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Abstract

Despite the relatively high accuracy of the naïve Bayes (NB) classifier, there may be several 

instances where it is not optimal, i.e. does not have the same classification performance as the 

Bayes classifier utilizing the joint distribution of the examined attributes. However, the Bayes 

classifier can be computationally intractable due to its required knowledge of the joint distribution. 

Therefore, we introduce a “pairwise naïve” Bayes (PNB) classifier that incorporates all pairwise 

relationships among the examined attributes, but does not require specification of the joint 

distribution. In this paper, we first describe the necessary and sufficient conditions under which the 

PNB classifier is optimal. We then discuss sufficient conditions for which the PNB classifier, and 

not NB, is optimal for normal attributes. Through simulation and actual studies, we evaluate the 

performance of our proposed classifier relative to the Bayes and NB classifiers, along with the 

HNB, AODE, LBR and TAN classifiers, using normal density and empirical estimation methods. 

Our applications show that the PNB classifier using normal density estimation yields the highest 

accuracy for data sets containing continuous attributes. We conclude that it offers a useful 

compromise between the Bayes and NB classifiers.
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1. Introduction

Consider a set of P attributes x = (x1, …, xP) measured for an individual belonging to class ci 

(i = 1, …, m; m ≥ 2). Suppose ci is unknown, so that some rule based on x is needed to 

classify the individual. Naturally, it is desired that this rule be as accurate as possible. Under 

zero-one loss (unit cost of misclassification and zero cost of correct classification), one such 

rule is the Bayes classification rule, which has the smallest expected loss among all other 

classification rules.1,6 The Bayes rule classifies an individual with observation x into class ci 

such that
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(1)

where C denotes the class variable, πi denotes the prior probability of X belonging to class 

ci, fi(x) denotes the probability density/mass function of X in class ci (assuming known πi), 

and the overall probability density/mass function of X is . In this paper, 

we assume that the cost of misclassifying an individual into class ci is the same for all 

classes.

For m = 2 classes, the Bayes rule classifies x into class c1 if and only if the Bayes classifier

(2)

and into class c2 otherwise, where assignment of x to class c1 for ϕb(x) = 1 is random.1 A 

proof of why a rule based on ϕb(x) is a Bayes rule can be found in Ref. 6. If we have 

available training and test samples that are representative of the population of (X, ci) values, 

there are several ways to estimate ϕb(x). For continuous X, one can assume a parametric, 

e.g. normal, distribution, and use the training sample to estimate the necessary parameters. 

For discrete X, one can estimate ϕb(x) using the sample probability of each x value in the 

training sample. However, a few issues may arise when computing ϕb(x). First, estimating 

ϕb(x) is likely to be problematic for high-dimensional data sets. Also, the sample 

probabilities used to estimate ϕb(x) can be very small for moderate to large P and, thus, 

noninformative. Another issue arises when a test observation x does not occur in the training 

sample so that fi(x) is not estimable.

To help avoid these issues, the naïve Bayes (NB) classifier is often used, which assumes that 

all Xp are independent given membership in class ci. For m = 2 classes, this classifier is 

given by

(3)

where x is classified into class c1 if ϕnb(x) ≥ 1 and into class c2 otherwise. For m > 2 classes, 

fi(x) in (1) is replaced with . To estimate ϕnb(x), one can use marginal density 

estimation for continuous X and empirical estimation for discrete X. To avoid zero 

probability estimates, one can use correction methods, such as Laplace estimation.31 

Computing ϕnb(x) and classifying a single observation has a total time complexity of (tP) + 

(mP), where t is the number of training observations.31

Under zero-one loss, any two classifiers ϕ1(x) and ϕ2(x) are equal, i.e. ϕ1(x) ≐ ϕ2(x),36 if

(4)
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Since applying a logarithm to ϕb(x) and ϕnb(x) does not change their classification, ϕnb(x) is 

optimal, i.e. ϕnb(x) ≐ ϕb(x),8,35 if log(ϕnb(x)) and log(ϕb(x)) are the same sign.

Although the conditional independence assumption of ϕnb(x) is usually unrealistic in 

practice, the NB classifier has been shown to perform surprisingly well.8,9,13,36 Domingos 

and Pazzani8 explain that this is due to the zero-one loss function, which does not penalize 

incorrect estimation of the posterior probability P(C = ci | X = x) as long as this probability 

is highest for the correct class. Specifically, even though ϕnb(x) can produce very poor 

estimates of P(C = ci | X = x), the class with the highest posterior probability remains the 

same.4,8,20,36

While investigating the relatively high accuracy of ϕnb(x), authors such as Kuncheva18 and 

Zhang36 determine the necessary and sufficient conditions for which ϕnb(x) is optimal for m 
= 2, despite the strong relationships that may exist among the different attributes. When 

dealing with two binary attributes (X1, X2), where X1, X2 ∈ {0, 1}, Kuncheva demonstrates 

the optimality of ϕnb(x) when π1 = π2 and the covariance of X1 and X2 is the same for both 

classes.18 Zhang36 goes beyond the binary case in determining the optimality conditions for 

ϕnb(x), using the fact that P(X = x, C = ci) can be represented as an augmented naive Bayes 

(ANB) network. An ANB network is a directed acyclic graph where: (1) one node denotes 

the class variable C while each of the other nodes denotes an attribute Xp, (2) each directed 

edge points from one parent node to its descendant, and denotes a link between the two 

nodes, (3) each attribute node may have more than one parent, but one parent must be the 

class node C, and (4) given its parents, each attribute is independent of all other 

attributes.9,23 Unlike an NB network, where each attribute node only has class node C as its 

parent, an ANB network represents the dependence that can exist between any attribute and 

its parents.36 An example of an NB and ANB network is shown in Figs. 1(a) and 1(b).

The ANB representation of P(X = x, C = ci) is

(5)

where pa(xp) denotes the values of the parent attributes of Xp.9,15,26,36 We may want to 

represent P(X = x, C = ci) in a way that expresses the relationship between any pair (Xj, Xk) 

(j, k = 1, …, P; j ≠ k) and another distinct set of attributes, which we denote by pa(Xj, Xk). 

In this case, we can use the following “pseudo” ANB representation of P(X = x, C = ci)

(6)

where pa(xl, xl+1) = {xl+2, …, xP}. The ordering in (6) and the definition of pa(xl, xl+1) is 

used for notational convenience in the next section, but we note that this ordering is arbitrary 
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since the representation in (6) is not order-dependent. We define a “pseudo” ANB network 

as a set of attributes where (1) (Xj, Xk) is related to class and another set of attributes pa(Xj, 
Xk) and (2) given membership in class ci and pa(Xj, Xk), each pair (Xj, Xk) is independent 

of all other attributes.

In his discussion, Zhang36 uses (5) to show that ϕb(x) is the product of ϕnb(x) and a quantity 

that reflects the strength of the relationship between Xp and pa(Xp) in each class. He then 

uses this relation to develop the optimality conditions for ϕnb(x). In the process, he proves 

that whether ϕnb(x) is optimal depends on how the strength of the relationship between Xp 

and pa(Xp) compares across the two classes. Zhang36 also establishes sufficient optimality 

conditions for ϕnb(x) for bivariate normal data.

On the other hand, the optimality conditions of ϕnb(x) may not be satisfied. For instance, 

Kuncheva18 demonstrates that ϕnb(x) is not optimal in the case of binary attributes when πi 

is not the same for each class. If estimating ϕb(x) is problematic, then an alternate classifier 

that falls between ϕnb(x) and ϕb(x) needs to be considered. This has been recognized in the 

literature by several authors in their proposals of such alternatives to account for the 

relationships among subsets of the P attributes (Chow and Liu,7 Friedman et al.,9 Grossman 

and Domingos,11 Hall,12 Keogh and Pazzani,15,16 Kononenko,17 Langley and Sage,19 

Pazzani,22 Sahami,26 Silvescu et al.,27 Singh and Provan,28 Webb et al.,31 Webb and 

Pazzani,32 Xie et al.,33 Zaidi et al.,34 Zhang,35 Zhang et al.,37,38 and Zheng and Webb39 and 

Zheng et al.40).

Of these techniques aimed at relaxing the conditional independence assumption of ϕnb(x), 

we focus on five that have demonstrated considerable improvement in classification 

accuracy relative to the NB classifier. Zheng and Webb39 develop a lazy Bayesian rule 

(LBR) classifier that assigns x to the class ci that maximizes the estimate 

, where Xsel is a subset of attributes that is 

selected using a heuristic wrapper approach aimed at minimizing classification error.39 

Based on the Bayesian tree construction approach of Chow and Liu,7 Friedman et al.9 

propose a tree augmented naïve (TAN) classifier that assigns x to the class ci that maximizes 

the estimate , where π̂
i and P̂(·) are computed using 

smoothing techniques and the function pa(xp) is chosen using the conditional mutual 

information between Xp and Xj (j ≠ p) given membership in class ci. Keogh and Pazzani15,16 

also develop a variant of TAN called Super-Parent TAN (SP-TAN) where pa(xp) is instead 

chosen using a heuristic wrapper approach aimed at minimizing classification error. With 

respect to accuracy, SP-TAN has been shown to outperform TAN and to be comparable to 

LBR.15,16,30 In the spirit of the Bayesian network classification approach by Sahami,26 

which assumes that each Xp is dependent on class membership and at most s other attributes 

(0 ≤ s ≤ P − 1), Webb et al.31 develop their proposed classifier, based on averaged one-

dependence estimation (AODE), which assigns x to the class ci that maximizes the estimate
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(7)

where P̂(·) are computed using Laplace estimation, F̂(xp) denotes the number of training 

observations where attributeXp is equal to the value xp, and ncut is set to 30 to chosen to 

ensure that P̂(·) are based on adequate sample sizes. In addition, Zhang et al.37 propose a 

hidden naïve Bayes (HNB) network, based on the hierarchical NB model of Zhang35 that 

extends the NB network such that each attribute Xp not only has class node C as its parent, 

but also a hidden parent Xh,p. Based on this network, their proposed classifier assigns x to 

the class ci that maximizes the estimate , where 

 and the weights 

Wjk are computed using the conditional mutual information between Xj and Xk (j ≠ k). The 

total time complexities (training time + classification time) involved in applying LBR, TAN, 

SP-TAN, AODE, and HNB are displayed in Table 1 (see Refs. 9, 15, 16, 31, 37 and 39 for 

details).

However, one potential issue for each of these approaches is that they all require discrete 

valued attributes. In particular, in applying their proposed classifiers for continuous X, 

Zheng and Webb, Friedman et al., Keogh and Pazzani, Webb et al., and Zhang et al. all 

discretize the attribute data using the entropy minimization approach by Fayyad and Irani10 

to partition the range of each Xp. In discretizing the data, important information may be lost 

and may lead to higher classification error for classifiers using sample probabilities relative 

to those using density estimates.

Therefore, to address these potential issues, we propose an alternate “pairwise naïve” (PNB) 

classifier that accounts for the relationships between all  attribute pairs and is 

applicable for both discrete and continuous data. Our proposed classifier is given by

(8)

for m = 2, which classifies x into class c1 if ϕpnb(x) ≥ 1 and into class c2 otherwise. For m > 

2 classes, fi(x) in (1) is replaced with . We can then compute (8) 

using bivariate density or Laplace estimation, depending on X. Estimating the pairwise 

probabilities fi(xj, xk) based on t training observations is of time complexity (tP2), while 

classifying a single observation using the estimates  is 

of time complexity (mP2). Thus, the total time complexity involved in applying ϕpnb(x) is 

(tP2) +  (mP2). The total computational time complexity for our proposed classifier is also 

displayed in Table 1.
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It is reasonable to expect that any classifier which relaxes the conditional independence 

assumption of NB will yield higher classification accuracy relative to NB, since such a 

classifier should yield more precise estimates of the probabilities πi fi(x) needed to compute 

ϕb(x). Therefore, in proposing ϕpnb(x), we could have extended beyond pairs of attributes 

and instead accounted for the relationship between attribute triples, quadruples, etc. 

However, in considering only relationships between attribute pairs, our proposed classifier 

minimizes the risk of encountering computational issues that may arise from taking into 

account the relationship between attributes in a particular subset. For instance, in the case of 

discrete valued attributes where Xp has at least two values, the sample probabilities used to 

estimate each of the probability mass functions fi(xj, xk) in class ci are larger than those used 

to estimate fi(xj, xk, xl), fi(xj, xk, xl, xo), etc. Thus, compared with a classifier that considers 

the relationship between each attribute triple, quadruple, etc., ϕpnb(x) is less likely to have to 

deal with noninformative sample probabilities. Also, for discrete X, ϕpnb(x) has a smaller 

chance of running into estimability issues since it is more likely that (xj, xk) will arise in the 

training sample than (xj, xk, xl), (xj, xk, xl, xo), etc. In the case of normal attributes, it is less 

likely that the covariance matrix for (Xj, Xk) will run into any singularity issues compared 

with the covariance matrices for (Xj, Xk, Xl), (Xj, Xk, Xl, Xo), etc. and, thus, less likely that 

the pairwise density estimation required for ϕpnb(x) will encounter any computational issues.

In this paper, we successfully develop our PNB classifier as an alternative to the NB, LBR, 

TAN, AODE, and HNB classifiers when the Bayes classifier is not computationally feasible 

and show, through extensive simulation studies and applications to actual data sets, that the 

increase in accuracy of our PNB classifier using normal density estimation is statistically 

significant in data sets containing at least some continuous attributes. In addition, we show 

through these studies and applications that our PNB classifier using normal density 

estimation is statistically significantly more accurate than even the Bayes classifier for data 

sets with all normal attributes.

In Sec. 2, we provide a necessary and sufficient condition for which ϕpnb(x) is optimal, 

along with a necessary and sufficient condition for which ϕpnb(x) gives the same 

classification results as ϕnb(x). We then explore sufficient conditions for the optimality of 

ϕpnb(x) and ϕnb(x) for normal X in Sec. 3. Next, we evaluate the classification performance 

of the Bayes, PNB, NB, LBR, TAN, AODE, and HNB classifiers using simulation studies in 

Sec. 4 and selected data sets from the UCI Machine Learning Repository2,5 in Sec. 5. For 

these applications, SP-TAN is not considered due to its comparable accuracy to LBR. We 

then conclude with a final discussion in Sec. 6.

2. Equivalence of PNB Classifier to Bayes and NB Classifiers

We use the pseudo ANB representation in (6) to develop the conditions for which ϕpnb(x) 

produces the same classification results as ϕb(x) and ϕnb(x) for m = 2. Before we do so, we 

need to define a measure of the relationship in class ci between an attribute pair (Xj, Xk) and 

its parent set pa(Xj, Xk) for a pseudo ANB network. We call this measure the local 
dependence of (Xj, Xk) in class ci, which we define in Sec. 2.1 and use to state the 

equivalence conditions for ϕpnb(x) in Sec. 2.2.
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2.1. Measure for the local dependence of a pair of attributes

In a pseudo ANB network T, we define the following measure for the local dependence of 

(Xj, Xk).

Definition 1—For A = (Xj, Xk) (j, k = 1, …, P; j < k) in T, the local dependence derivative 

of A in classes c1 and c2 are

(9)

Intuitively, the ratio  determines how strongly the set of attributes pa(Xj, Xk) 

affect node A = (Xj, Xk) in each class. If A is not related to any other nodes, then 

. If , then the set pa(A) = pa(Xj, Xk) 

increases the probability of A in class ci and helps to support classification into class ci. 

However, we want to determine the class for which the set pa(Xj, Xk) has greater influence 

and, thus, the ratio of the two derivatives in (9) is primarily of interest.

Definition 2—For node A = (Xj, Xk) in T, the local dependence derivative ratio at A is

(10)

which measures the influence of the local dependence of A on the classification results. In 

addition,

1. If pa(A) is empty, ddrT (a) = 1. This makes intuitive sense since A not being related 

to any other attribute means there is nothing to support classifying A into one class 

or another.

2. If , then ddrT (a) = 1. This implies that the local 

dependence of A is evenly distributed in both classes. Thus, regardless of how 

strong an influence the set pa(A) has in each class, it has no effect on classification.

3. If ddrT (a) > 1, then the local dependence of A in class c1 is stronger than in class 

c2 and vice versa if ddrT (a) < 1.

2.2. Conditions for equivalence of PNB classifier to Bayes and NB classifiers

In this section, we explore the conditions under which our proposed PNB classifier ϕpnb(x) 

produces the same classification results as the Bayes and NB classifiers ϕb(x) and ϕnb(x). In 

doing so, we utilize
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(11)

for a given x = (x1, …, xP), where Al = (Xl, Xl+1).

The following theorem defines the relation between ϕb(x) and ϕpnb(x).

Theorem 1—For a “pseudo” ANB T,

(12)

Proof: Based on (6), (9), and (10), we have that for odd P,

For (j, k) ∉ {(1, 2), (3, 4), …, (P − 2, P − 1)},
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A similar argument holds for even P.

From Theorem 1, we see that two factors differentiate ϕb(x) from ϕpnb(x):

1. the product of the local dependence derivative ratios for {X1, X2}, {X3, X4}, …,

2. the product of the ratios of the group conditional probabilities for all other pairs 

{Xj, Xk} (and XP for odd P).

Thus, D and D′ show how the local dependence of {X1, X2}, {X3, X4}, … distributes in 

each class, and how these local dependencies work together with the relationships existing 

among all other {Xj, Xk}. For instance, if D = D′ = 1, then ϕb(x) and ϕpnb(x) are equivalent. 

Although it is clear from (12) that D = 1 or D′ = 1 is sufficient for the equivalence of ϕb(x) 

and ϕpnb(x), it is not a requirement. A necessary and sufficient condition for the equivalence 

of ϕb(x) and ϕpnb(x) is provided in the following corollary, which follows from Theorem 1 

and (4).

Corollary 1—For a given x, the classifiers ϕb(x) and ϕpnb(x) are equal under zero-one loss, 

i.e. ϕb(x) ≐ ϕpnb(x) if and only if

•
(odd P) when ϕpnb(x) ≥ 1,  or when ϕpnb(x) < 1, ,

•
(even P) when ϕpnb(x) ≥ 1,  or when ϕpnb(x) < 1, .

If this condition holds for every x in the attribute space, i.e. ϕb ≐ ϕpnb, then the PNB 

classifier is globally optimal.
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Suppose there are instances where we can compute ϕpnb(x), D, and D′, but not ϕb(x), e.g. 

high-dimensional normal data sets. Corollary 1 describes when ϕpnb(x) would give the same 

classification as ϕb(x) if ϕb(x) were possible to compute.

From Theorem 1, Corollary 1, and the results in Ref. 36, we also have the following 

corollary.

Corollary 2—For D and D″ defined as in (11),

1.

(13)

2. For a given x, ϕpnb(x) ≐ ϕnb(x) if and only if

• (odd P) when ϕpnb(x) ≥ 1, D−1D″ ≤ ϕpnb(x) or when ϕpnb(x) < 1, D−1D″ > 

ϕpnb(x),

• (even P) when ϕpnb(x) ≥ 1, D′−1D″ ≤ ϕpnb(x) or when ϕpnb(x) < 1, D′−1D″ > 

ϕpnb(x).

3. Sufficient Conditions for Optimality of PNB Classifier: Normal Case

We now demonstrate sufficient optimality conditions for ϕpnb(x) for m = 2 classes, where we 

focus on the normal case due to its ubiquity in practice. In our discussion, we work with 

, and  and assume equal 

priors.

We assume X is normally distributed in class ci, with known mean vector μi = (μ1,i, …, μP,i) 

and covariance matrix Σ such that Xp has known variance σ2 and (Xj, Xk) have known 

correlation ρ. To ensure that Σ is positive definite, we assume −1/(P − 1) < ρ < 1. We then 

define

(14)
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noting that both ω1 and ω2 are positive. Using normal density formulas and matrix 

properties, we have that  is not optimal if

(15)

is negative. On the other hand,  is optimal if

(16)

is non-negative. For instance,  is optimal, while  is not, when x = (2.047, 

1.896, 0.972), μ1 = (1, 2, 3) and μ2 = (3, 2, 3), σ2 = 1, and ρ = −0.45. Therefore, (15) and 

(16) provide explicit conditions for when the PNB classifier is optimal and NB is not.

Suppose we consider the case of equal mean differences (aj ≡ a), where Zhang36 states that 

 is optimal for P = 2 only under certain conditions. We have that  and 

are always optimal if aj ≡ a, where (15) and (16) simplify to

both of which are always non-negative.

4. Simulation Studies

We now investigate the classification performance of our proposed PNB classifier relative to 

the Bayes, NB, LBR, TAN, AODE, and HNB classifiers for discrete and continuous data, 

where we focus on classification into m = 2 classes. All analyses are run using R software 

version 3.1.2,24 with the RWeka package used to construct the LBR, TAN, AODE, and 

HNB classifiers.

4.1. Binary data

We first consider the case of correlated binary attributes. Using the algorithm of Kang and 

Jung,14 we simulate S = 50 data sets such that in each, N observations y = (y1, y2, y3) have 

prior probability 0.5 of belonging to class ci (i = 1, 2), where
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(17)

In our simulations, we consider the following cases:

1. Case 1: δ1 = (δ11, δ12, δ13) = (0.1, 0.2, 0.3), δ2 = (δ21, δ22, δ23) = (0.1, 0.2, 0.3); γ1 = 

(γ1,12, γ1,13, γ1,23) = (0, 0, 0), γ2 = (γ2,12, γ2,13, γ2,23) = (0.1, 0.2, 0.3); α1 = 2, α2 = 

1.

2. Case 2: δ1 = (δ11, δ12, δ13) = (0.1, 0.2, 0.3), δ2 = (δ21, δ22, δ23) = (0.1, 0.2, 0.3); γ1 = 

(γ1,12, γ1,13, γ1,23) = (0.55, 0.66, 0.77), γ2 = (γ2,12, γ2,13, γ2,23) = (0.06, 0.05, 0.08); 

α1 = −5, α2 = −1.

We consider N = 100, 200 observations for each case when applying each classifier. Using 

10-fold cross-validation (CV), we compute the error rates for each classifier, all of which are 

estimated empirically. Also, to test whether one classifier has a significantly higher or lower 

CV error rate than another for a particular data set, we use the Nadeau and Bengio’s21 

corrected resampled t-test, which they show yields statistical tests with correct test sizes and 

high power. In Table 2, we present, for each (N, case) and classifier, the mean CV error rate 

and CPU time in seconds (training time + classification time) averaged across simulations, 

along with the numbers of w wins (data sets where the classifier has the lowest error), d 
draws (data sets where the classifier does not have significantly higher error than the winner 

at the 10% level), and l losses (data sets where the classifier has significantly higher error 

than the winner at the 10% level). Although our proposed PNB classifier does not appear to 

dominate if one examines its mean CV error rate and CPU time, we do see that it wins most 

often in three out of the four (N,case) scenarios among all classifiers other than the Bayes 

classifier. In addition, the PNB classifier draws with the winner most often for three out of 

the four scenarios and is never significantly worse than the winner.

4.2. Continuous data: Normal case

To assess the classification performance of our proposed PNB classifier relative to the other 

classifiers discussed based on data that one could encounter in practical applications, we 

conduct a simulation study using biomarker data from a cardiovascular study conducted by 

the High Risk Plaque Initiative [BG Medicine Inc. (Waltham, MA) and other partners].3 In 

modeling this simulation study, we consider the 591 continuous biomarkers measured on N 
= 136 subjects belonging to either one of two diagnostic groups, namely, individuals who 

underwent a near-term cardiovascular event and those who did not. For each of S = 25 data 

sets, we simulate N = 136 observations x = (x1, …, xP) such that each has prior probability 

πi ≡ 0.5 (i = 1, 2) of belonging to class ci. We assume X is normally distributed with mean 

μi and covariance Σi in class ci, where μi and Σi are set to equal the sample mean vector and 

covariance of the P biomarkers in the ith diagnostic group. To examine the results compare 

for differing number of attributes, we simulate the observations (x1, …, xP) based on the 

sample mean vectors and covariance matrix of P = 25, 50, 100, 300 randomly selected 

biomarkers, and also on the sample mean vectors and covariance matrix of all P = 591 

biomarkers.
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In estimating the LBR, TAN, AODE, and HNB classifiers, we discretize all attributes using 

Fayyad and Irani’s discretization method, since all four classifiers used this entropy 

minimization-based approach in their applications. To estimate the Bayes, PNB, and NB 

classifiers, we first use normal density estimation assuming either Σ1 ≠ Σ2 or Σ1 = Σ2, under 

which we use either the sample pooled covariance Σ̂
pool or the sample class covariances Σî. 

Next, we empirically estimate the PNB and NB classifiers. Since Fayyad and Irani’s entropy 

minimization-based discretization approach has been noted to fail in certain data sets,25 we 

instead discretize each Xp by rounding its values to two decimal places and categorizing the 

rounded values, which we then use to empirically estimate the PNB and NB classifiers. We 

round to two decimal places to reduce computation time and the chance of obtaining non-

informative sample probabilities. In computing the error rates for each classifier, we use 2-

fold CV for each data set.

In Table 3, we present, for each P and each classifier, the mean CV error rate and mean CPU 

time in seconds averaged across simulations, along with the numbers of w wins, d draws, 

and l losses using the statistical testing approach described in Sec. 4.1. We see that what our 

proposed PNB classifier may lack in computational speed, it compensates for in terms of 

accuracy when we use normal density estimation. Specifically, for each P, the lowest error 

rates and highest number of wins are obtained when we correctly assume Σ1 ≠ Σ2 and use 

the estimates Σ̂i. In addition, with the exception of P = 25, we see that in computing the 

normal-based PNB classifier using Σ̂
i, it consistently wins across all data sets for each P. 

Considering that this result holds for P = 300, 591, where N = 136 < P, the potential benefit 

of this normal-based PNB classifier with respect to accuracy in high-dimensional data sets is 

worth noting.

5. Applications

We then examine the performance of the Bayes, PNB, NB, LBR, TAN, AODE, and HNB 

classifiers as applied to 22 data sets from the UCI Machine Learning Repository,2,5 the 

description of which can be found in Table 4. For each data set, we only consider attributes 

with complete cases. In addition, we examine the BG Medicine biomarker data described in 

Sec. 4.2, along with genetic microarray data obtained from a study conducted by Wang et 
al.,29 which are labeled “BG Medicine” and “MDACC” in Table 4.

Since we are mainly interested in how results are affected by data type, we consider data sets 

with either all quantitative or categorical attributes and those with a mix of quantitative and 

categorical attributes. For the quantitative data sets, we consider the empirical PNB, NB, 

HNB, AODE, LBR, and TAN classifiers, where attributes are discretized using the approach 

described in Sec. 4.2. We also apply the normal-based Bayes, PNB, and NB classifiers, 

which are computed as in Sec. 4.2. In cases where X is categorical or mixed, we consider the 

empirical PNB, NB, HNB, AODE, LBR, and TAN classifiers. However, for mixed X, we 

also estimate fi(xj, xk) for the PNB classifier and fi(xj) for the NB classifier using normal 

density estimation for quantitative attribute pairs (Xj, Xk) and single attributes Xj, and 

Laplace estimation for categorical (Xj, Xk) and Xj. For attribute pairs (Xj, Xk) where Xj is 

continuous and Xk categorical, Xj is discretized and fi(xj, xk) is estimated using Laplace 

estimation.
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In Tables 5 and 6, we display the CV the error rates for each data set and classifier using 

normal density and empirical probability estimation, respectively. For each data type, we 

also display the numbers of w wins, d draws, and l losses, along with mean CPU time 

averaged across data sets. With the exception of the “balance” data set, the HNB classifier 

has the lowest error across the data sets with categorical X. In addition, it also has the fastest 

mean computation time and most wins. For the mixed data sets, the HNB and normal-based 

PNB classifiers generally dominate in terms of error rates and number of wins. For the 

continuous data sets, the normal-based Bayes has most wins and the lowest error, followed 

by our normal-based PNB classifier.

In short, although its computation time is longer compared with the Bayes, NB, HNB, 

AODE, LBR, and TAN classifiers, the relatively high accuracy level (in terms of error rates 

and number of wins) for our proposed normal-based PNB classifier in the mixed and 

continuous data sets examined cannot be ignored. For instance, if computation of the 

normal-based Bayes classifier for the continuous data sets was not feasible, the normal-

based PNB classifier would have had the most wins among the NB, HNB, AODE, LBR, and 

TAN classifiers. Due to the varying performance of the normal-based PNB classifier for 

these data sets based on whether the estimates Σ̂
pool or Σ̂

i are used, we recommend applying 

this classifier using both types of covariance estimates. We note that in the continuous and 

mixed data sets, the empirical PNB classifier generally does not outperform its normal-based 

counterpart in terms of accuracy. However, in recognition of the fact that the normal-based 

PNB classifier retains more information than the empirical PNB classifier by not discretizing 

the continuous attributes, the superior performance of the normal-based PNB classifier is not 

surprising.

6. Conclusion

We propose the PNB classifier as an alternate approach to not only NB, but also to the LBR, 

TAN, AODE, and HNB classifiers aimed at relaxing the conditional independence 

assumption integral to NB. However, our classifier also goes beyond the HNB, AODE, LBR, 

and TAN classifiers in that rather than discretizing continuous attributes and potentially 

losing information, which can lead to increased error, it instead allows for the use of density 

estimation. Through comprehensive simulation studies and applications to actual data sets, 

we illustrate that the use of normal density estimation for the PNB classifier leads to an 

increase in computational accuracy over the NB, LBR, TAN, AODE, and HNB classifiers 

that is statistically significant in data sets with continuous attributes. In data sets containing 

all normal attributes, we also show that the PNB classifier has an increase in accuracy over 

the Bayes classifier that is statistically significant. We also formulate exact conditions where 

the Bayes and PNB classifiers have the same classification performance, even when there 

are strong dependencies that extend beyond a pair of attributes. In particular, we show that 

these conditions are based solely on how the relationships between each pair of attributes 

and all other attributes work together to support or cancel one another to determine 

classification.

Despite the amount of computation time involved, our experimental results show that the 

high level of computational accuracy displayed by our proposed normal-based PNB 
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classifier in the examined data sets with all or mostly continuous attributes is highly 

beneficial. Specifically, for these types of data sets, our experimental results demonstrate 

several instances in which the normal-based PNB classifier is statistically significantly more 

accurate than not only NB, but also the more established HNB, AODE, LBR, and TAN 

classifiers that have been shown to yield higher accuracy relative to NB. In our simulation 

study, we have also shown that the increase in accuracy of our normal-based PNB classifier 

over the normal-based Bayes classifier is statistically significant in certain instances, 

including those dealing with high-dimensional data where computational issues for the 

normal-based Bayes classifier are likely to arise. Considering the simplicity of the normal-

based PNB classifier and the breadth of the attribute relationships it accounts for, along with 

the ubiquity of data sets with continuous attributes and the assumption of normality when 

analyzing such attributes, the normal-based PNB classifier is a promising algorithm that can 

potentially yield important results in many practical applications.
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Fig. 1. 
Examples of Bayesian networks. (a) ANB and (b) NB.
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Table 1

Computational time complexity.

Classifier Total Time Complexity

NB (tP) + (mP)

LBR (tP) + (mtP3)

TAN (P2(t + mv2 + log(P))) + (mP)

SP-TAN (mtP3) + (mP)

AODE (tP2) + (mP2)

HNB (P2(t + mv2)) + (mP2)

PNB (tP2) + (mP2)

Note: m is the number of classes, P is the number of attributes, v is the average number of values for each attribute, and t is the number of training 
examples
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