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K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortu-
nately, due to its gradient descent nature, this algorithm is highly sensitive to the initial
placement of the cluster centers. Numerous initialization methods have been proposed
to address this problem. Many of these methods, however, have superlinear complex-
ity in the number of data points, making them impractical for large data sets. On the
other hand, linear methods are often random and/or order-sensitive, which renders their
results unrepeatable. Recently, Su and Dy proposed two highly successful hierarchical
initialization methods named Var-Part and PCA-Part that are not only linear, but also
deterministic (non-random) and order-invariant. In this paper, we propose a discrimi-
nant analysis based approach that addresses a common deficiency of these two methods.
Experiments on a large and diverse collection of data sets from the UCI Machine Learn-
ing Repository demonstrate that Var-Part and PCA-Part are highly competitive with
one of the best random initialization methods to date, i.e., k-means++, and that the

proposed approach significantly improves the performance of both hierarchical methods.

Keywords: Partitional clustering; sum of squared error criterion; k-means; cluster center
initialization; thresholding.

1. Introduction

Clustering, the unsupervised classification of patterns into groups, is one of the

most important tasks in exploratory data analysis 1. Primary goals of clustering

include gaining insight into data (detecting anomalies, identifying salient features,

etc.), classifying data, and compressing data. Clustering has a long and rich his-

tory in a variety of scientific disciplines including anthropology, biology, medicine,

psychology, statistics, mathematics, engineering, and computer science. As a result,

numerous clustering algorithms have been proposed since the early 1950s 2.

Clustering algorithms can be broadly classified into two groups: hierarchical

and partitional 2. Hierarchical algorithms recursively find nested clusters either in

a top-down (divisive) or bottom-up (agglomerative) fashion. In contrast, partitional
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algorithms find all the clusters simultaneously as a partition of the data and do not

impose a hierarchical structure. Most hierarchical algorithms have quadratic or

higher complexity in the number of data points 1 and therefore are not suitable for

large data sets, whereas partitional algorithms often have lower complexity.

Given a data set X = {x1,x2, . . . ,xN} in R
D, i.e., N points (vectors) each with

D attributes (components), hard partitional algorithms divide X into K exhaustive

and mutually exclusive clusters P = {P1, P2, . . . , PK},
⋃K

i=1 Pi = X , Pi ∩Pj = ∅

for 1 ≤ i 6= j ≤ K. These algorithms usually generate clusters by optimizing a

criterion function. The most intuitive and frequently used criterion function is the

Sum of Squared Error (SSE) given by:

SSE =
K
∑

i=1

∑

xj∈Pi

‖xj − ci‖
2
2 (1)

where ‖.‖2 denotes the Euclidean (L2) norm and ci = 1/|Pi|
∑

xj∈Pi
xj is the

centroid of cluster Pi whose cardinality is |Pi|. The optimization of (1) is often

referred to as the minimum SSE clustering (MSSC) problem.

The number of ways in which a set of N objects can be partitioned into K

non-empty groups is given by Stirling numbers of the second kind:

S(N,K) =
1

K!

K
∑

i=0

(−1)K−i

(

K

i

)

iN (2)

which can be approximated by KN/K! It can be seen that a complete enumeration

of all possible clusterings to determine the global minimum of (1) is clearly com-

putationally prohibitive except for very small data sets 3. In fact, this non-convex

optimization problem is proven to be NP-hard even for K = 2 4 or D = 2 5. Con-

sequently, various heuristics have been developed to provide approximate solutions

to this problem 6. Among these heuristics, Lloyd’s algorithm 7, often referred to as

the (batch) k-means algorithm, is the simplest and most commonly used one. This

algorithm starts with K arbitrary centers, typically chosen uniformly at random

from the data points. Each point is assigned to the nearest center and then each

center is recalculated as the mean of all points assigned to it. These two steps are

repeated until a predefined termination criterion is met.

The k-means algorithm is undoubtedly the most widely used partitional clus-

tering algorithm 2. Its popularity can be attributed to several reasons. First, it is

conceptually simple and easy to implement. Virtually every data mining software

includes an implementation of it. Second, it is versatile, i.e., almost every aspect

of the algorithm (initialization, distance function, termination criterion, etc.) can

be modified. This is evidenced by hundreds of publications over the last fifty years

that extend k-means in various ways. Third, it has a time complexity that is linear

in N , D, and K (in general, D ≪ N and K ≪ N). For this reason, it can be used

to initialize more expensive clustering algorithms such as expectation maximization
8, DBSCAN 9, and spectral clustering 10. Furthermore, numerous sequential 11,12
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and parallel 13 acceleration techniques are available in the literature. Fourth, it

has a storage complexity that is linear in N , D, and K. In addition, there exist

disk-based variants that do not require all points to be stored in memory 14. Fifth,

it is guaranteed to converge 15 at a quadratic rate 16. Finally, it is invariant to

data ordering, i.e., random shufflings of the data points.

On the other hand, k-means has several significant disadvantages. First, it re-

quires the number of clusters, K, to be specified in advance. The value of this

parameter can be determined automatically by means of various internal/relative

cluster validity measures 17. Second, it can only detect compact, hyperspherical

clusters that are well separated. This can be alleviated by using a more general

distance function such as the Mahalanobis distance, which permits the detection

of hyperellipsoidal clusters 18. Third, due its utilization of the squared Euclidean

distance, it is sensitive to noise and outlier points since even a few such points can

significantly influence the means of their respective clusters. This can be addressed

by outlier pruning 19 or using a more robust distance function such as City-block

(L1) distance. Fourth, due to its gradient descent nature, it often converges to a lo-

cal minimum of the criterion function 15. For the same reason, it is highly sensitive

to the selection of the initial centers 20. Adverse effects of improper initialization

include empty clusters, slower convergence, and a higher chance of getting stuck in

bad local minima 21. Fortunately, except for the first two, these drawbacks can be

remedied by using an adaptive initialization method (IM).

A large number of IMs have been proposed in the literature 22,23,21,20. Unfortu-

nately, many of these have superlinear complexity in N 24,25,26,3,27,28,29,30,31,32,

which makes them impractical for large data sets (note that k-means itself has lin-

ear complexity). In contrast, linear IMs are often random and/or order-sensitive
33,34,35,36,37,38,8,39, which renders their results unrepeatable. Su and Dy proposed

two divisive hierarchical initialization methods named Var-Part and PCA-Part that

are not only linear, but also deterministic and order-invariant 40. In this study, we

propose a simple modification to these methods that improves their performance

significantly.

The rest of the paper is organized as follows. Section 2 presents a brief overview

of some of the most popular linear, order-invariant k-means IMs and the proposed

modification to Var-Part and PCA-Part. Section 3 presents the experimental re-

sults, while Section 4 analyzes these results. Finally, Section 5 gives the conclusions.

2. Linear, Order-Invariant Initialization Methods for K-Means

2.1. Overview of the Existing Methods

Forgy’s method 33 assigns each point to one of the K clusters uniformly at random.

The centers are then given by the centroids of these initial clusters. This method

has no theoretical basis, as such random clusters have no internal homogeneity 41.

MacQueen 35 proposed two different methods. The first one, which is the de-

fault option in the Quick Cluster procedure of IBM SPSS Statistics 42, takes the
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first K points in X as the centers. An obvious drawback of this method is its sensi-

tivity to data ordering. The second method chooses the centers randomly from the

data points. The rationale behind this method is that random selection is likely to

pick points from dense regions, i.e., points that are good candidates to be centers.

However, there is no mechanism to avoid choosing outliers or points that are too

close to each other 41. Multiple runs of this method is the standard way of initial-

izing k-means 8. It should be noted that this second method is often mistakenly

attributed to Forgy 33.

The maximin method 43 chooses the first center c1 arbitrarily and the i-th (i ∈

{2, 3, . . . ,K}) center ci is chosen to be the point that has the greatest minimum-

distance to the previously selected centers, i.e., c1, c2, . . . , ci−1. This method was

originally developed as a 2-approximation to the K-center clustering problema.

The k-means++ method 39 interpolates between MacQueen’s second method

and the maximin method. It chooses the first center randomly and the i-th

(i ∈ {2, 3, . . . ,K}) center is chosen to be x′ ∈ X with a probability of
md(x′)

2

∑
N
j=1

md(xj)2
,

where md(x) denotes the minimum-distance from a point x to the previously se-

lected centers. This method yields an Θ(logK) approximation to the MSSC prob-

lem.

The PCA-Part method 40 uses a divisive hierarchical approach based on PCA

(Principal Component Analysis) 44. Starting from an initial cluster that contains

the entire data set, the method iteratively selects the cluster with the greatest

SSE and divides it into two subclusters using a hyperplane that passes through

the cluster centroid and is orthogonal to the principal eigenvector of the cluster

covariance matrix. This procedure is repeated until K clusters are obtained. The

centers are then given by the centroids of these clusters. The Var-Part method 40

is an approximation to PCA-Part, where the covariance matrix of the cluster to be

split is assumed to be diagonal. In this case, the splitting hyperplane is orthogonal

to the coordinate axis with the greatest variance.

Figure 1 illustrates the Var-Part procedure on a toy data set with four natural

clusters 45. In iteration 1, the initial cluster that contains the entire data set is split

into two subclusters along the Y axis using a line (one-dimensional hyperplane) that

passes through the mean point (92.026667). Between the resulting two clusters, the

one above the line has a greater SSE. In iteration 2, this cluster is therefore split

along the X axis at the mean point (66.975000). In the final iteration, the cluster

with the greatest SSE, i.e., the bottom cluster, is split along the X axis at the

mean point (41.057143). In Figure 1(d), the centroids of the final four clusters are

denoted by stars.

aGiven a set of N points in a metric space, the goal of K-center clustering is to find K represen-
tative points (centers) such that the maximum distance of a point to a center is minimized. Given
a minimization problem, a 2-approximation algorithm is one that finds a solution whose cost is
at most twice the cost of the optimal solution.
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(a) Input data set (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

Fig. 1. Illustration of Var-Part on the Ruspini data set

2.2. Proposed Modification to Var-Part and PCA-Part

Su and Dy 40 demonstrated that, besides being computationally efficient, Var-

Part and PCA-Part perform very well on a variety of data sets. Recall that in each

iteration these methods select the cluster with the greatest SSE and then project the

D-dimensional points in this cluster on a partitioning axis. The difference between

the two methods is the choice of this axis. In Var-Part, the partitioning axis is the

coordinate axis with the greatest variance, whereas in PCA-Part it is the major

axis. After the projection operation, both methods use the mean point on the

partitioning axis as a ‘threshold’ to divide the points between two clusters. In other

words, each point is assigned to one of the two subclusters depending on which side

of the mean point its projection falls to. It should be noted that the choice of this

threshold is primarily motivated by computational convenience. Here, we propose

a better alternative based on discriminant analysis.

The projections of the points on the partitioning axis can be viewed as a discrete

probability distribution, which can be conveniently represented by a histogram.
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The problem of dividing a histogram into two partitions is a well studied one in the

field of image processing. A plethora of histogram partitioning, a.k.a. thresholding,

methods has been proposed in the literature with the early ones dating back to

the 1960s 46. Among these, Otsu’s method 47 has become the method of choice as

confirmed by numerous comparative studies 48,49,50,46,51,52.

Given an image represented by L gray levels {0, 1, . . . , L− 1}, a thresholding

method partitions the image pixels into two classes C0 = {0, 1, . . . , t} and C1 =

{t+ 1, t+ 2, . . . , L − 1} (object and background, or vice versa) at gray level t. In

other words, pixels with gray levels less than or equal to the threshold t are assigned

to C0, whereas the remaining pixels are assigned to C1.

Let ni be the number of pixels with gray level i. The total number of pixels in

the image is then given by n =
∑L−1

i=0 ni. The normalized gray level histogram of

the image can be regarded as a probability mass function:

pi =
ni

n
, pi ≥ 0,

L−1
∑

i=0

pi = 1

Let p0(t) =
∑t

i=0 pi and p1(t) = 1− p0(t) denote the probabilities of C0 and C1,

respectively. The means of the respective classes are then given by:

µ0(t) = µ(t)/p0(t)

µ1(t) = (µT − µ(t))/p1(t)

where µ(t) =
∑t

i=0 ipi and µT = µ(L−1) denote the first moment of the histogram

up to gray level t and mean gray level of the image, respectively.

Otsu’s method adopts between-class

variance, i.e., σ2
B(t) = p0(t)p1(t) [µ0(t)− µ1(t)]

2
, from the discriminant analysis

literature as its objective function and determines the optimal threshold t∗ as the

gray level that maximizes σ2
B(t), i.e., t

∗ = argmax
t∈{0,1,...,L−1}

σ2
B(t). Between-class vari-

ance can be viewed as a measure of class separability or histogram bimodality. It

can be efficiently calculated using:

σ2
B(t) =

[µT p0(t)− µ(t)]2

p0(t)p1(t)

It should be noted that the efficiency of Otsu’s method can be attributed to the

fact that it operates on histogrammed pixel gray values, which are non-negative

integers. Var-Part and PCA-Part, on the other hand, operate on the projections of

the points on the partitioning axis, which are often fractional. This problem can be

circumvented by linearly scaling the projection values to the limits of the histogram,

i.e., 0 and L− 1. Let yi be the projection of a point xi on the partitioning axis. yi
can be mapped to histogram bin b given by:

b =













L

(

yi −min
j

yj

)

max
j

yj −min
j

yj
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where ⌊z⌋ is the floor function which returns the largest integer less than or equal

to z.

The computational complexities of histogram construction and Otsu’s method

areO(Ni) (Ni: number of points in the cluster) and O(L), respectively. L is constant

in our experiments and therefore the proposed modification does not alter the linear

time complexity of Var-Part and PCA-Part.

Figure 2 shows a histogram where using the mean point as a threshold leads to

poor results. This histogram is constructed during the first iteration of PCA-Part

from the projections of the points in the Shuttle data set (see Table 1). As marked

on the figure, the mean point of this histogram is 61, whereas Otsu’s method gives

a threshold of 105. The SSE of the initial cluster is 1, 836. When the mean point of

the histogram is used a threshold, the resulting two subclusters have SSE’s of 408

and 809. This means that splitting the initial cluster with a hyperplane orthogonal

to the principal eigenvector of the cluster covariance matrix at the mean point

results in approximately 34% reduction in the SSE. On the other hand, when Otsu’s

threshold is used, the subclusters have SSE’s of 943 and 101, which translates to

about 43% reduction in the SSE. In the next section, we will demonstrate that

using Otsu’s threshold instead of the mean point often leads to significantly better

initial clusterings on a variety of data sets.

Fig. 2. Comparison of mean point and Otsu’s thresholds



International Journal of Pattern Recognition and Artificial Intelligence, 26(7): 1250018, 2012

8 M. Emre Celebi and Hassan A. Kingravi

3. Experimental Results

The experiments were performed on 24 commonly used data sets from the UCI

Machine Learning Repository 53. Table 1 gives the data set descriptions. For each

data set, the number of clusters (K) was set equal to the number of classes (K ′),

as commonly seen in the related literature 23,39,40,29,30,31,32,54.

In clustering applications, normalization is a common preprocessing step that

is necessary to prevent attributes with large ranges from dominating the distance

calculations and also to avoid numerical instabilities in the computations. Two

commonly used normalization schemes are linear scaling to unit range (min-max

normalization) and linear scaling to unit variance (z-score normalization). Several

studies revealed that the former scheme is preferable to the latter since the latter

is likely to eliminate valuable between-cluster variation 55,40. As a result, we used

min-max normalization to map the attributes of each data set to the [0, 1] interval.

Table 1. Data Set Descriptions (N : # points, D: # attributes, K ′: # classes)

ID Data Set N D K ′

1 Abalone 4,177 7 28

2 Breast Cancer Wisconsin (Original) 683 9 2

3 Breast Tissue 106 9 6

4 Ecoli 336 7 8

5 Glass Identification 214 9 6

6 Heart Disease 297 13 5

7 Ionosphere 351 34 2

8 Iris (Bezdek) 150 4 3

9 ISOLET 7,797 617 26

10 Landsat Satellite (Statlog) 6,435 36 6

11 Letter Recognition 20,000 16 26

12 MAGIC Gamma Telescope 19,020 10 2

13 Multiple Features (Fourier) 2,000 76 10

14 Musk (Clean2) 6,598 166 2

15 Optical Digits 5,620 64 10

16 Page Blocks Classification 5,473 10 5

17 Pima Indians Diabetes 768 8 2

18 Shuttle (Statlog) 58,000 9 7

19 Spambase 4,601 57 2

20 SPECTF Heart 267 44 2

21 Wall-Following Robot Navigation 5,456 24 4

22 Wine Quality 6,497 11 7

23 Wine 178 13 3

24 Yeast 1,484 8 10
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The performance of the IMs was quantified using two effectiveness (quality) and

two efficiency (speed) criteria:

⊲ Initial SSE: This is the SSE value calculated after the initialization phase,

before the clustering phase. It gives us a measure of the effectiveness of an

IM by itself.

⊲ Final SSE: This is the SSE value calculated after the clustering phase. It

gives us a measure of the effectiveness of an IM when its output is refined by

k-means. Note that this is the objective function of the k-means algorithm,

i.e., (1).

⊲ Number of Iterations: This is the number of iterations that k-means

requires until reaching convergence when initialized by a particular IM. It

is an efficiency measure independent of programming language, implemen-

tation style, compiler, and CPU architecture.

⊲ CPU Time: This is the total CPU time in milliseconds taken by the

initialization and clustering phases.

All of the methods were implemented in the C language, compiled with the gcc

v4.4.3 compiler, and executed on an Intel Xeon E5520 2.26GHz machine. Time

measurements were performed using the getrusage function, which is capable of

measuring CPU time to an accuracy of a microsecond. The MT19937 variant of

the Mersenne Twister algorithm was used to generate high quality pseudorandom

numbers 56.

The convergence of k-means was controlled by the disjunction of two crite-

ria: the number of iterations reaches a maximum of 100 or the relative improve-

ment in SSE between two consecutive iterations drops below a threshold, i.e.,

(SSEi−1 − SSEi)/SSEi ≤ ε, where SSEi denotes the SSE value at the end of the

i-th (i ∈ {1, 2, . . . , 100}) iteration. The convergence threshold was set to ε = 10−6.

In this study, we focus on IMs that have time complexity linear in N . This is

because k-means itself has linear complexity, which is perhaps the most important

reason for its popularity. Therefore, an IM for k-means should not diminish this

advantage of the algorithm. The proposed methods, named Otsu Var-Part (OV)

and Otsu PCA-Part (OP), were compared to six popular, linear, order-invariant IMs:

Forgy’s method (F), MacQueen’s second method (M), maximin (X), k-means++ (K),

Var-Part (V), and PCA-Part (P). It should be noted that among these methods F,

M, and K are random, whereas Xb, V, P, OV, and OP are deterministic.

We first examine the influence of L (number of histogram bins) on the perfor-

mance of OV and OP. Tables 2 and 3 show the initial and final SSE values obtained

by respectively OV and OP for L = 64, 128, 256, 512, 1024 on four of the largest data

sets (the best values are underlined). It can be seen that the performances of both

methods are relatively insensitive to the value of L. Therefore, in the subsequent

bThe first center is chosen as the centroid of the data set.
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experiments we report the results for L = 256.

Table 2. Influence of L on the effectiveness of Otsu Var-Part (L: # histogram bins)

ID Criterion L = 64 L = 128 L = 256 L = 512 L = 1024

9 Initial SSE 143859 144651 144658 144637 144638

Final SSE 118267 119127 118033 118033 118034

10 Initial SSE 1987 1920 1919 1920 1920

Final SSE 1742 1742 1742 1742 1742

11 Initial SSE 3242 3192 3231 3202 3202

Final SSE 2742 2734 2734 2734 2734

15 Initial SSE 17448 17504 17504 17504 17504

Final SSE 14581 14581 14581 14581 14581

Table 3. Influence of L on the effectiveness of Otsu PCA-Part (L: # histogram bins)

ID Criterion L = 64 L = 128 L = 256 L = 512 L = 1024

9 Initial SSE 123527 123095 122528 123129 123342

Final SSE 118575 118577 119326 118298 118616

10 Initial SSE 1855 1807 1835 1849 1848

Final SSE 1742 1742 1742 1742 1742

11 Initial SSE 2994 2997 2995 2995 2991

Final SSE 2747 2747 2747 2747 2747

15 Initial SSE 15136 15117 15118 15116 15117

Final SSE 14650 14650 14650 14650 14650

In the remaining experiments, each random method was executed a 100 times

and statistics such as minimum, mean, and standard deviation were collected for

each performance criteria. The minimum and mean statistics represent the best and

average case performance, respectively, while standard deviation quantifies the vari-

ability of performance across different runs. Note that for a deterministic method,

the minimum and mean values are always identical and the standard deviation is

always 0.

Tables 4–7 give the performance measurements for each method with respect to

initial SSE, final SSE, number of iterations, and CPU time, respectively. For each

of the initial SSE, final SSE, and number of iterations criteria, we calculated the

ratio of the minimum/mean/standard deviation value obtained by each method to

the best (least) minimum/mean/standard deviation value on each data set. These

ratios will be henceforth referred to as the ‘normalized’ performance criteria. For

example, on the Abalone data set (1), the minimum initial SSE of F is 424.92



International Journal of Pattern Recognition and Artificial Intelligence, 26(7): 1250018, 2012

Deterministic Initialization of the K-Means Algorithm 11

and the best minimum initial SSE is 21.57 and thus the normalized initial SSE is

about 20. This simply means that on this data set F obtained approximately 20

times worse minimum initial SSE than the best method. We then averagedc these

normalized values over the 24 data sets to quantify the overall performance of each

method with respect to each statistic (see Table 8). Note that we did not attempt

to summarize the CPU time values in the same manner due to the sparsity of the

data (see Table 7). For convenient visualization, Figure 3 shows box plots of the

normalized performance criteria. Here, the bottom and top end of the whiskers

of a box represent the minimum and maximum, respectively, whereas the bottom

and top of the box itself are the 25th percentile (Q1 ) and 75th percentile (Q3 ),

respectively. The line that passes through the box is the 50th percentile (Q2 ), i.e.,

the median, while the small square inside the box denotes the mean.

4. Discussion

4.1. Best Case Performance Analysis

With respect to the minimum statistic, the following observations can be made:

⊲ Initial SSE: OP is the best method, followed closely by P, OV, and V. On

the other hand, F is the worst method, followed by X. These two methods

give 2–3 times worse minimum initial SSE than the best method. It can

be seen that multiple runs of random methods do not produce good initial

clusterings. In contrast, only a single run of OP, P, OV, or V often gives very

good results. This is because these methods are approximate clustering al-

gorithms by themselves and thus they give reasonable results even without

k-means refinement.

⊲ Final SSE: X is the worst method, while the remaining methods exhibit

very similar performance. This homogeneity in performance is because k-

means can take two disparate initial configurations to similar (or even iden-

tical) local minima. Given the abundance of local minima even in data sets

of moderate size and/or dimensionality and the gradient descent nature of

k-means, it is not surprising that the deterministic methods (except X) per-

form slightly worse than the random methods as the former methods were

executed only once, whereas the latter ones were executed a 100 times.

⊲ Number of Iterations: K is the best method, followed by M and F. X is

the worst method. As in the case of final SSE, random methods outperform

deterministic methods due to their multiple-run advantage.

4.2. Average Case Performance Analysis

With respect to the mean statistic, the following observations can be made:

cDue to outliers, the ‘median’ statistic rather than the ‘mean’ was used to summarize the normal-
ized standard deviation values.
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⊲ Initial SSE: OP is the best method, followed closely by P, OV, and V.

The remaining methods give 1.7–3.2 times worse mean initial SSE than

any of these hierarchical methods. Random methods exhibit significantly

worse average performance than the deterministic ones because the former

methods can produce highly variable results across different runs (see the

standard deviation values in Table 4).

⊲ Final SSE: This is similar to the case of minimum final SSE, with the

difference that deterministic methods (except X) are now slightly better

than the random ones. Once again, this is because random methods can

produce highly variable results due to their stochastic nature.

⊲ Number of Iterations: The ranking of the methods is similar to the case

of mean final SSE.

4.3. Consistency Analysis

With respect to the standard deviation statistic, F is significantly better than both

M and K. If, however, the application requires absolute consistency, i.e., exactly the

same clustering in every run, a deterministic IM should be used.

4.4. CPU Time Analysis

It can be seen from Table 7 that, on about half of the data sets, each of the IMs

require less than a few milliseconds of CPU time. On the other hand, on large

and/or high-dimensional data sets efficiency differences become more prominent. It

should be noted that each of the values reported in this table corresponds to a single

k-means ‘run’. In practice, a random method is typically executed R times, e.g.,

in this study R = 100, and the output of the run that gives the least final SSE is

taken as the result. Therefore, the total computational cost of a random method is

often significantly higher than that of a deterministic method. For example, on the

ISOLET data set, which has the greatest N ×D×K value among all the data sets,

K took on the average 3, 397 milliseconds, whereas OP took 12, 460 milliseconds. The

latter method, however, required about 27 times less CPU time than the former

one since the former was executed a total of 100 times.

4.5. Relative Performance Analysis

We also determined the number of data sets (out of 24) on which OV and OP re-

spectively performed {worse than/same as/better than} V and P. Tables 9 and 10

present the results for OV and OP, respectively. It can be seen that, with respect to

initial SSE and number of iterations criteria, OV outperforms V more often than not.

On the other hand, OP frequently outperforms P with respect to both criteria. As

for final SSE, OP performs slightly better than P, whereas OV performs slightly worse

than V. It appears that Otsu’s method benefits P more than it benefits V. This is

most likely due to the fact that histograms of projections over the major axis nec-
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essarily have a greater dynamic range and variability and thus are more amenable

to thresholding compared to histograms of projections over any coordinate axis.

4.6. Recommendations for Practitioners

Based on the analyses presented above, the following recommendations can be

made:

⊲ In general, X should not be used. As mentioned in Section 2, this method

was not designed specifically as a k-means initializer 43. It is easy to under-

stand and implement, but is mostly ineffective and unreliable. Furthermore,

despite its low overhead, this method does not offer significant time savings

since it often results in slow k-means convergence.

⊲ In applications that involve small data sets, e.g., N < 1, 000, K should be

used. It is computationally feasible to run this method hundreds of times

on such data sets given that one such run takes only a few milliseconds.

⊲ In time-critical applications that involve large data sets or applications

that demand determinism, the hierarchical methods should be used. These

methods need to be executed only once and they lead to reasonably fast

k-means convergence. The efficiency difference between V/OV and P/OP is

noticeable only on high dimensional data sets such as ISOLET (D = 617)

and Musk (D = 166). This is because V/OV calculates the direction of split

by determining the coordinate axis with the greatest variance (in O(D)

time), whereas P/OP achieves this by calculating the principal eigenvector

of the cluster covariance matrix (in O(D2) time using the power method
44). Note that despite its higher computational complexity, P/OP can, in

some cases, be more efficient than V/OV (see Table 7). This is because

the former converges significantly faster than the latter (see Table 8). The

main disadvantage of these methods is that they are more complicated to

implement due to their hierarchical formulation.

⊲ In applications where an approximate clustering of the data set is desired,

the hierarchical methods should be used. These methods produce very good

initial clusterings, which makes it possible to use them as standalone clus-

tering algorithms.

⊲ Among the hierarchical methods, the ones based on PCA, i.e., P and OP,

are preferable to those based on variance, i.e., V and OV. Furthermore,

the proposed OP and OV methods generally outperform their respective

counterparts, i.e., P and V, especially with respect to initial SSE and number

of iterations.

5. Conclusions

In this paper, we presented a simple modification to Var-Part and PCA-Part, two

hierarchical k-means initialization methods that are linear, deterministic, and order-
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invariant. We compared the original methods and their modified versions to some of

the most popular linear initialization methods, namely Forgy’s method, Macqueen’s

second method, maximin, and k-means++, on a large and diverse collection of data

sets from the UCI Machine Learning Repository. The results demonstrated that,

despite their deterministic nature, Var-Part and PCA-Part are highly competitive

with one of the best random initialization methods to date, i.e., k-means++. In

addition, the proposed modification significantly improves the performance of both

hierarchical methods. The presented Var-Part and PCA-Part variants can be used

to initialize k-means effectively, particularly in time-critical applications that in-

volve large data sets. Alternatively, they can be used as approximate clustering

algorithms without additional k-means refinement.
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Table 4. Initial SSE comparison of the initialization methods

F M K X V P OV OP

1
min 425 33 29 95 24 23 23 22

mean 483 ± 20 46 ± 10 34 ± 2 95 ± 0 24 ± 0 23 ± 0 23 ± 0 22 ± 0

2
min 534 318 304 498 247 240 258 239

mean 575 ± 15 706 ± 354 560 ± 349 498 ± 0 247 ± 0 240 ± 0 258 ± 0 239 ± 0

3
min 20 11 9 19 8 8 8 7

mean 27 ± 3 20 ± 8 13 ± 2 19 ± 0 8 ± 0 8 ± 0 8 ± 0 7 ± 0

4
min 54 26 26 48 20 19 19 20

mean 61 ± 2 40 ± 7 33 ± 5 48 ± 0 20 ± 0 19 ± 0 19 ± 0 20 ± 0

5
min 42 24 25 45 21 20 21 18

mean 48 ± 2 40 ± 9 32 ± 5 45 ± 0 21 ± 0 20 ± 0 21 ± 0 18 ± 0

6
min 372 361 341 409 249 250 249 244

mean 396 ± 8 463 ± 58 450 ± 49 409 ± 0 249 ± 0 250 ± 0 249 ± 0 244 ± 0

7
min 771 749 720 827 632 629 636 629

mean 814 ± 12 1246 ± 463 1237 ± 468 827 ± 0 632 ± 0 629 ± 0 636 ± 0 629 ± 0

8
min 26 9 9 18 8 8 7 7

mean 34 ± 4 28 ± 23 16 ± 6 18 ± 0 8 ± 0 8 ± 0 7 ± 0 7 ± 0

9
min 218965 212238 210387 221163 145444 124958 144658 122528

mean 223003 ± 1406 224579 ± 5416 223177 ± 4953 221163 ± 0 145444 ± 0 124958 ± 0 144658 ± 0 122528 ± 0

10
min 7763 2637 2458 4816 2050 2116 1919 1835

mean 8057 ± 98 4825 ± 1432 3561 ± 747 4816 ± 0 2050 ± 0 2116 ± 0 1919 ± 0 1835 ± 0

11
min 7100 4203 4158 5632 3456 3101 3231 2995

mean 7225 ± 30 4532 ± 165 4501 ± 176 5632 ± 0 3456 ± 0 3101 ± 0 3231 ± 0 2995 ± 0

12
min 4343 3348 3296 4361 3056 2927 3060 2923

mean 4392 ± 13 5525 ± 1816 5346 ± 1672 4361 ± 0 3056 ± 0 2927 ± 0 3060 ± 0 2923 ± 0

13
min 4416 5205 5247 4485 3354 3266 3315 3180

mean 4475 ± 25 5693 ± 315 5758 ± 283 4485 ± 0 3354 ± 0 3266 ± 0 3315 ± 0 3180 ± 0

14
min 53508 56841 56822 54629 37334 37142 37282 36375

mean 54312 ± 244 82411 ± 14943 75532 ± 12276 54629 ± 0 37334 ± 0 37142 ± 0 37282 ± 0 36375 ± 0

15
min 25466 25492 24404 25291 17476 15714 17504 15118

mean 25811 ± 99 28596 ± 1550 27614 ± 1499 25291 ± 0 17476 ± 0 15714 ± 0 17504 ± 0 15118 ± 0

16
min 633 275 250 635 300 230 232 222

mean 648 ± 6 423 ± 74 372 ± 72 635 ± 0 300 ± 0 230 ± 0 232 ± 0 222 ± 0

17
min 152 144 141 156 124 122 123 121

mean 156 ± 1 216 ± 44 219 ± 61 156 ± 0 124 ± 0 122 ± 0 123 ± 0 121 ± 0

18
min 1788 438 328 1818 316 309 276 268

mean 1806 ± 6 946 ± 290 494 ± 115 1818 ± 0 316 ± 0 309 ± 0 276 ± 0 268 ± 0

19
min 834 873 881 772 782 783 792 765

mean 838 ± 1 1186 ± 386 1124 ± 244 772 ± 0 782 ± 0 783 ± 0 792 ± 0 765 ± 0

20
min 269 295 297 277 232 222 225 214

mean 281 ± 4 384 ± 88 413 ± 159 277 ± 0 232 ± 0 222 ± 0 225 ± 0 214 ± 0

21
min 10976 11834 11829 11004 8517 7805 8706 7802

mean 11082 ± 34 14814 ± 1496 14435 ± 1276 11004 ± 0 8517 ± 0 7805 ± 0 8706 ± 0 7802 ± 0

22
min 719 473 449 733 386 361 364 351

mean 729 ± 4 601 ± 59 567 ± 64 733 ± 0 386 ± 0 361 ± 0 364 ± 0 351 ± 0

23
min 78 76 70 87 51 53 50 51

mean 87 ± 3 113 ± 22 101 ± 20 87 ± 0 51 ± 0 53 ± 0 50 ± 0 51 ± 0

24
min 144 89 83 115 77 63 73 63

mean 149 ± 2 110 ± 8 101 ± 9 115 ± 0 77 ± 0 63 ± 0 73 ± 0 63 ± 0
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Table 5. Final SSE comparison of the initialization methods

F M K X V P OV OP

1
min 21 22 21 25 21 21 21 21

mean 23 ± 1 22 ± 1 22 ± 0 25 ± 0 21 ± 0 21 ± 0 21 ± 0 21 ± 0

2
min 239 239 239 239 239 239 239 239

mean 239 ± 0 239 ± 0 239 ± 0 239 ± 0 239 ± 0 239 ± 0 239 ± 0 239 ± 0

3
min 7 7 7 7 7 7 8 7

mean 8 ± 1 9 ± 1 8 ± 1 7 ± 0 7 ± 0 7 ± 0 8 ± 0 7 ± 0

4
min 17 17 17 19 17 18 18 18

mean 19 ± 1 19 ± 2 19 ± 1 19 ± 0 17 ± 0 18 ± 0 18 ± 0 18 ± 0

5
min 18 18 18 23 19 19 20 18

mean 20 ± 1 21 ± 2 20 ± 2 23 ± 0 19 ± 0 19 ± 0 20 ± 0 18 ± 0

6
min 243 243 243 249 248 243 248 243

mean 252 ± 8 252 ± 8 252 ± 8 249 ± 0 248 ± 0 243 ± 0 248 ± 0 243 ± 0

7
min 629 629 629 826 629 629 629 629

mean 629 ± 0 643 ± 50 641 ± 47 826 ± 0 629 ± 0 629 ± 0 629 ± 0 629 ± 0

8
min 7 7 7 7 7 7 7 7

mean 8 ± 1 8 ± 2 7 ± 1 7 ± 0 7 ± 0 7 ± 0 7 ± 0 7 ± 0

9
min 117872 117764 117710 135818 118495 118386 118033 119326

mean 119650 ± 945 119625 ± 947 119536 ± 934 135818 ± 0 118495 ± 0 118386 ± 0 118033 ± 0 119326 ± 0

10
min 1742 1742 1742 1742 1742 1742 1742 1742

mean 1742 ± 0 1742 ± 0 1744 ± 28 1742 ± 0 1742 ± 0 1742 ± 0 1742 ± 0 1742 ± 0

11
min 2723 2718 2716 2749 2735 2745 2734 2747

mean 2772 ± 29 2757 ± 19 2751 ± 19 2749 ± 0 2735 ± 0 2745 ± 0 2734 ± 0 2747 ± 0

12
min 2923 2923 2923 2923 2923 2923 2923 2923

mean 2923 ± 0 2923 ± 0 2923 ± 0 2923 ± 0 2923 ± 0 2923 ± 0 2923 ± 0 2923 ± 0

13
min 3127 3128 3128 3316 3137 3214 3143 3153

mean 3166 ± 31 3172 ± 29 3173 ± 35 3316 ± 0 3137 ± 0 3214 ± 0 3143 ± 0 3153 ± 0

14
min 36373 36373 36373 36373 36373 36373 36373 36373

mean 37296 ± 1902 37163 ± 1338 37058 ± 1626 36373 ± 0 36373 ± 0 36373 ± 0 36373 ± 0 36373 ± 0

15
min 14559 14559 14559 14679 14581 14807 14581 14650

mean 14687 ± 216 14752 ± 236 14747 ± 245 14679 ± 0 14581 ± 0 14807 ± 0 14581 ± 0 14650 ± 0

16
min 215 215 215 230 227 215 229 216

mean 217 ± 4 216 ± 2 220 ± 7 230 ± 0 227 ± 0 215 ± 0 229 ± 0 216 ± 0

17
min 121 121 121 121 121 121 121 121

mean 121 ± 0 122 ± 5 122 ± 5 121 ± 0 121 ± 0 121 ± 0 121 ± 0 121 ± 0

18
min 235 235 235 726 235 274 274 235

mean 317 ± 46 272 ± 23 260 ± 31 726 ± 0 235 ± 0 274 ± 0 274 ± 0 235 ± 0

19
min 765 765 765 765 778 778 778 765

mean 778 ± 3 779 ± 14 785 ± 19 765 ± 0 778 ± 0 778 ± 0 778 ± 0 765 ± 0

20
min 214 214 214 214 214 214 214 214

mean 214 ± 0 215 ± 5 214 ± 0 214 ± 0 214 ± 0 214 ± 0 214 ± 0 214 ± 0

21
min 7772 7772 7772 7772 7774 7774 7774 7772

mean 7799 ± 93 7821 ± 124 7831 ± 140 7772 ± 0 7774 ± 0 7774 ± 0 7774 ± 0 7772 ± 0

22
min 334 334 334 399 335 334 335 335

mean 335 ± 1 336 ± 3 336 ± 3 399 ± 0 335 ± 0 334 ± 0 335 ± 0 335 ± 0

23
min 49 49 49 63 49 49 49 49

mean 49 ± 0 49 ± 2 49 ± 2 63 ± 0 49 ± 0 49 ± 0 49 ± 0 49 ± 0

24
min 58 58 58 61 69 59 69 59

mean 64 ± 6 69 ± 6 63 ± 5 61 ± 0 69 ± 0 59 ± 0 69 ± 0 59 ± 0
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Table 6. Number of iterations comparison of the initialization methods

F M K X V P OV OP

1
min 59 29 22 100 50 43 31 38

mean 90 ± 11 68 ± 19 48 ± 17 100 ± 0 50 ± 0 43 ± 0 31 ± 0 38 ± 0

2
min 4 4 4 8 4 4 5 3

mean 5 ± 0 6 ± 1 6 ± 1 8 ± 0 4 ± 0 4 ± 0 5 ± 0 3 ± 0

3
min 5 5 3 7 6 7 5 3

mean 10 ± 2 9 ± 3 7 ± 2 7 ± 0 6 ± 0 7 ± 0 5 ± 0 3 ± 0

4
min 8 6 7 14 17 7 12 6

mean 15 ± 6 15 ± 5 14 ± 5 14 ± 0 17 ± 0 7 ± 0 12 ± 0 6 ± 0

5
min 6 5 4 6 6 5 9 4

mean 10 ± 3 11 ± 4 9 ± 3 6 ± 0 6 ± 0 5 ± 0 9 ± 0 4 ± 0

6
min 5 5 5 12 3 4 3 4

mean 11 ± 3 10 ± 3 9 ± 3 12 ± 0 3 ± 0 4 ± 0 3 ± 0 4 ± 0

7
min 4 3 3 3 3 3 4 2

mean 5 ± 1 7 ± 2 8 ± 2 3 ± 0 3 ± 0 3 ± 0 4 ± 0 2 ± 0

8
min 4 4 3 6 4 4 6 3

mean 9 ± 3 8 ± 2 7 ± 3 6 ± 0 4 ± 0 4 ± 0 6 ± 0 3 ± 0

9
min 18 19 14 32 82 45 59 39

mean 43 ± 15 40 ± 14 36 ± 13 32 ± 0 82 ± 0 45 ± 0 59 ± 0 39 ± 0

10
min 12 12 11 53 28 27 10 23

mean 28 ± 8 33 ± 10 29 ± 9 53 ± 0 28 ± 0 27 ± 0 10 ± 0 23 ± 0

11
min 39 37 31 73 100 83 67 85

mean 75 ± 19 72 ± 18 76 ± 18 73 ± 0 100 ± 0 83 ± 0 67 ± 0 85 ± 0

12
min 9 10 10 35 25 10 26 9

mean 18 ± 5 18 ± 5 20 ± 6 35 ± 0 25 ± 0 10 ± 0 26 ± 0 9 ± 0

13
min 13 14 13 37 14 25 17 13

mean 29 ± 10 30 ± 10 30 ± 11 37 ± 0 14 ± 0 25 ± 0 17 ± 0 13 ± 0

14
min 4 4 4 8 5 5 5 3

mean 6 ± 1 6 ± 1 6 ± 1 8 ± 0 5 ± 0 5 ± 0 5 ± 0 3 ± 0

15
min 12 12 14 36 16 22 15 59

mean 31 ± 13 33 ± 14 30 ± 10 36 ± 0 16 ± 0 22 ± 0 15 ± 0 59 ± 0

16
min 14 12 9 27 25 15 19 16

mean 27 ± 9 31 ± 14 24 ± 11 27 ± 0 25 ± 0 15 ± 0 19 ± 0 16 ± 0

17
min 8 4 4 19 11 10 8 5

mean 13 ± 2 12 ± 5 11 ± 4 19 ± 0 11 ± 0 10 ± 0 8 ± 0 5 ± 0

18
min 10 8 9 22 30 16 7 27

mean 25 ± 9 25 ± 11 23 ± 9 22 ± 0 30 ± 0 16 ± 0 7 ± 0 27 ± 0

19
min 6 3 3 5 9 10 12 3

mean 12 ± 5 14 ± 6 12 ± 7 5 ± 0 9 ± 0 10 ± 0 12 ± 0 3 ± 0

20
min 6 5 4 7 7 7 6 2

mean 8 ± 1 8 ± 2 7 ± 2 7 ± 0 7 ± 0 7 ± 0 6 ± 0 2 ± 0

21
min 9 11 11 24 20 8 21 19

mean 20 ± 8 22 ± 8 20 ± 8 24 ± 0 20 ± 0 8 ± 0 21 ± 0 19 ± 0

22
min 15 17 18 20 62 50 33 49

mean 41 ± 20 42 ± 18 40 ± 18 20 ± 0 62 ± 0 50 ± 0 33 ± 0 49 ± 0

23
min 4 4 4 9 5 7 5 5

mean 7 ± 2 8 ± 3 7 ± 3 9 ± 0 5 ± 0 7 ± 0 5 ± 0 5 ± 0

24
min 13 13 15 73 33 21 28 32

mean 29 ± 10 31 ± 11 29 ± 10 73 ± 0 33 ± 0 21 ± 0 28 ± 0 32 ± 0
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Table 7. CPU time comparison of the initialization methods

F M K X V P OV OP

1
min 20 10 10 40 20 20 20 10

mean 43 ± 7 33 ± 10 24 ± 9 40 ± 0 20 ± 0 20 ± 0 20 ± 0 10 ± 0

2
min 0 0 0 0 0 0 0 0

mean 0 ± 1 0 ± 1 0 ± 2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

3
min 0 0 0 0 0 0 0 0

mean 0 ± 1 0 ± 1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

4
min 0 0 0 0 0 0 0 0

mean 0 ± 2 0 ± 1 0 ± 2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

5
min 0 0 0 0 0 0 0 0

mean 0 ± 1 0 ± 1 0 ± 1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

6
min 0 0 0 0 0 0 0 0

mean 0 ± 1 0 ± 2 1 ± 2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

7
min 0 0 0 0 0 0 0 0

mean 0 ± 2 0 ± 2 0 ± 2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

8
min 0 0 0 0 0 0 0 0

mean 0 ± 0 0 ± 1 0 ± 1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

9
min 1690 1630 1580 2570 6920 12160 5040 12460

mean 3691 ± 1229 3370 ± 1178 3397 ± 1055 2570 ± 0 6920 ± 0 12160 ± 0 5040 ± 0 12460 ± 0

10
min 0 10 10 50 30 50 10 50

mean 30 ± 9 32 ± 11 32 ± 10 50 ± 0 30 ± 0 50 ± 0 10 ± 0 50 ± 0

11
min 380 350 320 670 960 790 620 810

mean 710 ± 174 673 ± 168 724 ± 166 670 ± 0 960 ± 0 790 ± 0 620 ± 0 810 ± 0

12
min 10 10 10 40 20 10 30 20

mean 19 ± 7 19 ± 7 21 ± 6 40 ± 0 20 ± 0 10 ± 0 30 ± 0 20 ± 0

13
min 20 20 20 60 20 80 30 40

mean 52 ± 17 52 ± 17 57 ± 20 60 ± 0 20 ± 0 80 ± 0 30 ± 0 40 ± 0

14
min 10 10 10 30 30 210 20 200

mean 22 ± 7 21 ± 5 25 ± 8 30 ± 0 30 ± 0 210 ± 0 20 ± 0 200 ± 0

15
min 50 50 50 140 60 140 70 280

mean 122 ± 50 126 ± 53 124 ± 41 140 ± 0 60 ± 0 140 ± 0 70 ± 0 280 ± 0

16
min 0 0 0 10 10 10 10 10

mean 9 ± 5 11 ± 6 8 ± 5 10 ± 0 10 ± 0 10 ± 0 10 ± 0 10 ± 0

17
min 0 0 0 0 0 0 0 0

mean 0 ± 2 1 ± 2 1 ± 2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

18
min 40 30 30 50 100 70 30 100

mean 87 ± 27 87 ± 37 79 ± 26 50 ± 0 100 ± 0 70 ± 0 30 ± 0 100 ± 0

19
min 0 0 0 10 10 30 10 20

mean 11 ± 5 12 ± 6 11 ± 8 10 ± 0 10 ± 0 30 ± 0 10 ± 0 20 ± 0

20
min 0 0 0 0 0 0 0 0

mean 0 ± 2 0 ± 2 0 ± 2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

21
min 10 10 10 20 20 20 20 30

mean 21 ± 9 20 ± 8 20 ± 8 20 ± 0 20 ± 0 20 ± 0 20 ± 0 30 ± 0

22
min 10 20 20 10 60 50 40 40

mean 40 ± 19 40 ± 18 38 ± 17 10 ± 0 60 ± 0 50 ± 0 40 ± 0 40 ± 0

23
min 0 0 0 0 0 0 0 0

mean 0 ± 1 0 ± 1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

24
min 0 0 0 10 0 0 10 0

mean 6 ± 5 6 ± 5 6 ± 5 10 ± 0 0 ± 0 0 ± 0 10 ± 0 0 ± 0
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Table 8. Overall performance comparison of the initialization methods

Statistic Criterion F M K X V P OV OP

Min Init. SSE 2.968 1.418 1.348 2.184 1.107 1.043 1.067 1.002

Final SSE 1.001 1.003 1.000 1.163 1.019 1.018 1.031 1.005

# Iters. 1.488 1.284 1.183 2.978 2.469 2.013 2.034 1.793

Mean Init. SSE 3.250 2.171 1.831 2.184 1.107 1.043 1.067 1.002

Final SSE 1.047 1.049 1.032 1.161 1.017 1.016 1.029 1.003

# Iters. 2.466 2.528 2.314 2.581 2.057 1.715 1.740 1.481

Stdev Init. SSE 1.000 13.392 12.093 – – – – –

Final SSE 1.013 1.239 1.172 – – – – –

# Iters. 1.000 1.166 1.098 – – – – –

Table 9. Performance of Otsu Var-Part relative to Var-Part (V)

Criterion Worse than V Same as V Better than V

Init. SSE 6 3 15

Final SSE 6 16 2

# Iters. 8 3 13

Table 10. Performance of Otsu PCA-Part relative to PCA-Part (P)

Criterion Worse than P Same as P Better than P

Init. SSE 1 2 21

Final SSE 4 14 6

# Iters. 6 1 17
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Fig. 3. Box plots of the normalized performance criteria


