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jnancu@inf.utfsm.cl

3Dept. of Energetics, University of Florence, Italy
mariagrazia.gasparo@unifi.it

4,5Dept. of Electronics, Computer Science and Systems, University of Bologna, Italy
{stefano.lodi,claudio.sartori}@unibo.it

Abstract

Training a Support Vector Machine (SVM) requires the solution of a
quadratic programming problem (QP) whose computational complexity
becomes prohibitively expensive for large scale datasets. Traditional op-
timization methods cannot be directly applied in these cases, mainly due
to memory restrictions.

By adopting a slightly different objective function and under mild
conditions on the kernel used within the model, efficient algorithms to
train SVMs have been devised under the name of Core Vector Machines
(CVMs). This framework exploits the equivalence of the resulting learn-
ing problem with the task of building a Minimal Enclosing Ball (MEB)
problem in a feature space, where data is implicitly embedded by a kernel
function.

In this paper, we improve on the CVM approach by proposing two
novel methods to build SVMs based on the Frank-Wolfe algorithm, re-
cently revisited as a fast method to approximate the solution of a MEB
problem. In contrast to CVMs, our algorithms do not require to compute
the solutions of a sequence of increasingly complex QPs and are defined
by using only analytic optimization steps. Experiments on a large collec-
tion of datasets show that our methods scale better than CVMs in most
cases, sometimes at the price of a slightly lower accuracy. As CVMs, the
proposed methods can be easily extended to machine learning problems
other than binary classification. However, effective classifiers are also ob-
tained using kernels which do not satisfy the condition required by CVMs
and can thus be used for a wider set of problems.
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1 Introduction

Support Vector Machines (SVMs) are currently one of the most effective meth-
ods to approach classification and other machine learning problems, improving
on more traditional techniques like decision trees and neural networks in a num-
ber of applications [16, 33]. SVMs are defined by optimizing a regularized risk
functional on the training data, which in most cases leads to classifiers with
an outstanding generalization performance [39, 33]. This optimization problem
is usually formulated as a large convex quadratic programming problem (QP),
for which a naive implementation requires O(m2) space and O(m3) time in the
number of examples m, complexities that are prohibitively expensive for large
scale problems [33, 37]. Major research efforts have been hence directed towards
scaling up SVM algorithms to large datasets.

Due to the typically dense structure of the hessian matrices involved in the
QP, traditional optimization methods cannot be directly applied to train an
SVM on large datasets. The problem is usually addressed using an active set
method where at each iteration only a small number of variables are allowed to
change [32, 18, 30]. In non-linear SVMs problems, this is essentially equivalent
to selecting a subset of training examples called a working set [39]. The most
prominent example in this category of methods is Sequential Minimal Optimiza-
tion (SMO), where only two variables are selected for optimization each time
[8, 30]. The main disadvantage of these methods is that they generally exhibit
a slow local rate of convergence, that is, the closer one gets to a solution, the
more slowly one approaches that solution. Moreover, performance results are
in practice very sensitive to the size of the active set, the way to select the
active variables and other implementation details like the caching strategy used
to avoid repetitive computations of the kernel function on which the model is
based [32] Other attempts to scale up SVM methods consist in adapting interior
point methods to some classes of the SVM QP.[9]. For large-scale problems how-
ever the resulting rank of the kernel matrix can still be too high to be handled
efficiently [37]. The reformulation of the SVM objective function as in [12], the
use of sampling methods to reduce the number of variables in the problem as in
[22] and [20], and the combination of small SVMs using ensemble methods as
in [29] have also been explored.

Looking for more efficient methods, in [37] a new approach was proposed:
the task of learning the classifier from data can be transformed to the problem
of computing a minimal enclosing ball (MEB), that is, the ball of smallest
radius containing a set of points. This equivalence is obtained by adopting a
slightly different penalty term in the objective function and imposing some mild
conditions on the kernel used by the SVM. Recent advances in computational
geometry have demonstrated that there are algorithms capable of approximating
a MEB with any degree of accuracy ε in O(1/ε) iterations independently of the
number of points and the dimensionality of the space in which the ball is built
[37]. Adopting one of these algorithms, Tsang and colleagues devised in [37] the
Core Vector Machine (CVM), demonstrating that the new method compares
favorably with most traditional SVM software, including for example software
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based on SMO [8, 30].
CVMs start by solving the optimization problem on a small subset of data

and then proceed iteratively. At each iteration the algorithm looks for a point
outside the approximation of the MEB obtained so far. If this point exists, it
is added to the previous subset of data to define a larger optimization problem,
which is solved to obtain a new approximation to the MEB. The process is re-
peated until no points outside the current approximating ball are found within
a prescribed tolerance. CVMs hence need the resolution of a sequence of opti-
mization problems of increasing complexity using an external numerical solver.
In order to be efficient, the solver should be able to solve each problem from
a warm-start and to avoid the full storage of the corresponding Gram matrix.
Experiments in Ref. 37 employ to this end a variant of the second-order SMO
proposed in [8].

In this paper, we study two novel algorithms that exploit the formalism of
CVMs but do not need the resolution of a sequence of QPs. These algorithms
are based on the Frank-Wolfe (FW) optimization framework, introduced in [11]
and recently studied in [41] and [4] as a method to approximate the solution
of the MEB problem and other convex optimization problems defined on the
unit simplex. Both algorithms can be used to obtain a solution arbitrarily close
to the optimum, but at the same time are considerably simpler than CVMs.
The key idea is to replace the nested optimization problem to be solved at each
iteration of the CVM approach by a linearization of the objective function at the
current feasible solution and an exact line search in the direction obtained from
the linearization. Consequently, each iteration becomes fairly cheaper than a
CVM iteration and does not require any external numerical solver.

Similar to CVMs, both algorithms incrementally discover the examples which
become support vectors in the SVM model, looking for the optimal set of weights
in the process. However, the second of the proposed algorithms is also endowed
with the ability to explicitly remove examples from the working set used at each
iteration of the procedure and has thus the potential to compute smaller models.
On the theoretical side, both algorithms are guaranteed to succeed in O(1/ε)
iterations for an arbitrary ε > 0. In addition, the second algorithm exhibits an
asymptotically linear rate of convergence [41].

This research was originally motivated by the use of the MEB framework
and computational geometry optimization for the problem of training an SVM.
However, a major advantage of the proposed methods over the CVM approach
is the possibility to employ kernels which do not satisfy the conditions required
to obtain the equivalence between the SVM and MEB optimization problems.
For example, the popular polynomial kernel does not allow the use of CVMs as
a training method. Since the optimal kernel for a given application cannot be
specified a priori, the capability of a training method to work with any valid
kernel function is an important feature. Adaptations of the CVM to handle
more general kernels have been recently proposed in [38] but, in contrast, our
algorithms can be used with any Mercer kernel without changes to the theory
or the implementation.

The effectiveness of the proposed methods is evaluated on several data clas-
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sification sets, most of them already used to show the improvements of CVMs
over second-order SMO [37]. Our experimental results suggest that, as long as
a minor loss in accuracy is acceptable, our algorithms significantly improve the
actual running times of this algorithm. Statistical tests are conducted to as-
sess the significance of these conclusions. In addition, our experiments confirm
that effective classifiers are also obtained with kernels that do not fulfill the
conditions required by CVMs.

The article is organized as follows. Section 2 presents a brief overview on
SVMs and the way by which the problem of computing an SVM can be treated
as a MEB problem. Section 3 describes the CVM approach. In Section 4 we
introduce the proposed methods. Section 5 presents the experimental setting
and our numerical results. Section 6 closes the article with a discussion of the
main conclusions of this research.

2 Support Vector Machines and the MEB Equiv-
alence

In this section we present an overview on Support Vector Machines (SVMs),
and discuss the conditions under which the problem of building these models
can be treated as a Minimal Enclosing Ball (MEB) problem in a feature space.

2.1 The Pattern Classification Problem

Consider a set of training data S = {xi} with xi ∈ X , i ∈ I = {1, . . . ,m}. The
set X , often coinciding with Rn, is called the input space, and each instance
is associated with a given category in the set C = {c1, c2, . . . , cK}. A pattern
classification problem consists of inferring from S a prediction mechanism f :
X → C ∈ F , termed hypothesis, to associate new instances x ∈ X with the
correct category. When K = 2 the problem described above is called binary
classification. This problem can be addressed by defining a set of candidate
models F , a risk functional Rl(S, f) assessing the ability of f to correctly predict
the category of the instances in X , and a procedure L by which a dataset S is
mapped to a given hypothesis f = L(S) ∈ F achieving a low risk. In the context
of machine learning, L is called the learning algorithm, F the hypothesis space
and Rl(S, f) the induction principle [33].

In the rest of this paper we focus on the problem of computing a model
designed for binary classification problems. The extension of these models to
handle multiple categories can be accomplished in several ways. A possible
approach corresponds to use several binary classifiers, separately trained and
joined into a multi-category decision function. Well known approaches of this
type are one-versus-the-rest (OVR, see [39]), where one classifier is trained to
separate each class from the rest; one-versus-one (OVO, see [19]), where different
binary SVMs are used to separate each possible pair of classes; and DDAG,
where one-versus-one classifiers are organized in a directed acyclic graph decision
structure [33]. Previous experiments with SVMs show that OVO frequently
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obtains a better performance both in terms of accuracy and training time [17].
Another type of extension consists in reformulating the optimization problem
underlying the method to directly address multiple categories. See [6], [23], [28]
and [1] for details about these methods.

2.2 Linear Classifiers and Kernels

Support Vector Machines implement the decision mechanism by using simple
linear functions. Since in realistic problems the configuration of the data can be
highly non-linear, SVMs build a linear model not in the original space X , but in
a high-dimensional dot product feature space P = lin (φ(X )) where the original
data is embedded through the mapping p = φ(x) for each x ∈ X . In this space,
it is expected that an accurate decision function can be linearly represented.
The feature space is related with X by means of a so called kernel function
k : X × X → R, which allows to compute dot products in P directly from the
input space. More precisely, for each xi, xj ∈ X , we have pTi pj = k(xi,xj).
The explicit computation of the mapping φ, which would be computationally
infeasible, is thus avoided [33]. For binary classification problems, the most
common approach is to associate a positive label yi = +1 to the examples of
the first class, and a negative label yi = −1 to the examples belonging to the
other class. This approach allows the use of real valued hypotheses h : P → R,
whose output is passed through a sign threshold to yield the classification label
f(x) = sgn(h(p)) = sgn(h(φ(x))). Since h(p) is a linear function in P, the final
prediction mechanism takes the form

f(x) = sgn (h(φ(x))) = sgn
(
wTφ(x) + b

)
, (1)

with w ∈ P and b ∈ R. This gives a classification rule whose decision boundary
H = {p : wTp + b = 0} is a hyperplane with normal vector w and position
parameter b.

2.3 Large Margin Classifiers

It should be noted that a decision function well predicting the training data does
not necessarily classify well unseen examples. Hence, minimizing the training
error (or empirical risk) ∑

i∈I

1

2
|1− yif(xi)| , (2)

does not necessarily imply a small test error. The implementation of an in-
duction principle Rl(S, f) guaranteeing a good classification performance on
new instances of the problem is addressed in SVMs by building on the con-
cept of margin ρ. For a given training pair xi, yi, the margin is defined as
ρi = ρf (xi, yi) = yih(xi) = yi

(
wTφ(x) + b

)
and is expected to estimate how

reliable the prediction of the model on this pattern is. Note that the example
xi is misclassified if and only if ρi < 0. Note also that a large margin of the
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pattern xi suggests a more robust decision with respect to changes in the param-
eters of the decision function f(x), which are to be estimated from the training
sample [33]. The margin attained by a given prediction mechanism on the full
training set S is defined as the minimum margin over the whole sample, that
is ρ = mini∈I ρf (xi, yi). This implements a measure of the worst classification
performance on the training set, since ρi ≥ ρ ∀ i [35]. Under some regularity
conditions, a large margin leads to theoretical guarantees of good performance
on new decision instances [39]. The decision function maximizing the margin
on the training data is thus obtained by solving

maximize
w,b

ρ = maximize
w,b

min
i
ρf (xi, yi) . (3)

or, equivalently,
maximize

w,b
ρ

subject to ρi ≥ ρ, i ∈ I .
(4)

However, without some constraint on the size of w, the solution to this maximin
problem does not exist [35, 14]. On the other hand, even if we fix the norm of
w, a separating hyperplane guaranteeing a positive margin ρf (xi, yi) on each
training pattern need not exist. This is the case, for example, if a high noise level
causes a large overlap of the classes. In this case, the hyperplane maximizing
(3) performs poorly because the prediction mechanism is determined entirely
by misclassified examples and the theoretical results guaranteeing a good classi-
fication accuracy on unseen patterns no longer hold [35]. A standard approach
to deal with noisy training patterns is to allow for the possibility of examples
violating the constraint ρi ≥ ρ ∀ i and by computing the margin on a subset of
training examples. The exact way by which SVMs address these problems gives
rise to specific formulations, called soft-margin SVMs.

2.4 Soft-Margin SVM Formulations

In L1-SVMs (see e.g. [5, 33, 14]), degeneracy of problem (3) is addressed by
scaling the constraints ρi ≥ ρ as ρi

‖w‖ ≥ ρ and by adding the constraint ‖w‖ = 1
ρ ,

so that the problem now takes the form of the quadratic programming problem

minimize
w,b

1
2‖w‖

2

subject to ρf (xi, yi) ≥ 1, i ∈ I .
(5)

Noisy training examples are handled by incorporating slack variables ξi ≥ 0 to
the constraints in (5) and by penalizing them in the objective function:

minimize
w,b,ξ

1
2‖w‖

2 + C
∑
i∈I

ξi

subject to ρf (xi, yi) ≥ 1− ξi, i ∈ I .
(6)
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This leads to the so called soft-margin L1-SVM. In this formulation, the pa-
rameter C controls the trade-off between margin maximization and margin con-
straints violation.

Several other reformulations of problem (3) can be found in literature. In
particular, in some formulations the two–norm of ξ is penalized instead of the
one–norm. In this article, we are particularly interested in the soft margin
L2-SVM proposed by Lee and Mangasarian in [24]. In this formulation, the
margin constraints ρi ≥ ρ in (3) are preserved, the margin variable ρ is explicitly
incorporated in the objective function and degeneracy is addressed by penalizing
the squared norms of both w and b,

minimize
w,b,ρ,ξ

1
2

(
‖w‖2 + b2 + C

∑
i∈I

ξ2
i

)
− ρ

subject to ρf (xi, yi) ≥ ρ− ξi, i ∈ I .

(7)

In practice, L2-SVMs and L1-SVMs usually obtain a similar classification
accuracy in predicting unseen patterns [24, 37].

2.5 The Target QP

In this paper we focus on the L2-SVM model as described above. The use of this
formulation is mainly motivated by efficiency: by adopting the slightly modified
functional of Eqn. 7, we can exploit the framework introduced in [37] and solve
the learning problem more easily, as we will explain in the next Subsection.
As a drawback, the constraints of problem (7) explicitly depend on the images
pi = φ(xi) of the training examples under the mapping φ. In practice, to avoid
the explicit computation of the mapping, it is convenient to derive the Wolfe
dual of the problem by incorporating multipliers αi ≥ 0, i ∈ I and considering
its Lagrangian

L(w, b, ξ,α) = 1
2

(
‖w‖2 + b2 + C

∑
i∈I

ξ2
i

)
−ρ−

∑
i∈I

αi (ρf (xi, yi)− ρ+ ξi) . (8)

From the Karush-Kuhn-Tucker conditions for the optimality of (7) with respect
to the primal variables we have (see [5, 33, 14]):

∂L

∂w
= 0⇔ w =

∑
i∈I

αiyiφ(xi)

∂L

∂b
= 0⇔ b =

∑
i∈I

αiyi

∂L

∂ξi
= 0⇔ ξi =

αi
C
, i ∈ I

∂L

∂ρ
= 0⇔

∑
i∈I

αi = 1 .

(9)
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Plugging into the Lagrangian, we have

L(w, b, ξ,α) = −1

2

∑
i,j∈I

αiαjyiyj
(
pTi pj + 1

)
− 1

2

∑
i∈I

α2
i

C
. (10)

By definition of Wolfe dual (see [33]), it immediately follows that (7) is equivalent
to the following QP:

maximize
α

−
∑
i,j∈I

αiαj

(
yiyjp

T
i pj + yiyj +

δij
C

)
subject to

∑
i∈I

αi = 1, αi ≥ 0, i ∈ I ,
(11)

where δij is equal to 1 if i = j, and 0 otherwise. In contrast to (7), the problem
above depends on the training examples images pi = φ(xi) only through the
dot products pTi pj . By using the kernel function we can hence obtain a problem
defined entirely on the original data

maximize
α

Θ(α) := −
∑
i,j∈I

αiαj

(
yiyjk(xi,xj) + yiyj +

δij
C

)
subject to

∑
i∈I

αi = 1, αi ≥ 0, i ∈ I .
(12)

From equations (9), we can also write the decision function (1) in terms of the
original training examples as f(x) = sgn (h(x)), where

h(x) = wTφ(x) + b =
∑
i∈I

αiyi (k(xi,x) + 1) . (13)

Note that the decision function above depends only on the subset of training
examples for which αi 6= 0. These examples are usually called the support vectors
of the model [33]. The set of support vectors is often considerably smaller than
the original training set.

2.6 Computing SVMs as Minimal Enclosing Balls (MEBs)

Now we explain why the L2-SVM formulation introduced in the previous para-
graphs can lead to efficient algorithms to extract SVM classifiers from data.
As pointed out first in [37] and then generalized in [38], the L2-SVM can be
equivalently formulated as a MEB problem in a certain feature space, that is,
as the computation of the ball of smallest radius containing the image of the
dataset under a mapping into a dot product space Z.

Consider the image of the training set S under a mapping ϕ, that is, ϕ(S) =
{zi = ϕ(xi) : i ∈ I}. Suppose now that there exists a kernel function k̃ such
that k̃(xi,xj) = ϕ(xi)

Tϕ(xj) ∀ i, j ∈ I. Denote the closed ball of center c ∈ Z
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and radius r ∈ R+ as B(c, r). The MEB B(c∗, r∗) of ϕ(S) can be defined as the
solution of the following optimization problem

minimize
r2,c

r2

subject to ‖zi − c‖2 ≤ r2, i ∈ I .
(14)

By using the kernel function k̃ to implement dot products in Z, the following
Wolfe dual of the MEB problem is obtained (see [41]):

maximize
α

Φ(α) :=
∑
i∈I

αik̃(xi,xi)−
∑
i,j∈I

αiαj k̃(xi,xj)

subject to
∑
i∈I

αi = 1, αi ≥ 0, i ∈ I .
(15)

If we denote by α∗ the solution of (15), formulas for the center c∗ and the
squared radius r∗2 of MEB(ϕ(S)) follow from strong duality:

c∗ =
∑
i∈I

α∗i zi , r∗2 = Φ(α∗) =
∑
i,j∈I

α∗iα
∗
jϕ(xi)

Tϕ(xj) . (16)

Note that the MEB depends only on the subset of points C for which α∗i 6=
0. It can be shown that computing the MEB on C ⊂ ϕ(S) is equivalent to
computing the MEB on the entire dataset ϕ(S). This set is frequently called a
coreset of ϕ(S), a concept we are going to explore further in the next sections.

We immediately notice a deep similarity between problems (12) and (15),
the only difference being the presence of a linear term in the objective function
of the latter. This linear term can be neglected under mild conditions on the
kernel function k̃. Suppose k̃ fulfills the following normalization condition:

k̃(xi,xi) = ∆2 = constant . (17)

Since
∑
i∈I αi = 1, the linear term

∑
i∈I αik̃(xi,xi) in (15) becomes a con-

stant and can be ignored when optimizing for α. Equivalence between the
solutions of problems (12) and (15) follows if we set k̃ to

k̃(xi,xj) = yiyj (k(xi,xj) + 1) +
δij
C
, (18)

where k is the kernel function used within the SVM classifier. Therefore, com-
puting an SVM for a set of labelled data S = {xi : i ∈ I} is equivalent to
computing the MEB of the set of feature points ϕ(S) = {zi = ϕ(xi) : i ∈ I},
where the mapping ϕ satisfies the condition k̃(xi,xj) = ϕ(xi)

Tϕ(xj). A pos-

sible implementation of such a mapping is ϕ(xi) =
(
yiφ(xi), yi,

1√
c
ei

)
, where

φ(xi) is in turn the mapping associated with the original Mercer kernel k used
by the SVM.

Note that the previous equivalence between the MEB and the SVM problems
holds if and only if the kernel k̃ fulfills assumption (17). If, for example, the SVM
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classifier implements the well-known d-th order polynomial kernel k(xi,xj) =(
xTi xj + 1

)d
, we have that k̃(xi,xi) is no longer a constant, and thus the MEB

equivalence no longer holds. Complex constructions are required to extend the
MEB optimization framework to SVMs using different kernel functions [38].

3 Bădoiu-Clarkson Algorithm and Core Vector
Machines

Problem (15) is in general a large and dense QP. Obtaining a numerical solution
whenm is large is very expensive, no matter which kind of numerical method one
decides to employ. Taking into account that in practice we can only approximate
the solution within a given tolerance, it is convenient to modify a priori our
objective: instead of MEB(ϕ(S)), we can try to compute an approximate MEB
in the sense specified by the following definition.

Definition 1. Let MEB(ϕ(S))=B(c∗, r∗) and ε > 0 be a given tolerance. Then,
a (1 + ε)–MEB of ϕ(S) is a ball B(c, r) such that

r ≤ r∗ and ϕ(S) ⊂ B(c, (1 + ε)r) . (19)

A set CS ⊂ ϕ(S) is an ε–coreset of ϕ(S) if MEB(CS) is a (1 + ε)–MEB of ϕ(S).

In [2] and [41], algorithms to compute (1+ε)–MEBs that scale independently
of the dimension of Z and the cardinality of S have been provided. In particular,
the Bădoiu-Clarkson (BC) algorithm described in [2] is able to provide an ε–
coreset CS of ϕ(S) in no more than O(1/ε) iterations. We denote with Ck
the coreset approximation obtained at the k-th iteration and its MEB as Bk =
B(ck, rk). Starting from a given C0, at each iteration Ck+1 is defined as the union
of Ck and the point of ϕ(S) furthest from ck. The algorithm then computes Bk+1

and stops if B(ck+1, (1 + ε)rk+1) contains ϕ(S).
Exploiting these ideas, Tsang and colleagues introduced in [37] the CVM

(Core Vector Machine) for training SVMs supporting a reduction to a MEB
problem. The CVM is described in Algorithm 1, where each Ck is identified by
the index set Ik ⊂ I. The elements included in Ck are called the core vectors.
Their role is exactly analogous to that of support vectors in a classical SVM
model.

The expression for the radius rk follows easily from (16). Moreover, it is easy
to show (see [37]) that step 13 exactly looks for the point xi∗ whose image ϕ(xi∗)
is the furthest from ck. In fact, by using the expressions ck =

∑
j∈Ik αk,jzj and

k̃(xi,xi) = ∆2 ∀ i ∈ I, we obtain:

‖zi − ck‖2 = ∆2 +
∑
j,l∈Ik

αk,jαk,lk̃(xj ,xl)− 2
∑
j∈Ik

αk,j k̃(xj ,xi)

= ∆2 +Rk − 2
∑
j∈Ik

αk,j k̃(xj ,xi) .
(20)
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Note how this computation can be performed, by means of kernel evalu-
ations, in spite of the lack of an explicit representation of ck and zi. Once
i∗ has been found, it is included in the index set. Finally, the reduced QP
corresponding to the MEB of the new approximate coreset is solved.

Algorithm 1 has two main sources of computational overhead: the computa-
tion of the furthest point from ck, which is linear in m, and the solution of the
optimization subproblem in step 10. The complexity of the former step can be
made constant and independent of m by suitable sampling techniques (see [37]),
an issue to which we will return later. As regards the optimization step, CVMs
adopt a SMO method, where only two variables are selected for optimization
at each iteration [8, 30]. It is known that the cost of each SMO iteration is not
too high, but the method can require a large number of iterations in order to
satisfy reasonable stopping criteria [30].

Algorithm 1 BC Algorithm for MEB-SVMs: the Core Vector Machine

Input: S, ε.
1: initialization: compute I0 and α0;
2: ∆2 ←− k̃(x1,x1);
3: R0 ←−

∑
i,j∈I0 α0,iα0,j k̃(xi,xj);

4: r2
0 ←− ∆2 −R0;

5: i∗ ←− argmaxi∈I γ
2(α0; i) := ∆2 +R0 − 2

∑
j∈I0 α0,j k̃(xj ,xi);

6: k ←− 0;
7: while γ2(αk; i∗) > (1 + ε)2r2

k do
8: k ←− k + 1;
9: Ik ←− Ik−1 ∪ {i∗};

10: Find αk by solving the reduced QP problem

minimize
α∈Rm

R(α) :=
∑
i,j∈Ik

αiαj k̃(xi,xj)

subject to
∑
i∈Ik

αi = 1, αi ≥ 0, i ∈ Ik ;
(21)

11: Rk ←− R(αk);
12: r2

k ←− ∆2 −Rk;

13: i∗ ←− argmaxi∈I γ
2(αk; i) := ∆2 +Rk − 2

∑
j∈Ik αk,j k̃(xj ,xi);

14: end while
15: return IS = Ik, α = αk.

As regards the initialization, that is, the computation of C0 and α0, a simple
choice is suggested in [21], which consists in choosing C0 = {za, zb}, where za is
an arbitrary point in ϕ(S) and zb is the farthest point from za. Obviously, in
this case the center and radius of B0 are c0 = 0.5(za+zb) and r0 = 0.5‖za−zb‖,
respectively. That is, we initialize I0 = {a, b}, α0,a = α0,b = 0.5 and α0,i = 0
for i /∈ I0. A more efficient strategy, implemented for example in the code
LIBCVM [36], is the following. The procedure consists in determining the MEB
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of a subset P = {zi, i ∈ IP } of p training points, where the set of indices IP is
randomly chosen and p is small. This MEB is approximated by running a SMO
solver. In practice, p ' 20 is suggested to be enough, but one can also try larger
initial guesses, as long as SMO can rapidly compute the initial MEB. C0 is then
defined as the set of points xi ∈ P gaining a strictly positive dual weight in the
process, and I0 as the set of the corresponding indices.

4 Frank-Wolfe Methods for the MEB-SVM Prob-
lem

4.1 Overview of the Frank-Wolfe Algorithm

The Frank-Wolfe algorithm (FW), originally presented in [11], is designed to
solve optimization problems of the form

maximize
α∈Σ

f(α) , (22)

where f ∈ C1(Rm) is a concave function, and Σ 6= ∅ a bounded convex polyhe-
dron.

In the case of the MEB dual problem, the objective function is quadratic
and Σ coincides with the unit simplex. Given the current iterate αk ∈ Σ, a
standard Frank-Wolfe iteration consists in the following steps:

1. Find a point uk ∈ Σ maximizing the local linear approximation ψk(u) :=
f(αk) + (u−αk)T∇f(αk), and define dFWk = uk −αk.

2. Perform a line-search λk = argmaxλ∈[0,1] f(αk + λdFWk ).

3. Update the iterate by

αk+1 = αk + λkd
FW
k = (1− λk)αk + λkuk . (23)

The algorithm is usually stopped when the objective function is sufficiently close
to its optimal value, according to a suitable proximity measure [13].

Since ψk(u) is a linear function and Σ is a bounded polyhedron, the search
directions dFWk are always directed towards an extreme point of Σ. That is,
uk is a vertex of the feasible set. The constraint λk ∈ [0, 1] ensures feasibility
at each iteration. It is easy to show that in the case of the MEB problem
uk = ei∗ , where ei denotes the i-th vector of the canonical basis, and i∗ is the
index corresponding to the largest component of ∇f(αk) [41]. The updating
step therefore assumes the form

αk+1 = (1− λk)αk + λkei∗ . (24)

It can be proved that the above procedure converges globally [13]. As a
drawback, however, it often exhibits a tendency to stagnate near a solution.
Intuitively, suppose that solutions α∗ of (22) lie on the boundary of Σ (this is
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often true in practice, and holds in particular for the MEB problem). In this
case, as αk gets close to a solution α∗, the directions dFWk become more and
more orthogonal to ∇f(αk). As a consequence, αk possibly never reaches the
face of Σ containing α∗, resulting in a sublinear convergence rate [13].

4.2 The Modified Frank-Wolfe Algorithm

We now describe an improvement over the general Frank-Wolfe procedure, which
was first proposed in [40] and later detailed in [13]. This improvement can be
quantified in terms of the rate of convergence of the algorithm and thus of the
number of iterations in which it can be expected to fulfill the stopping conditions.

In practice, the tendency of FW to stagnate near a solution can lead to
later iterations wasting computational resources while making minimal progress
towards the optimal function value. It would thus be desirable to obtain a
stronger result on the convergence rate, which guarantees that the speed of the
algorithm does not deteriorate when approaching a solution. This paragraph
describes a technique geared precisely towards this aim.

Essentially, the previous algorithm is enhanced by introducing alternative
search directions known as away steps. The basic idea is that, instead of moving
towards the vertex of Σ maximizing a linear approximation ψk of f in αk, we can
move away from the vertex minimizing ψk. At each iteration, a choice between
these two options is made by choosing the best ascent direction. The whole
procedure, known as Modified Frank-Wolfe algorithm (MFW), can be sketched
as follows:

1. Find uk ∈ Σ and define dFWk as in the standard FW algorithm.

2. Find vk ∈ Σ by minimizing ψk(v), s.t. vj = 0 if αk,j = 0. Define
dAk = αk − vk.

3. If ∇f(αk)TdFWk ≥ ∇f(αk)TdAk , then dk = dFWk , else dk = dAk .

4. Perform a line-search λk = argmaxλ∈[0,λ̄] f(αk + λdk), where λ̄ = 1 if

dk = dFWk and λ̄ = maxλ≥0

{
λ |αk + λdAk ∈ Σ

}
.

5. Update the iterate by

αk+1 = αk + λkdk =

{
(1− λk)αk + λkuk if dk = dFWk

(1 + λk)αk − λkvk if dk = dAk .
(25)

It is easy to show that both dFWk and dAk are feasible ascent directions, unless
αk is already a stationary point.

In the case of the MEB problem, step 2 corresponds to finding the basis
vector ej∗ corresponding to the smaller component of ∇f(αk) [41]. Note that a
face of Σ of lower dimensionality is reached whenever an away step with maximal
stepsize λ̄ is performed. Imposing the constraint in step 2 is tantamount to
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ruling out away steps with zero stepsize. That is, an away step from ej cannot
be taken if αk,j is already zero.

In [13] linear convergence of f(αk) to f(α∗) was proved, assuming Lipschitz
continuity of ∇f , strong concavity of f , and strict complementarity at the so-
lution. In [41], a proof of the same result was provided for the MEB problem,
under weaker assumptions. It is important to note that such assumptions are in
particular satisfied for the MEB formulation of the L2-SVM, and that as such
the aforementioned linear convergence property holds for all problems consid-
ered in this paper. In particular, uniqueness of the solution, which is implied if
we ask for strong (or just strict) concavity, is not required. The gist is essentially
that, in a small neighborhood of a solution α∗, MFW is forced to perform away
steps until the face of Σ containing α∗ is reached, which happens after a finite
number of iterations. Starting from that point, the algorithm behaves as an
unconstrained optimization method, and it can be proved that f(αk) converges
to f(α∗) linearly [13].

4.3 The FW and MFW Algorithms for MEB-SVMs

If FW method is applied to the MEB dual problem, the structure of the objective
function Φ(α) can be exploited in order to obtain explicit formulas for steps 1
and 2 of the generic procedure. Indeed, the components of ∇Φ(αk) are given
by

∇Φ(αk)i = ‖zi‖2 − 2
∑
j∈I

αk,jz
T
i zj = ‖zi‖2 − 2zTi ck , (26)

where
ck =

∑
j∈I

αk,jzj , (27)

and therefore, since ‖ck‖2 does not depend on i,

i∗ = argmax
i∈I

∇Φ(αk)i = argmax
i∈I

‖zi − ck‖2. (28)

In practice, step 1 selects the index of the input point maximizing the distance
from ck, exactly as done in the CVM procedure. Computation of distances can
be carried out as in CVMs, using (20). As regards step 2, it can be shown (see
[4, 41]) that

λk =
1

2

(
1− r2

k

‖zi∗ − ck‖2

)
, (29)

where
r2
k = Φ(αk) . (30)

By comparing (27) and (30) with (16), we argue that, as in the BC algorithm,
a ball Bk = B(ck, rk) is identified at each iteration.

The whole procedure is sketched in Algorithm 2, where at each iteration we
associate to αk the index set Ik = {i ∈ I : αk,i > 0}.
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Algorithm 2 Frank-Wolfe Algorithm for MEB-SVMs

Input: S, ε.
1: initialization: compute I0 and α0;
2: ∆2 ←− k̃(x1,x1);
3: R0 ←−

∑
i,j∈I0 α0,iα0,j k̃(xi,xj);

4: r2
0 ←− ∆2 −R0;

5: i∗ ←− argmaxi∈I γ
2(α0; i) := ∆2 +R0 − 2

∑
j∈I0 α0,j k̃(xj ,xi);

6: δ0 ←− γ2(α0;i∗)
r20

− 1;

7: k ←− 0;
8: while δk > (1 + ε)2 − 1 do

9: λk ←− 1
2

(
1− r2k

γ2(αk;i∗)

)
;

10: k ←− k + 1;
11: αk ←− (1− λk−1)αk−1 + λk−1ei∗ ;
12: Ik ←− {i ∈ I : αk,i > 0};
13: Rk ←−

∑
i,j∈Ik αk,iαk,j k̃(xi,xj);

14: r2
k ←− r2

k−1

(
1 +

δ2k−1

4(1+δk−1)

)
;

15: i∗ ←− argmaxi∈I γ
2(αk; i) := ∆2 +Rk − 2

∑
j∈Ik αk,j k̃(xj ,xi);

16: δk ←− γ2(αk;i∗)
r2k

− 1;

17: end while
18: return IS = Ik, α = αk.

As regards the initialization, α0 and I0 can be defined exactly as in the CVM
procedure. At subsequent iterations, the formula to update Ik immediately
follows from the updating (24) for αk; indeed, the indices of the strictly positive
components of αk+1 are the same of αk, plus i∗ if αk,i∗ = 0 (which means that
zi∗ was not already included in the current coreset). The introduction of the
sequence {Ik} in Algorithm 2 makes it evident that structure and output of
Algorithm 1 are preserved.

The updating formula used in step 14 appears in [41]. It is easy to see that
it is equivalent to (30) and computationally more convenient.

In [41], it has been proved that {r2
k} is a monotonically increasing sequence

with r∗2 as an upper bound. Therefore, since the same stopping criterion of
the BC algorithm is used, IS identifies an ε–coreset CS of ϕ(S), and the last Bk
is a (1 + ε)–MEB of ϕ(S). However, the MEB-approximating procedure differs
from that of BC in that the value of r2

k is not equal to the squared radius of
MEB(Ck), but tends to the correct value as αk gets near the optimal solution
(see Fig. 1).

The derivation of the MFW method applied to the MEB-SVM problem can
be written down along the same lines. Following the presentation in [41], we
describe the detailed procedure in Algorithm 3.

By now, it should be apparent that j∗ is the index identifying the point
furthest from ck, and that it corresponds to the smallest component of ∇Φ(αk).
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zi∗

Bk+1 = MEB(Ck+1) [BC]

Bk+1 [FW]

MEB(Ck)

ck

Figure 1: Approximating balls computed by algorithms BC and FW.

That is, in Algorithm 3 we consider performing away steps in which the weight
of the nearest point to the current center is reduced. Of course, since the weight
of a point is not allowed to drop below zero, the search for j∗ is performed on
Ik only. Again, the optimal stepsize can be determined in closed form [41]. In
particular, it is easy to see that the expression in step 19 corresponds to

λk = argmax

λ∈
[
0,

αk,j∗
1−αk,j∗

] Φ((1 + λ)αk − λej∗) , (31)

where the upper bound on the interval preserves dual feasibility.
This kind of step has an intuitive geometrical meaning: if we consider a

solution α∗ of the MEB problem, it is known that nonzero components of α∗

correspond to points lying on the boundary of the exact MEB. Therefore, it
makes sense to try to remove from the model points that lie near the center
(i.e. far from the boundary of the ball). When an away step is performed,
if λk is chosen as the supremum of the search interval, we get αk+1,j∗ = 0
and the corresponding example is removed from the current coreset (drop step).
Moreover, it’s not hard to see that step 11 chooses to perform an away step
whenever

∇Φ(αk)TdAk > ∇Φ(αk)TdFWk . (32)

That is, the choice between FW and away steps is done by choosing the best
ascent direction, exactly as required by the MFW procedure. Here dFWk =
(ei∗ − αk) and dAk = (αk − ej∗) denote the search directions of FW and away
steps, respectively. Finally, step 20 shows that, just as with standard FW
steps, after performing an away step we can use an analytical formula to update
r2
k. This expression follows easily by writing the objective function Φ(α) for
α = (1 + λ)αk − λej∗ .

In Fig. 2, we try to give a geometrical insight on the difference between FW
and away steps in terms of search directions.
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Algorithm 3 Modified Frank-Wolfe Algorithm for MEB-SVMs

Input: S, ε.
1: initialization: compute I0 and α0;
2: ∆2 ←− k̃(x1,x1);
3: R0 ←−

∑
i,j∈I0 α0,iα0,j k̃(xi,xj);

4: r2
0 ←− ∆2 −R0;

5: i∗ ←− argmaxi∈I γ
2(α0; i) := ∆2 +R0 − 2

∑
j∈I0 α0,j k̃(xj ,xi);

6: j∗ ←− argminj∈I0 γ
2(α0; j);

7: δ0+ ←− γ2(α0;i∗)
r2k

− 1;

8: δ0− ←− 1− γ2(α0;j∗)
r2k

;

9: k ←− 0;
10: while δk+ > (1 + ε)2 − 1 do
11: if δk+ ≥ δk− then

12: λk ←− 1
2

(
1− r2k

γ2(αk;i∗)

)
;

13: k ←− k + 1;
14: αk ←− (1− λk−1)αk−1 + λk−1ei∗ ;

15: r2
k ←− r2

k−1

(
1 +

δ2k−1+

4(1+δk−1+)

)
;

16: else
17: λk ←− min

{
δk−

2(1−δk−) ,
αk,j∗

1−αk,j∗

}
;

18: k ←− k + 1;
19: αk ←− (1 + λk−1)αk−1 − λk−1ej∗ ;
20: r2

k ←− (1 + λk−1)r2
k−1 − λk−1(1 + λk−1)(δk−1− − 1)r2

k−1;
21: end if
22: Ik ←− {i ∈ I : αk,i > 0};
23: Rk ←−

∑
i,j∈Ik αk,iαk,j k̃(xi,xj);

24: i∗ ←− argmaxi∈I γ
2(αk; i) := ∆2 +Rk − 2

∑
j∈Ik αk,j k̃(xj ,xi);

25: j∗ ←− argminj∈Ik γ
2(αk; j);

26: δk+ ←− γ2(αk;i∗)
r2k

− 1;

27: δk− ←− 1− γ2(αk;j∗)
r2k

;

28: end while
29: return IS = Ik, α = αk.

We previously hinted at the linear convergence properties of MFW. This
result can now be stated more precisely [41].

Proposition 1. At each iteration of the MFW algorithm, we have:

Φ(α)− Φ(αk+1)

Φ(α)− Φ(αk)
≤M , (33)

where M ≤ 1− 1
36mβdS

, β is a constant and dS = diam(S)2.
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Figure 2: A sketch of the search directions used by FW and MFW.

Substantially, as shown in the convergence analysis of [13], there exists a
point in the optimization path of the MFW algorithm after which only away
steps are performed. That is, the algorithm only needs to remove useless exam-
ples to correctly identify the optimal support vector set. From this stage on,
the algorithm converges linearly to the optimum value of the objective function.
In contrast, the standard FW algorithm does not possess the explicit ability to
eliminate spurious patterns from the index set, and tends to slow down when
getting near the solution.

4.4 Beyond Normalized Kernels

The methods studied in this paper were originally motivated by recent advances
in computational geometry that led to efficient algorithms to address the MEB
problem [41]. However, a major advantage of the proposed methods, over e.g.
the CVM approach, is that both the theory and the implementation of our
algorithms can be applied without changes to train SVMs using kernels which
do not satisfy condition (17), imposed to obtain the equivalence between the
MEB problem (15) and the SVM optimization problem (12).

Both the FW and MFW methods were designed to maximize any differen-
tiable concave function f(α) in a bounded convex polyhedron. The objective
function in the SVM problem (12) is concave and the set of constraints coincides
with the unit simplex. The proposed methods can thus be applied directly to
solve (12) without regard to (15). Theoretical results such as the global conver-
gence of algorithms still hold. In addition, since strict complementarity usually
holds for SVM problems, results in [13] imply that MFW still converges linearly
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to the optimum. Note also that the constant ∆2, which makes the difference
between (15) and (12) for normalized kernels, can still be added to the objective
function of (12) in the case of non-normalized kernels, since it is simply ignored
when optimizing for α. An implementation designed to handle normalized ker-
nels can thus be directly used with any Mercer kernel.

It is apparent that the geometrical interpretation underlying Algorithms 2
and 3 needs to be reformulated if the SVM problem is no longer equivalent to
the problem of computing a MEB. However, it is easy to show that the search
direction of the FW procedure at iteration k is still ei∗ where the index i∗

corresponds to the largest component of ∇f(αk). Similarly, the away direction
explored by MFW at iterate k is still ej∗ where the index j∗ corresponds to the
smallest component of ∇f(αk). The set of constraints in problem (12) coincides
with that of (15). In addition, any approximate solution αk produced by the
proposed algorithms is feasible. Thus, the sequence f(αk) is strictly increasing
and converges from below to the optimum f(α∗). It is not immediately evident,
however, whether the stopping condition used within our algorithms guarantees
the method to find a solution in a neighborhood of the optimum α∗k. We now
show that this is indeed the case. For simplicity of notation, it is convenient to
write explicitly the target QP of MEB-SVMs in matrix form:

maximize
α

g(α) := ∆2 −αK̃α = ∆2 − ‖c‖2

subject to eTα = 1, α ≥ 0 ,
(34)

where K̃ is the matrix of entries k̃ij = ϕ(xi)
Tϕ(xj) = yiyjk(xi,xj) +yiyj +

δij
C ,

c = Zα, and Z is the matrix whose columns are the feature vectors zi = ϕ(xi).
Note that K = ZTZ. When k is a normalized kernel, we get Φ(α) = g(α).
For non-normalized kernels, instead, ∆2 can be viewed as an arbitrary constant
added to the SVM objective function in (12), Θ(α) = −αK̃α. That is, we can
always think of g(α) as the objective function when solving (12).

It is not hard to see that the stopping condition used in Algorithms 2 and 3
can be written as follows:

δk+ ≤ (1 + ε)2 − 1

⇐⇒ ‖zi∗ − ck‖2 ≤ (1 + ε)2r2
k

⇐⇒ ∆2 − 2zTi∗ck + ‖ck‖2 ≤ (1 + ε)2r2
k .

(35)

Since by construction r2
k = ∆2 − ‖ck‖2, we get

∆2 − 2zTi∗ck + ‖ck‖2 ≤ (1 + 2ε+ ε2)
(
∆2 − ‖ck‖2

)
⇐⇒ ∆2 − 2zTi∗ck + ‖ck‖2 ≤ (1 + ε)

(
∆2 − ‖ck‖2

)
⇐⇒ ∆2 − 2zTi∗ck + ‖ck‖2 ≤ ∆2 − ‖ck‖2 + εg(αk)

⇐⇒ − 2zTi∗ck + 2‖ck‖2 ≤ εg(αk) ,

(36)

with ε = 2ε + ε2 = O(ε). Now, since ∇g(αk) = −2Kαk = −2ZT ck, we
have that ∇g(αk)i∗ = −2zTi∗ck. In addition, αTk∇g(αk) = −2αTkKαk =
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−2αTkZ
TZαk = −2cTk ck = −2‖ck‖2. Thus, the stopping condition for both

algorithms is equivalent to

∇g(αk)i∗ −αTk∇g(αk) ≤ εg(αk) . (37)

On the other hand, since the objective function g(α) is concave and differen-
tiable,

g(α∗) ≤ g(αk) + (α∗ −αk)
T ∇g(αk) . (38)

In addition, eTα∗ = 1 and thus α∗T∇g(αk) ≤ maxi∈I ∇g(αk)i = ∇g(αk)i∗ .
Therefore,

g(α∗) ≤ g(αk) +α∗T∇g(αk)−αTk∇g(αk)

≤ g(αk) +∇g(αk)i∗ −αTk∇g(αk) .
(39)

In virtue of (37) and (39), we obtain that

g(α∗) ≤ g(αk) + εg(αk) = (1 + ε)g(αk) . (40)

Finally, from the feasibility of αk, we have g(αk) ≤ g(α∗). Therefore,

(1− ε)g(α∗) ≤ g(αk) ≤ g(α∗) , (41)

that is, Algorithms 2 and 3 stop with an objective function value g(αk) in a left
neighborhood of radius g(α∗)ε = g(α∗)(2ε + ε2) = O(ε) around the optimum,
even if the target problem (12) is not equivalent to a MEB problem.

5 Experiments

We test all the classifications methods discussed above on several classification
problems. Our aim is to show that, as long as a minor loss in accuracy is
acceptable, Frank-Wolfe based methods are able to build L2-SVM classifiers in
a considerably smaller time compared to CVMs, which in turn have been proven
in [37] to be faster than most traditional SVM software. This is especially
evident on large-scale problems, where the capability to construct a classifier in
a significantly reduced amount of time may be most useful.

5.1 Organization of this Section

After discussing several implementation issues we compare the performance of
the studied algorithms on several classical datasets. Our experiments include
scalability tests on two different collections of problems of increasing size, which
assess the capability of Frank-Wolfe based methods to efficiently solve problems
of increasingly large size. These results can be found in Subsecs. 5.3 and 5.4. In
Subsection 5.5 we present additional experiments on the set of problems studied
in [10]. The statistical significance of the results presented so far is analyzed
in section 5.6. A separate test is then performed in Subsection 5.7 to study
the influence of the penalty parameter C on each training algorithm. Finally,
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in Subsection 5.8 we present some experiments showing the capability of FW
and MFW methods to handle a wider family of kernel function with respect to
CVMs. We highlight that the purpose of that paragraph is not to improve the
accuracy or the training time of the algorithms. A detailed commentary on the
obtained results, which summarizes and expands on our conclusions, closes the
section in Subsection 5.9.

5.2 Datasets and Implementation Issues

As we detail below, all the datasets used in this section have been widely used
in the literature. They were selected to cover a large variety with respect to the
number of instances, number of dimensions and number of classes. In most of
the cases, the training and testing sets are standard (precomputed for bench-
marking) and can be obtained from public repositories like [3], [15], or others we
indicate in the dataset descriptions. The exceptions to this rule are the datasets
Pendigits and KDD99-10pc. In these cases, the testing set was obtained
by random sampling from the original collection a 20% of the items. All the
examples not selected as test instances were employed for training.

For each problem, we specify, in Tab. 1, the number m of training points,
the input space dimension n, and the number of classes K. We indicate by t
the number of examples in the test set, which is used to evaluate the accuracy
of the classifiers but never employed for training or parameter tuning. In the
case of multi-category classification problems, we adopted the one-versus-one
approach (OVO), which is the method used in [37] to extend CVMs beyond
binary classification and that usually obtains the best performance both in terms
of accuracy and training time according to [17]. Hence, for these cases we also
report the size mmax of the largest binary subproblem and the size mmin of the
smallest binary subproblem in the OVO decomposition.

Here follow some brief descriptions of the pattern recognition problems un-
derlying each dataset, taken from their respective sources.

• USPS, USPS-Ext - The USPS dataset is a classic handwritten digits
recognition problem, where the patterns are 16 × 16 images from United
States Postal Service envelopes. The extended version USPS-Ext first
appeared in [37] to show the large-scale capabilities of CVMs. The original
version can be downloaded from [3] and the extended one from [36].

• Pendigits - Another digit recognition dataset, created by experimentally
collecting samples from a total of 44 writers with a tablet and a stylus.
This dataset can be obtained from [15].

• Letter - An Optical Character Recognition (OCR) problem. The objec-
tive is to identify each of a large number of black-and-white rectangular
pixel displays as one of the 26 capital letters in the English alphabet. The
files can be obtained from [3].

• Protein - A bioinformatics problem regarding protein structure predic-
tion. This dataset can be download from [3].
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Dataset m t K mmax mmin n

USPS 7291 2007 10 2199 1098 256
Pendigits 7494 3498 10 1560 1438 16
Letter 15000 5000 26 1213 1081 16
Protein 17766 6621 3 13701 9568 357
Shuttle 43500 14500 7 40856 17 9
IJCNN 49990 91701 2 49990 49990 22
MNIST 60000 10000 10 13007 11263 780
USPS-Ext 266079 75383 2 266079 266079 676
KDD99-10pc 395216 98805 5 390901 976 127
KDD99-Full 4898431 311029 2 4898431 4898431 127
Reuters 7770 3299 2 7770 7770 8315
Adult a1a 1605 30956 2 1605 1605 123
Adult a2a 2265 30296 2 2265 2265 123
Adult a3a 3185 29376 2 3185 3185 123
Adult a4a 4781 27780 2 4781 4781 123
Adult a5a 6414 26147 2 6414 6414 123
Adult a6a 11220 21341 2 11220 11220 123
Adult a7a 16100 16461 2 16100 16100 123
Web w1a 2477 47272 2 2477 2477 300
Web w2a 3470 46279 2 3470 3470 300
Web w3a 4912 44837 2 4912 4912 300
Web w4a 7366 42383 2 7366 7366 300
Web w5a 9888 39861 2 9888 9888 300
Web w6a 17188 32561 2 17188 17188 300
Web w7a 24692 25057 2 24692 24692 300
Web w8a 49749 14951 2 49749 49749 300

Table 1: Features of the selected datasets.

• Shuttle - This is a dataset in the Statlog collection, originated from NASA
and concerning the position of radiators within the Space Shuttle [27]. The
dataset can be obtained from [15] or [36].

• IJCNN - A dataset from the 2001 neural network competition of the
International Joint Conference on Neural Networks. We obtained this
dataset from [37].

• MNIST - Another classic handwritten digit recognition problem, this
time coming from National Institute of Standards (NIST) data. The
dataset can be obtained from [36].

• KDD99-10pc, KDD99-Full - This is a dataset used in the 1999 Knowl-
edge Discovery and Data Mining Cup. The data are connection records
for a network, obtained by simulating a wide variety of normal accesses
and intrusions on a military network. The problem is to detect different
types of accesses on the network with the aim of identifying fraudulent
ones. The 10pc version is a randomly selected 10% of the whole data.
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• Reuters - A text categorization problem built from a collection of docu-
ments that appeared on Reuters newswire in 1987. The documents were
assembled and indexed with categories. The binary version used in this
paper (relevant versus non-relevant documents) was obtained from [36].

• Adult a1a-a8a - A series of problems derived from a dataset extracted
from the 1994 US Census database. The original aim was to predict
whether an individual’s income exceeded 50000US$/year, based on per-
sonal data. All the instances of this collection can be downloaded from
[36].

• Web w1a-w8a - A series of problems extracted from a web classification
task dataset, first appeared in Platt’s paper on Sequential Minimal Opti-
mization for training SVMs [30]. All the instances of this collection can
be downloaded from [36].

5.2.1 SVM Parameters

For the experiments presented in Subsection 5.3 to Subsection 5.7, SVMs were
trained using a RBF kernel k(x1,x2) = exp(−‖x1 − x2‖2/2σ2). The reason for
this choice is that this kernel is the best-known in the family of kernels admitted
by CVMs and it is frequently used in practice [37]. In particular, this is the
choice for the large set of experiments presented in [37] to demonstrate the
advantage of this framework on other SVM software. However, in Subsection
5.8 we present some results showing the capability of FW and MFW methods
to handle a polynomial kernel, which does not satisfy the conditions required
by CVMs.

For the relatively small datasets Pendigits and USPS, parameter σ2 was
determined together with parameter C of SVMs using 10-fold cross-validation
on the logarithmic grid [2−15, 25]× [2−5, 215], where the first collection of values
correspond to parameter σ2 and the second to parameter C. For the large-scale
datasets, σ2 was determined using the default method employed by CVMs in
[37], that is, it was set to the average squared distance among training patterns.
Parameter C was determined on the logarithmic grid [20, 212] using a validation
set consisting in a randomly computed 30% fraction of the training set.

We stress that the aim of this paper is not to determine an optimal value of
the parameters by fine-tuning each algorithm on the test problems to seek for
the best possible accuracy. As our intent is to compare the performance of the
presented methods and analyze their behavior in a manner consistent with our
theoretical analysis, it is necessary to perform the experiments under the same
conditions on a given dataset. That is to say, the optimization problem to be
solved should be the same for each algorithm. For this reason, we deliberately
avoided using different training parameters when comparing different methods.
Specifically, parameters σ2 and C were tuned using the CVM method and the
obtained values were used for all the algorithms discussed in this paper (CVM,
FW and MFW).
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Furthermore, since the value of parameter C can have a significant influence
on the running times, we devote a specific subsection to evaluate the effect of
this parameter on the different training algorithms.

5.2.2 MEB Initialization and Parameters

As regards the initialization of the CVM, FW and MFW methods, that is, the
computation of I0 and α0 in Algorithms 1, 2 and 3, we adopted the random
MEB method described in the previous sections, using p = 20 points. As
suggested in [37], we used ε = 10−6 with all the algorithms.

5.2.3 Random Sampling Techniques

Computing i∗, i.e. evaluating (20) for all of the m training points, requires
a number of kernel evaluations of order O(q2

k + mqk) = O(mqk), where qk is
the cardinality of Ik. If m is very large, this complexity can quickly become
unacceptable, ruling out the possibility to solve large scale classification prob-
lems in a reasonable time. A sampling technique, called probabilistic speedup,
was proposed in [34] to overcome this obstacle. In practice, the distance (20) is
computed just on a random subset ϕ(S′) ⊂ ϕ(S), where S′ is identified by an
index set I ′ of small constant cardinality r. The overall complexity is thereby
reduced to order O(q2

k + qk) = O(q2
k), a major improvement on the previous

estimate, since we generally have qk � m. The main result this technique relies
on is the following [33].

Theorem 1. Let D := {d1, . . . , dm} ⊂ R be a set of cardinality m, and let
D′ ⊂ S be a random subset of size r. Then the probability that maxD′ is
greater or equal than m̃ elements of D is at least 1− ( m̃m )r.

For example, if r = 59 and m̃ = 0.95m,then with probability at least 0.95
the point in ϕ(S′) farthest from the center lies among the 5% of the farthest
points in the whole set ϕ(S). This is the choice originally made in [37] and used
in [10] to test the CVM and FW algorithms.

5.2.4 Caching

We also adopted the LRR caching strategy designed in [36] for CVMs to avoid
the computation of recently used kernel values.

5.2.5 Computational Environment

The experiments were conducted on a personal computer with a 2.66GHz Quad
Core CPU and 4 GB of RAM, running 64bit GNU/Linux (Ubuntu 10.10). The
algorithms were implemented based on the (C++) source code available at [36].
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5.3 Scalability Experiments on the Web Dataset Collec-
tion

In Fig. 3, we report some results concerning accuracies, training times, speed-
ups and support vector set sizes obtained in the Web datasets. The series
is monotonically increasing in the number of training patterns, which grows
approximately as mi = 1.4im0, i = 1, . . . , 8, where m0 is the number of training
patterns in the first dataset [30].

The speed-up of the FW method with respect to CVMs is measured as
s = t0/t1 where t0 is the training time of the CVM algorithm and t1 is the
training time of the FW method, both measured in seconds. Similarly, the
speed-up of the MFW method with respect to CVMs is measured as s = t0/t2
where t2 is the training time of the MFW method.

As depicted in Fig. 3 the proposed methods are slightly less accurate than
CVMs. The training time, in contrast, scales considerably better for our meth-
ods as the number of training patterns increases. The speed-ups are actually
always greater than 1, which shows that the FW and MFW methods indeed
build classifiers faster than CVMs. More importantly, the speed-up is mono-
tonically increasing, ranging from 12 times faster up to 107 times faster in the
case of the FW algorithm and from 2 times faster up to almost 10 times faster
in the case of the MFW method. This suggests that the improvements of the
proposed method over CVMs becomes more and more significant as the size of
the training set grows.

5.4 Scalability Experiments on the Adult Dataset Collec-
tion

Fig. 4 depicts accuracies and speed-ups obtained in the Adult datasets. Like
the Web datasets, this collection was created with the purpose of analyzing
the scalability of SVM methods and the number of training patterns grows
approximately with the same rate [30]. The speed-up of the FW and MFW
methods is computed as in the previous section.

Results obtained in this experiment confirm that the proposed methods tend
to be faster than CVMs as the dataset grows. CVMs are actually faster than
FW just in two cases, corresponding to the smallest versions of the sequence.
MFW however runs always faster than CVMs, reaching a speed-up of 15× in
the fifth version of the series. The speed-ups obtained by the FW method are in
this experiment more moderate than in the Web collection. However, most of
the time FW exhibits also better test accuracies than CVMs. Finally, the MFW
algorithm is not only faster but also as accurate as CVMs on this classification
problem.

5.5 Experiments on Single Datasets

Results of Figs. 5 and 6 correspond to accuracies and speed-ups obtained in the
single datasets described in Tab. 1, that is, all of them but the Web and Adult
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series. Most of these problems have been already used to show the improvements
of CVMs over other algorithms to train SVMs .

Results show that the proposed methods are faster than CVMs most of
the time, sometimes at the price of a slightly lower accuracy. The speed-up
achieved by FW and MFW becomes more significant as the size of the training
set grows. FW in particular reaches peaks of 102× in the second largest dataset
(KDD99-10pc) and 25× in the largest of the problems studied in this exper-
iment (KDD99-Full). Finally, the results show that in the cases for which
CVMs are faster, the advantage of this algorithm on FW and MFW tend to
be very small, reaching its better speed-up against MFW in the USPS-Ext
dataset, for which however FW exhibits a speed up of around 3×.

Dataset CVM FW MFW
Acc. STD. Acc. STD. Acc. STD.

a1a 83.52 6.33E-003 83.52 7.53E-003 83.52 1.58E-003
a2a 83.55 1.15E-002 83.56 2.39E-002 83.56 9.19E-003
a3a 83.40 8.45E-003 83.39 4.17E-002 83.41 5.00E-003
a4a 84.06 1.59E-002 84.10 4.64E-002 84.07 1.15E-002
a5a 84.02 8.92E-003 84.03 2.93E-002 84.05 9.86E-003
a6a 84.28 3.51E-003 84.26 2.49E-002 84.25 1.86E-002
a7a 84.18 1.06E-002 84.23 4.41E-002 84.29 2.26E-002
w1a 97.80 2.81E-003 97.31 8.54E-002 97.65 2.97E-001
w2a 98.06 1.37E-003 97.42 2.58E-001 97.80 2.93E-001
w3a 98.21 1.67E-003 97.31 6.48E-002 97.60 4.83E-001
w4a 98.28 9.44E-004 97.46 2.17E-001 97.91 4.79E-001
w5a 98.39 2.01E-003 97.50 2.71E-001 98.36 1.76E-002
w6a 98.72 5.63E-003 97.40 3.45E-001 98.43 4.54E-001
w7a 98.73 5.29E-003 97.43 2.43E-001 97.88 6.60E-001
w8a 99.34 5.35E-003 97.80 2.82E-001 97.59 4.32E-001
Letter 97.48 2.19E-002 96.54 1.37E-001 97.35 1.50E-001
Pendigits 98.35 9.46E-002 97.68 9.39E-002 97.65 1.22E-001
USPS 95.63 3.73E-002 95.12 1.05E-001 95.47 8.34E-002
Reuters 97.10 4.11E-002 96.40 1.53E-001 95.60 6.13E-001
MNIST 98.46 3.14E-002 97.91 5.99E-002 98.36 4.05E-002
Protein 69.79 0.00E+00 69.73 0.00E+00 69.78 0.00E+00
Shuttle 99.67 1.51E-001 98.08 6.74E-001 97.82 1.54E+00
IJCNN 98.59 4.89E-002 95.71 7.95E-001 97.31 3.63E-001
USPS-Ext 99.50 1.26E-002 99.30 5.47E-002 99.57 2.76E-002
KDD10pc 99.87 2.06E-002 98.82 2.13E-001 99.10 2.86E-001
KDD-full 91.77 7.17E-002 91.53 1.14E+00 91.82 7.72E-002

Table 2: Test accuracy (%) of the proposed algorithms and the baseline method
CVM. Statistics correspond to the mean (Acc) and standard deviation (STD)
obtained from 5 repetitions of each experiment. For the Protein dataset, just 1
repetition was carried out due to the significantly longer training times.
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Dataset CVM FW MFW
Time STD. Time STD. Time STD.

a1a 6.26 8.82E-02 12.5 6.99E-01 0.712 4.00E-03
a2a 16 1.82E-01 19.3 1.51E+00 1.46 1.41E-02
a3a 33.8 1.74E-01 26.8 1.44E+00 2.78 6.53E-02
a4a 89.1 2.67E-01 40.4 1.19E+00 6.37 1.08E-01
a5a 171 2.10E+00 56.1 1.94E+00 11.1 1.75E-01
a6a 590 2.62E+00 164 6.24E+00 45 1.15E+00
a7a 2060 2.79E+01 1420 5.86E+01 365 7.30E+00
w1a 3.59 3.62E-01 0.286 8.26E-02 1.67 7.62E-01
w2a 7.9 1.62E-01 0.658 3.32E-01 2.31 1.20E+00
w3a 12.8 1.11E+00 0.76 5.90E-02 2.27 2.25E+00
w4a 30.4 7.50E-01 1.26 5.01E-01 6.76 4.13E+00
w5a 52.7 6.39E-01 1.78 1.07E+00 15.8 1.44E+00
w6a 131 1.55E+00 2.67 2.36E+00 29.4 1.31E+01
w7a 215 1.17E+01 2.58 1.89E+00 91.4 1.31E+02
w8a 1030 6.05E+01 9.64 5.22E+00 111 1.27E+02
Letter 23.7 2.80E-01 13.3 2.05E-01 12.3 1.42E-01
Pendigits 0.554 3.26E-02 0.82 2.97E-02 0.658 2.23E-02
USPS 6.89 7.46E-02 7.58 1.42E-01 7.22 9.00E-02
Reuters 7.24 3.62E-01 2.17 3.87E-01 1.69 5.87E-01
MNIST 364 1.31E+01 301 8.56E+00 349 2.59E+00
Protein 247000 0.00E+00 11900 0.00E+00 2000 0.00E+00
Shuttle 1.41 3.41E-01 1.69 4.56E-01 0.176 2.73E-02
IJCNN 198 1.36E+01 40.5 2.27E+01 34.4 1.26E+01
USPS-Ext 84.4 2.02E+01 26.7 3.74E+00 161 1.49E+01
KDD10pc 42.3 3.58E+00 0.414 1.50E-02 1.22 1.24E+00
KDD-full 19.5 8.12E+00 0.764 2.42E-02 0.744 8.00E-03

Table 3: Running times (seconds) of the proposed algorithms and the baseline
method CVM. Statistics correspond to the mean (Time) and standard deviation
(STD) obtained from 5 repetitions of each experiment. For the Protein dataset,
just 1 repetition was carried out due to the significantly longer training times.

For sake of readability we include in Tab. 2 and Tab. 3 a summary of the
test accuracy and running times used to build the Figs. 3 to 6.
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Figure 3: Comparison of accuracies (first row), speed-ups (second row), absolute
running times (third row) and sizes of training sets and support vector sets
(fourth row) in the Web datasets.
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Figure 4: Comparison of accuracies (first row), speed-ups (second row), absolute
running times (third row) and sizes of training sets and support vector sets
(fourth row) in the Adult datasets.
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Figure 5: Comparison of accuracies (first row) and speed-ups (second row)
obtained in some of the single datasets of Tab. 1

Figure 6: Comparison of accuracies (first column) and speed-ups (second col-
umn) obtained in some of the single datasets of Tab. 1
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5.6 Statistical Tests

This paragraph is devoted to verify the statistical significance of the results
obtained above. To this end we adopt the guidelines suggested in [7], that is,
we first conduct a multiple test to determine whether the hypothesis that all the
algorithms perform equally can be rejected or not. Then, we conduct separate
binary tests to compare the performances of each algorithm against each other.
For the binary tests we adopt the Wilcoxon Signed-Ranks Test method. For
the multiple test we use the non-parametric Friedman Test. In [7], Demsar
recommends these tests as safe alternatives to the classical parametric t-tests
to compare classifiers over multiple datasets.

The main hypothesis of this paper is that our algorithms are faster than
CVM. We have also observed than they are slightly less accurate. Therefore,
our design for the binary tests between our algorithms and CVM is that of
Tab. 7. As regards the comparison of the proposed methods, there is no an
apparent advantage in terms of running time of one against the other. MFW
seems however more accurate than FW. We thus conduct a two-tailed test for
the running times but adopt a one-tailed test for testing accuracy.

FW vs. CVM

Time H0 : FW and CVM are equally fast
H1 : FW is faster than CVM

Accuracy H0 : FW and CVM are equally accurate
H1 : CVM is more accurate than FW

MFW vs. CVM

Time H0 : MFW and CVM are equally fast
H1 : MFW is faster than CVM

Accuracy H0 : MFW and CVM are equally accurate
H1 : CVM is more accurate than MFW

FW vs. MFW

Time H0 : FW and MFW are equally fast
H1 : Running times of MFW and FW are different

Accuracy H0 : FW and MFW are equally accurate
H1 : FW is less accurate than MFW

Table 4: Null and alternative hypotheses for the binary statistical tests.

In Tab. 5 we report the values of the tests statistics calculated on the
26 datasets used in this paper. The critical values for rejection of the null
hypothesis under a given significance level can be obtained in several books
[26]. Here, in Tab. 6, we report the p-values corresponding to each test.1

Note that in all but one case (binary test FW vs. MFW about running time)
the p-values are lower than 0.01. Therefore, for most commonly used significance
levels (0.01, 0.05, 0.1, or lower) we conclude that there are significant differences
in terms of time and accuracy among the algorithms. Table 7 summarizes the

1For reproducibility concerns, p-values were computed using the statistical software R [31].
For the Wilcoxon Signed-Ranks Test, the exact p-values were preferred to the asymptotic ones.
The Pratt method to handle ties is employed by default. In the case of the Friedman test,
the Iman and Davenport’s correction was adopted, as suggested in [7].
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W statistic F statistic
FW vs. CVM MFW vs. CVM FW vs. MFW FW,MFW,CVM

Time 17 20 159 14.858
Accuracy 19 48.5 63.5 11.879

Table 5: Values of the W and F statistics for Wilcoxon Signed-Ranks Tests
and Friedman Tests respectively.

Binary Tests Multiple Tests
FW vs. CVM MFW vs. CVM FW vs. MFW FW,MFW,CVM

Time 3.085e− 06 5.528e− 06 0.6893 1.72e− 05
Accuracy 4.977e− 06 3.21e− 04 1.23e− 03 1.20e− 04

Table 6: P-values corresponding to the statistical tests.

conclusions from the binary tests. Note that the main hypothesis of this paper is
confirmed. Most of the time our algorithms run faster and are less accurate. In
the previous sections we have seen however that the loss in accuracy is usually
lower than 1%, while the running time can be order of magnitudes better. As
regards the comparison of the proposed algorithms FW and MFW, we cannot
conclude that the difference in training time is statistically significant. However,
we conclude that MFW is more accurate than FW. This last observation stresses
the relevance of this work as an extension of the results presented in [10].

FW vs. CVM

Time H0 rejected, so H1 : FW is faster than CVM
Accuracy H0 rejected, so H1 : CVM is more accurate than FW

MFW vs. CVM

Time H0 rejected, so H1 : MFW is faster than CVM
Accuracy H0 rejected, so H1 : CVM is more accurate than MFW

FW vs. MFW

Time We cannot reject H0 : FW and MFW are equally fast
Accuracy H0 rejected, so H1 : FW is less accurate than MFW

Table 7: Conclusions from the binary statistical tests for significance levels
0.01, 0.05, 0.1.

5.7 Experiments on the parameter C

Previous experiments have shown that parameter C used by SVMs to handle
noisy patterns can have a significant impact on the training time required to
build the classifier [10]. We hence conduct experiments on some datasets to
study this effect in more detail.

Figs. 7 and 8 show the training times and accuracies obtained in the Shut-
tle, KDD99-10pc, Pendigits and Reuters datasets when changing the value
of C. Results confirm the general effect of this parameter on the training time:
as C grows all the algorithms become faster. However the training times of
the proposed methods are most of time significantly lower than those of CVMs,
independently of the value of parameter C used by the SVM.
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Figure 7: Test accuracies (first row) and training times (second row) obtained
while changing the value of C in the Shuttle and KDD99-10pc datasets.
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Figure 8: Test accuracies (first row) and training times (second row) obtained
while changing the value of C in the Pendigits and Reuters datasets.
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5.8 Experiments with Non-Normalized Kernels

Solving a classification problem using SVMs requires to select a kernel function.
Since the optimal kernel for a given application cannot be specified a priori, the
capability of a training method to work with any (or the widest possible) family
of kernels is an important feature.

In order to show that the proposed methods can obtain effective models
even if the kernel does not satisfy the conditions required by CVMs, we conduct
experiments using the homogeneous second order polynomial kernel k(xi,xj) =
(γxTi xj)

2. Here, parameter γ is estimated as the inverse of the average squared
distance among training patterns. Parameter C is determined as usual by using
a validation grid search on the values 20, 21, . . . , 212. The test set is never used
to determine SVMs meta-parameters.

Note however that the purpose of this section is not to determine an optimal
choice of the kernel function on the considered problems. The results presented
below are merely indicative of the capability of the FW and MFW methods to
handle a wide family of kernels, thus allowing for a greater flexibility in building
a classifier.

Tab. 8 summarizes the results obtained in some of the datasets used in this
section. We can see that both test accuracies and training times are comparable
to those obtained using the gaussian kernel. It should be noted that the CVM
algorithm cannot be used to train an SVM using the kernel selected for this
experiment and thus we only incorporate the FW and MFW methods in the
table. These results demonstrate the capability of our methods to be used
with kernels other than those satisfying the normalization condition imposed
by CVMs.

5.9 Discussion

We now comment in more detail the results presented above. First of all we
note that, most of the time, the proposed algorithms appear very competitive
against CVM, with a tendency to favor training speed in large datasets, some-
times at the expense of a little accuracy. CVMs appear faster than FW just in
three problems among the single datasets studied in Subsection 5.5: Pendig-
its, USPS and Shuttle. It should be noted however that the Pendigits and
USPS datasets correspond to multi-category problems and are approached us-
ing a decomposition method based on solving several binary subproblems. Now,
as shown in Tab. 1, the greatest binary subproblem for these datasets, is smaller
than all the problems of the Web collection and all but one of the Adult col-
lection. When each subproblem is very small, SMO iterations are quite cheap,
and the overall cost of running the BC procedure is reasonably low. In these
cases, training with a CVM (or even with a traditional SMO-based SVM) pos-
sibly constitutes a convenient choice. The advantage of FW-based methods lies
instead in their capability to effectively handle larger problems, as results on
the Web and Adult collections show.

All the methods offer very similar testing performances on all the charac-
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Dataset Algorithm Accuracy STD-Accuracy Time(s) STD-Time

Shuttle FW 96.58 9.44E-01 6.32E+01 3.69E+01
Shuttle MFW 95.86 9.33E-01 8.52E+01 1.29E+02
Reuters FW 95.80 3.00E-01 2.89E+00 3.23E-01
Reuters MFW 95.90 1.98E-01 2.39E+00 1.52E-01
Web w1a FW 97.22 1.08E-01 7.60E-02 3.50E-02
Web w1a MFW 97.49 1.47E-01 2.52E-01 1.34E-01
Web w2a FW 97.33 1.65E-01 1.42E-01 1.11E-01
Web w2a MFW 97.09 1.93E-01 8.40E-02 6.53E-02
Web w3a FW 97.32 1.68E-01 2.64E-01 1.33E-01
Web w3a MFW 97.22 1.22E-01 3.18E-01 3.19E-01
Web w4a FW 97.16 1.43E-01 3.76E-01 3.22E-01
Web w4a MFW 97.25 1.49E-01 3.74E-01 3.65E-01
Web w5a FW 97.08 7.37E-02 1.54E-01 2.14E-01
Web w5a MFW 97.11 1.12E-01 2.78E-01 3.20E-01
Web w6a FW 97.28 2.37E-01 2.96E-01 2.37E-01
Web w6a MFW 97.18 1.31E-01 5.02E-01 4.11E-01
Web w7a FW 97.23 6.22E-02 3.88E-01 2.81E-01
Web w7a MFW 97.23 1.51E-01 2.10E-01 1.35E-01
Web w8a FW 97.06 1.10E-01 2.76E-01 2.32E-01
Web w8a MFW 97.24 2.91E-01 3.38E-01 3.32E-01

Table 8: Accuracies and training times obtained with a polynomial kernel.
Statistics correspond to the mean and standard deviation obtained from 5 rep-
etitions of each experiment.

ter recognition problems (Letter, Pendigits, MNIST, USPS-Scaled and
USPS-Ext). On datasets IJCNN and Reuters, CVM offers more accurate
classifiers but employs a larger running time compared to FW and MFW. The
same can be said about the KDD99-10pc problem, but in this case the speed-
up offered by FW and MFW is considerably larger, up to two orders of magni-
tude. The Shuttle dataset returns mixed results, which are probably due to the
high lack of homogeneity in the size of the subproblems solved in the OVO de-
composition approach. Finally, the two FW methods are clearly advantageous
on Protein and KDD99-Full datasets, where they offer the same accuracy of
CVMs along with a considerably improved running time.

The results on the Web and Adult datasets are of particular interest and
deserve further comment. They consist of a series of datasets of increasing size,
and from their study we expect to gain an understanding of the performance
of the algorithm as m gradually increases. In fact, as documented in [30] and
[25] these datasets have been commonly used to compare the scalability of SVM
algorithms. In this regard, our results appear very encouraging. Not only do
both FW algorithms outperform CVM in every instance of the Web collection
with respect to CPU time, but the observed speedup increases monotonically
as the dataset size increases, reaching a peak of two orders of magnitude for the
FW method. Both algorithms also outperforms running times of CVM on all
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but two datasets of the Adult collection, with very similar testing accuracies.
The clear advantage of the MFW method with respect to both FW and

CVM in the Adult series can be probably explained by the considerable size of
the support vector set, which roughly amounts to a 60% of the full dataset, for
all the methods. It is evident that, if Ck becomes large, SMO iterations become
quite expensive, slowing down the CVM procedure. As regards the advantage
of MFW over FW, we interpret the results as follows. At the beginning of
the training process, the algorithms start with a small approximating ball, and
progressively expand it by including new examples. Intuitively, in the first
iterations both methods tend to include a large number of points in order to
increase the radius of the ball (and thus the objective value). Some of these
examples do not belong to the optimal support vector set and the algorithms
will try to remove them from the model once they approach the solution. When
the support vector set is large, as in this case, the number of these spurious
examples can be quite large, hampering the progress towards the optimum.
Now, FW is not endowed with the possibility of explicitly removing points
from the current coreset approximation, implying that the weights of useless
patterns vanish only in the limit. That is, a large number of iterations may be
taken before they drop below the tolerance under which they are numerically
considered zeros. MFW, in contrast, possesses the ability to remove undesired
points directly, and thus enjoys a considerable advantage when the number of
such examples is not small.

6 Conclusions and Perspectives

In this paper we have described the application of ε–coreset based methods
from computational geometry to the task of efficiently training an SVM, an
idea first proposed in [37]. We have introduced two algorithms falling in this
category, both based on the Frank-Wolfe optimization scheme. These methods
use analytical formulas to learn the classifier from the training set and thus do
not require the solution of nested optimization subproblems. Compared with
the results we presented in [10], we have explored a variant of the algorithm
which compares favorably in terms of testing accuracy and achieves training
times similar to our original version.

The large set of experiments we report in this paper confirms and consider-
ably expands the conclusions reached in [10]. As long as a minor loss in accuracy
is acceptable, both Frank-Wolfe based methods are able to build SVM classi-
fiers in a considerably smaller time compared to CVMs, which in turn have
been proven in [37] to be faster than most traditional SVM software. These
conclusions were statistically assessed using non-parametric tests. A second
contribution of this work has been to present preliminary evidence about the
capability to handle a wider family of kernels than CVMs, thus allowing for a
greater flexibility in building a classifier. Further variations of this procedure
will be explored in a future work, including learning tasks other than classifica-
tion.
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