experiments Gollin used sets of
contour images with different degrees of incompleteness and addressed the follow-
ing questions: (1) In order to be recognized, how complete the contours of common
objects need to be? (2) How does training affect the recognition performance in
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case of incomplete representations? Through his experiments he found that human
ability to recognize objects with incomplete contours (a) depends on intelligence
quotient and (b) is improved by training.

This aspect of recognition of objects with incomplete contours is also very impor-
tant in the context of processing visual information using computers due to the fact
that present contour detection algorithms'!>'2 fail to extract a closed and neat con-
tour of an object from a natural scene.®”

Shape descriptor based object recognition methods have been evaluated and
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compared using various characteristics like recognition performance,
ance, uniqueness and stability.!® Marr and Nishihara!® proposed three criteria for
judging the effectiveness of a shape descriptor, viz. accessibility, scope and unique-
ness, stability and sensitivity. Brady* put forward a set of criteria for representa-
tion of shape, viz. rich local support, smooth extension and propagation. Inspired
by Gollin’s study and keeping the aforementioned practical importance in mind, in
our previous studies®” we proposed the Incomplete Contour Representations (ICR)
test to evaluate the robustness of contour based object recognition algorithms to
incompleteness of extracted contours. In those studies, we did not take into con-
sideration the fact that points along a contour can have different importance for
human perception and possibly for computer algorithms. In the present paper we
investigate whether the deletion of high curvature contour segments has a greater
effect on the performance of two shape recognition algorithms than the deletion
of low curvature segments. Our motivation originates in the fact that a similar
question has been posed and answered regarding human visual perception.

In 1954, psychologist Attneave! proposed that perceptually important infor-
mation along a visual contour is concentrated in the regions of high curvature
rather than distributed uniformly. He took an image of a cat, selected points of
high contour curvature and joined them with straight line segments. The resulting
line drawing (now popularly known as Attneave’s cat) is easily recognizable, proving
that not much information is lost due to the linear approximation of the contour
between the points of high curvature. We illustrate the essence of his considera-
tions in Figs. 1(a) and 1(b). Attneave! also described the results of an experiment
in which participants were asked to approximate a two-dimensional contour with a
fixed number of points and to locate these points in the original shape. He found the
points were selected more frequently in the regions of high curvature in the original
contour. Moreover, experiments with partial contour deletion by Biederman?® have
shown that the deletion of high curvature contour segments creates greater difficul-
ties in recognition than deletion of low curvature segments of comparable lengths
when presentation time is short (~ 100 msec), c.f. Figs. 1(c) and 1(d).

In the current paper we report the results of an extension of our previous studies
on the robustness of shape recognition algorithms to incompleteness of contours.®7
Similar to those studies we choose an idealized situation where: (a) complete contour
representations of the objects to be recognized form the reference (training) set or
“memory” of the system/algorithm, (b) incomplete contour representations of the
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Fig. 1. (a) Contour image of a dog with high curvature points marked by dots. (b) Points of
high curvature are joined by straight lines to construct a contour image similar to Attneave’s cat.
(¢) Incomplete contour image in which the contour segments of high curvature are deleted. (d)
Segments between the points of high curvature are deleted to construct this incomplete contour
image. Though the percentages of contour deletion are the same in (¢) and (d), it is yet easier to
recognize the contour image in (d) as a dog due to the retainment of contour segments of high
curvature. The shorter the presentation time, the more important is the presence of such contour
segments for recognition by humans.3

same objects are derived from the aforementioned complete representations and are
used as a test set, (¢) the performance of the system/algorithm in recognizing the
objects from these incomplete representations is evaluated.

In this study we use only one of the three ICR tests defined in our previous
work,®7 viz. the segment-wise deletion test. In contrast to the previous studies
where contour segments are deleted at random to construct an incomplete repre-
sentation, in the current study contour segments are removed in two different ways
by deleting segments of (i) high or (ii) low curvature [Figs. 1(c) and 1(d)].

We investigate the performance of two contour based shape recognition methods,
which use a shape context? and a distance multiset'°
methods are briefly reviewed in Sec. 2. In Sec. 3, we describe the method used to
obtain points of high curvature. The achieved results are presented in Sec. 4 and
discussed in Sec. 5. A summary and conclusions are presented in Sec. 6.

as shape descriptors. The two

2. Shape Recognition Methods

In the methods studied below, the recognition of objects is done by computing
dissimilarity between the contour representations of two objects by using a point
correspondence paradigm. Shape descriptors associated with the points are used to
find the point correspondences. To maintain brevity and focus on the illustration
of the proposed test we use simplified versions of two methods.

The distance multiset!® of a point p in the contour of an object O
of N points is formally defined as the following vector: DG (p) = (In(di(p)),
In(da2(p)), ..., In(dn-1(p))) where d;(p) is the Euclidean distance between p and its
jth nearest neighbor in @. In this approach the shape of an object O = {p1...py}
defined by a set of contour points is described by the collection of distance multisets
of these points, S5 = {D{(p)|p € O}. The cost ¢(X,Y) of matching two distance
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multisets X = (x1,29,...,2p) and Y = (y1,92,...,y~n), M < N, is defined as the
L1 norm of the difference between X and a subvector of Y of M elements for which
this norm is minimum.?

The cost cij of matching a point p; in an object O; represented by M
contour points to a point ¢; in an object Oz represented by N contour points,
M < N, is defined as the cost of matching the corresponding distance multisets:
o (DS (pi), DS? (7). The dissimilarity between two shapes is defined as
the sum of the costs of pairwise point matching for the mapping from O; into
O for which that sum is minimum. The problem of finding the optimal point
correspondences for which this sum is minimum can be solved using combinato-
rial optimization algorithms, e.g. the Hungarian algorithm.?'° In this study we do
not do that for simplicity. Instead we compute an approximation to the optimal
dissimilarity between the shapes S§M and S5M as follows: dPM (SHM, SEM) =
S min{ePM|j =1--- N}

The shape context? of a point p belonging to the contour of an object is a
bi-variate histogram in a log-polar coordinate system that gives the distribution
of contour points in the surroundings of p. Let an object O be represented by a
set of contour points O= {p; ...pn}. Formally, the authors of this method define
the shape context of a point p € O as a vector in the following way: HZ(p) =
(h1(p), h2(p), ..., hix(p)), where hy(p) = card{q # plq € O, (¢ — p) € bin(k)} is the
number of contour points in the kth bin — bin(k) — and K is the total number
of histogram bins. The bins are constructed by dividing the image plane into K
partitions (in a log-polar coordinate system) with p as the origin. In this study
we use five intervals for the log distance and 12 intervals for the polar angle, so
K = 60. As suggested by the authors of that method,? we randomly choose 100
points (if available) from the contour of an object and calculate their shape contexts.
The shape of the object is described using the set of shape contexts associated with
the contour points, S3¢ = {HZ(p)|p € O}. The cost of matching a point p; that
belongs to the contour of an object O, of M points, to a point ¢; from the contour of
an object O of N points is defined as follows: cfjc = % sz1 %, which
yields an M x N cost matrix of point-wise dissimilarities. Similar to the distance
multiset method we compute the dissimilarity between the shapes S(SQ? and 5(59'20 of

the objects in the following way: d°“(S5¢, S3¢) = Zf\il min{cfﬂj =1,...,N}.

3. Extraction of High Curvature Points

We define as feature points, selected points of local curvature extrema on the
contour of an object. We consider signed curvature where positive and negative
values represent convexity and concavity, respectively, and use an algorithm for
curvature computation proposed by Feldman and Sing.® Figures 2(a) and 2(b) illus-
trate the results of this computation. There are numerous local curvature extrema
from which we select a subset as follows: for each contour point p; which is a local
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Fig. 2. Extraction of feature points. (a) Needle diagram: the size of a protruding needle at a
given contour point represents the magnitude of the curvature at that point. (b) Curvature s
plotted as a function of the length along the contour, starting at the top-left point and traversing
the contour in clockwise direction. The dots denote the selected local extrema which we call the
feature points. For feature point 10 the length L(10) of the contour part within which that point
is a curvature extremum (maximum in this case) is shown. (¢) Feature points corresponding to the
significant local extrema for a threshold A = 6. (d) Polygonal approximation of the bird contour
constructed by joining the feature points with straight line segments.

extremum of the curvature function s, we compute a product (i) = |k(7)|L(i) of
the absolute value of the curvature k(i) at point p; with the length L(7), measured
by the number of contour pixels, of the contour part from p; to the nearest point
along the contour that has the same curvature, Fig. 2(b). For the special case when
the point is a global extremum L() is chosen to be half the total number of pixels
on the contour of the object. We select a contour point p; which is a local curva-
ture extremum as a feature point only if the aforementioned product (i) exceeds
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Fig. 3. Examples of rescaled contour images obtained from the MPEG-7 silhouette database.
These images are considered as complete representations that comprise the memory of the recog-
nition system. The dots on the contour denote the selected feature points using the method
described in Sec. 3.

a certain threshold A, r(i) > A, Fig. 2(c). In our experiments with a subset of the
MPEG-7 dataset, examples of which are shown in Fig. 3, we use a fixed threshold
which is the same for all images in the dataset and is chosen in such a way that it
results in at least three feature points per image. The actual number of obtained
feature points varies from 3 to 21 across the dataset. The result of this selection
looks similar to what may be expected from an Attneave-like! experiment with a
human observer, but showing quantitative correlation with human perception is
beyond the scope of this study.* Indeed, the obtained feature points allow a reason-
able polygonal approximation, similar to Attneave’s reconstruction. The minimum
number (three) of feature points per object used to determine the threshold was
chosen based on such considerations and reflects the simplicity of some of the objects
in the used dataset, Fig. 3.

4. Experiments and Results
4.1. Image set

We choose silhouette images from the MPEG-7 database.'* This dataset contains
1400 images divided into 70 classes, each of 20 similar objects (e.g. apple, bird,
bat, etc). We choose one object from each class and extract the contours of the
objects using Gabor filters.!! The resulting 70 contour images are rescaled in such
a way that the diameter (maximum Euclidean distance between contour pixels)
is approximately the same (76 pixels) for all objects (Fig. 3). These 70 rescaled
contour images are used as reference images or prototypes in our experiments and
constitute the “memory” of the recognition system.

Next we construct two sets of images of objects with incomplete contours. One
set is constructed by removing contour segments that include the feature points,
Fig. 4. For brevity we refer to them as feature segments in the following. The other
set is obtained by deleting contour segments with low curvature between the feature

2The problem of selection of points on the contour of an object has been discussed in a different
context (curve partitioning) elsewhere.5 For other methods we refer to the work by Wul” and
references therein.
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Fig. 4. Incomplete contour representations in which feature segments, i.e. segments containing
feature points are deleted, compare with Fig. 3. In these examples 40% of the contour is retained.
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Fig. 5. Incomplete contour representations in which midsegments, i.e. contour segments between
the feature points, are deleted, compare with Fig. 3. 40% of the contour points are retained in
these examples.

points, Fig. 5. Following Biederman,? we call such contour parts midsegments. The
percentages of retained pixels in both types of incomplete contour representations
are chosen in the following way: in steps of 5% from 5% to 85%, and 100%.

4.2. Methodology

A test image (incomplete contour representation of an object) obtained from one
of the 70 reference images in one of the above mentioned ways is compared with
all 70 reference images using a given shape comparison algorithm and a decision
is taken about which reference image the degraded image is most similar to (near-
est neighbor search). If the nearest neighbor is the reference image from which the
degraded image was obtained, the recognition result is considered correct, otherwise
incorrect. If the nearest neighbor is found to be not unique then the recognition is
also considered incorrect. For each of the two types of incomplete contour represen-
tations and for each degree of contour image degradation, the corresponding 70 test
images are compared with each of the 70 reference images and the percentage of
correct recognition P(c) is determined as a function of the percentage ¢ of retained
contour points.

4.3. Results

The results of our experiments are shown in Fig. 6. The recognition rate is a
monotonic increasing function of the percentage of contour retainment for both
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Fig. 6. (Left panel) Results obtained for the shape context method — the effect of feature point
deletion is significant. (Right panel) Results obtained with the distance multiset method — the
effect of feature point deletion is substantial only for high degree of incompleteness.

algorithms and both types of deletion. For both algorithms the deletion of high
curvature segments has a stronger performance degradation effect than the dele-
tion of midsegments. This effect gets more pronounced at higher degree of contour
incompleteness. The performance of the distance multiset method is appreciably
better than that of the shape context method for any percentage of retained con-
tour pixels and both types of deletion.

5. Discussion

In his experiments Biederman® found that the deletion of high curvature points
(he called vertices) has a stronger degradation effect on the recognition perfor-
mance of humans than the deletion of low curvature contour segments (he called
midsegments) only when the presentation times were short (100 msec). For longer
presentation times (750 msec) he found no such difference. To explain his find-
ings, Biederman hypothesized a contour filling-in process: if sufficient time is given,
midsegments are extrapolated until they meet, forming segments of high curvature
which are then used to recognize an object. Contour segments of high curvature are
thus essential for recognition of objects by the human visual system.

The results presented in Fig. 6 show that high curvature segments have a similar
importance for the shape recognition algorithms studied here. However, we should
note that these are statistical results obtained with many objects, showing that
on average the deletion of high curvature segments has a stronger performance
degradation effect than the deletion of midsegments. There are, however, objects in
the dataset for which the opposite is true: the deletion of midsegments leads to false
recognition while the deletion of an equal amount of high curvature segments does
not have such an effect. Therefore, there is no simple relation between the design of
the considered algorithms and the observed effect. Hence, in the following we only
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Fig. 7. Contour images of (a) an octagon and (b) a square. (¢—d) Incomplete contour representa-
tions derived from the square by deleting contour segments with (c) high and (d) low curvatures.
The set of contour points shown in (c) is a subset of the sets of contour points shown in (a) and
(b). This will result in a misclassification of (c¢) by the distance multiset method. In contrast, the
incomplete representation shown in (d) in which the high curvature contour segments are retained
will not be misclassified because it has a unique nearest neighbor — the square.

present two examples to illustrate the possible ways via which the observed effect
can arise in concrete cases.

Figures 7(a) and 7(b) show the complete representations of an octagon and a
square and Figs. 7(c) and 7(d) present incomplete representations of the square
obtained by deleting contour segments of high and low curvatures, respectively.
The comparison of the incomplete representation shown in Figs. 7(c) with the com-
plete representations presented in Figs. 7(a) and 7(b) using the distance multiset
method will yield zero dissimilarity.” Since the nearest neighbor in the reference
set is not unique, the incomplete contour image in Fig. 7(c) will be considered as
misclassified in the proposed evaluation procedure. No such recognition error will
be made by the distance multiset method if the incomplete representation shown
in Fig. 7(d) is used: its comparison with Figs. 7(a) and 7(b) will yield nonzero and
zero dissimilarity, respectively, and it will be classified as a square.

Figure 8 shows another example. In this case, the deletion of high curvature
segments from the contours of an apple and a pocket watch results in incomplete
circles that can be classified either as a pocket watch or an apple by the shape
context method. The chance of correct classification is, however, as high as the
chance of misclassification.

From an information theoretic point of view a point of high curvature value on
the contour of an object carries more information than a point on a straight line
segment because the curvature value encodes for a contour orientation change in
the former versus no such change in the latter case.

The performance of the algorithms also depends on the number of feature points
selected. As mentioned in Sec. 3, this number increases when the threshold A in
the feature point extraction algorithm is decreased. In our experiments we found

b As shown elsewhere® the distance multiset method will yield a zero dissimilarity in the comparison
of a shape defined by a set A of points with another shape that is defined by a subset C' of the
first set: dPM(SEM SDM) =0 if C C A.
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Fig. 8. Contour images of (a) an apple and (b) a pocket watch. (c-d) Incomplete contour rep-
resentations derived from the contour images in (a) and (b) respectively by deleting contour
segments with high curvature. Removal of high curvature extremities results in shapes that are
indistinguishable.

that for a given percentage of contour retainment the performance of the algorithms
improves with the number of contour parts present in the incomplete representations
for both (feature segment and midsegment deletion) types of incompleteness. Since
the number of contour parts in the incomplete representations is the same as the
number of feature points selected, the higher the number of selected feature points
the better is the performance of the algorithms. Hence, the results of the proposed
test should be reported along with the range of the number of feature points used to
construct the incomplete contour representations. In this study this number varies
from 3 to 21.

6. Summary and Conclusion

In the present work we further elaborate on one of the ICR tests previously
proposed®” by distinguishing between deletion and retainment of contour segments
containing points of high curvature. For illustration we tested two shape recognition
methods based on the shape context and the distance multiset. In our experiments
we found that both methods perform similar to the human visual system for short
presentation time in that the deletion of segments of high curvature has a stronger
degradation effect on the recognition performance than the deletion of low curvature
segments. This phenomenon is more pronounced in the shape context method.

The main contributions of the research presented in this paper are: (A) a test
procedure to evaluate the effect of deletion of segments containing high curvature
feature points on the performance of contour based object recognition algorithms,
(B) an algorithm to select high curvature feature points in the contour images
of objects, and (C) characterization of the performance of the shape context and
distance multiset shape recognition algorithms in the proposed test.

References

1. F. Attneave, Some informational aspects of visual perception, Psychophys. Rev. 61
(1954) 183-193.



10.

11.

12.

13.

14.

15.

16.

17.

Effect of High Curvature Point Deletion 923

. S. Belongie, J. Malik and J. Puzicha, Shape matching and object recognition using

shape contexts, IEEE Trans. Patt. Anal. Mach. Intell. 24(4) (2002) 509-522.
I. Biederman, Recognition-by-components: a theory of human image understanding,
Psychophy. Rev. 94(2) (1987) 115-147.

. M. Brady, Criteria for representations of shape, in Human and Machine Vision,

eds. J. Beck, B. Hope and A. Rosenfeld (Academic Press, 1983), pp. 39-84.

J. Feldman and M. Singh, Information along contours and object boundaries,
Psychophy. Rev. 112 (2005) 243-252.

M. A. Fischer and R. C. Boles, Perceptual organization and curve partitioning, I[EFE
Trans. Patt. Anal. Mach. Intell. 8(1) (1986) 100-105.

A. Ghosh and N. Petkov, Incomplete contour representations and shape descrip-
tors: ICR test studies, in Proc. First Int. Symp. Brain, Vision and Artificial Intelli-
gence BVAI 2005, Naples, October 19-21, 2005, Lecture Notes in Computer Science,
Vol. 3704 (Springer-Verlag, Berlin, Heidelberg, 2005), pp. 416-425.

A. Ghosh and N. Petkov, Robustness of shape descriptors to incomplete contour
representations, IEEE Trans. Patt. Anal. Mach. Intell. 27(11) (2005) 1793-1804.

E. S. Gollin, Developmental studies of visual recognition of incomplete objects, Percep.
Motor Skills. 11 (1960) 289-298.

C. Grigorescu and N. Petkov, Distance sets for shape filters and shape recognition,
IEEE Trans. Imag. Process. 12(10) (2003) 1274-1286.

C. Grigorescu, N. Petkov and M. Westenberg, Contour detection based on nonclassical
receptive field inhibition, JEEE Trans. Imag. Process. 12(7) (2003) 729-739.

C. Grigorescu, N. Petkov and M. A. Westenberg, Contour and boundary detection
improved by surround suppression of texture edges, Imag. Vis. Comput. 22(8) (2004)
609-622.

A. C. Jalba, M. H. F. Wilkinson and J. B. T. M. Roerdink, Shape representation
and recognition through morphological curvature scale spaces, IEEE Trans. Imag.
Process. 15(2) (2006) 331-341.

L. J. Latecki, R. Lakdamper and U. Eckhardt, Shape descriptors for non-rigid shapes
with single closed contour, in Proc. IEEE Conf. Computer Vision and Pattern Recog-
nition (1998), pp. 424-429.

D. Marr and H. K. Nishihara, Representation and recognition of the spatial organiza-
tion of three-dimensional shapes, in Proc. Roy. Soc. London, B 200 (1978) 269-294.
F. Mokhtarian and A. K. Mackworth, A theory of multiscale, curvature-based shape
representation for planar curves, IEEE Trans. Patt. Anal. Mach. Intell. 14(8) (1992)
789-805.

W.Y. Wu, An adaptive method for detecting dominant points, Patt. Recogn. 36(10)
(2003) 2231-2237.




924 A. Ghosh & N. Petkov

Anarta Ghosh rece-
ived his B.Sc. (1995)
with honours in physics
(1st class) from Calcutta
University, India. He
obtained the Master of
Engineering (2000) de-
gree in electrical engi-
neering from the Indian

? Institute of Science,
Bangalore. Presently he is working as a Ph.D.
student in the Institute of Mathematics and
Computing Science, University of Groningen,
The Netherlands.

His research interests are in the area of cog-
nitive computer vision, pattern recognition,
machine learning, signal processing and mul-
timedia systems.

Nicolai Petkov is Sci-
entific Director (Head)
of the Research Insti-
tute of Mathematics
and Computing Science,
University of Gronin-
gen, The Netherlands,
where he also holds the
Chair of Intelligent Sys-
tems. He is author of
two books and 90 scientific publications.

His current research interests are in
the area of computer simulations of the
visual system, making links between com-
puter vision, neurophysiology, psychophysics
and arts.



