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Abstract

Despite the relatively high accuracy of the naive Bayes (NB) classifier, there may be several
instances where it is not optimal, i.e. does not have the same classification performance as the
Bayes classifier utilizing the joint distribution of the examined attributes. However, the Bayes
classifier can be computationally intractable due to its required knowledge of the joint distribution.
Therefore, we introduce a “pairwise naive” Bayes (PNB) classifier that incorporates all pairwise
relationships among the examined attributes, but does not require specification of the joint
distribution. In this paper, we first describe the necessary and sufficient conditions under which the
PNB classifier is optimal. We then discuss sufficient conditions for which the PNB classifier, and
not NB, is optimal for normal attributes. Through simulation and actual studies, we evaluate the
performance of our proposed classifier relative to the Bayes and NB classifiers, along with the
HNB, AODE, LBR and TAN classifiers, using normal density and empirical estimation methods.
Our applications show that the PNB classifier using normal density estimation yields the highest
accuracy for data sets containing continuous attributes. We conclude that it offers a useful
compromise between the Bayes and NB classifiers.

Keywords

Bayesian classification; naive Bayes classifier; optimal classification; pairwise naive Bayes
classifier; semi-naive Bayes classifier

1. Introduction

Consider a set of Pattributes x = (xq, ..., xp) measured for an individual belonging to class ¢;
(7=1, ..., m; m=2). Suppose c;is unknown, so that some rule based on X is needed to
classify the individual. Naturally, it is desired that this rule be as accurate as possible. Under
zero-one loss (unit cost of misclassification and zero cost of correct classification), one such
rule is the Bayes classification rule, which has the smallest expected loss among all other
classification rules.1® The Bayes rule classifies an individual with observation x into class ¢;
such that
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_ Y ) — P(X=x,C=c¢;)] _ i fi(x)
¢;=argmax, P(C=¢;|X=x)=argmax; —P(X:x) ] =argmax; {7“)() }, 1)

where Cdenotes the class variable, ;denotes the prior probability of X belonging to class
c;, f{x) denotes the probability density/mass function of X in class ¢; (assuming known ),

m
and the overall probability density/mass function of X is f(x)=) _ _ 7 fi(x). In this paper,
we assume that the cost of misclassifying an individual into class ¢;is the same for all
classes.

For m= 2 classes, the Bayes rule classifies x into class ¢; if and only if the Bayes classifier

_P(C=ciX=x) mAH()/f(x) _mifi(x)
P(C=cy|X=x) mafa(x)/f(x) m2fa(x) ~

¢b (X) 2

and into class ¢, otherwise, where assignment of x to class ¢; for g4(x) = 1 is random.1 A
proof of why a rule based on ¢4(x) is a Bayes rule can be found in Ref. 6. If we have
available training and test samples that are representative of the population of (X, ¢) values,
there are several ways to estimate ¢4(x). For continuous X, one can assume a parametric,
e.g. normal, distribution, and use the training sample to estimate the necessary parameters.
For discrete X, one can estimate ¢4(x) using the sample probability of each x value in the
training sample. However, a few issues may arise when computing ¢(x). First, estimating
oHx) is likely to be problematic for high-dimensional data sets. Also, the sample
probabilities used to estimate ¢(x) can be very small for moderate to large £and, thus,
noninformative. Another issue arises when a test observation x does not occur in the training
sample so that £(x) is not estimable.

To help avoid these issues, the naive Bayes (NB) classifier is often used, which assumes that
all X, are independent given membership in class ¢; For /m = 2 classes, this classifier is
given by

¢ ( ) 1 11:[ fl (’TP)

b\ X)=— ) 3

B 7r2p:1f2(wp) ( )

where x is classified into class ¢ if ppp(X) 2 1 and into class ¢, otherwise. For /77> 2 classes,

f(x) in (1) is replaced with H;lfi(mp). To estimate ¢np(X), one can use marginal density
estimation for continuous X and empirical estimation for discrete X. To avoid zero
probability estimates, one can use correction methods, such as Laplace estimation.3!
Computing ¢np(x) and classifying a single observation has a total time complexity of 7(¢P) +
©(mP), where tis the number of training observations.3!

Under zero-one loss, any two classifiers ¢1(x) and ¢a(x) are equal, i.e. 91(X) = ¢2(x),38 if

¢$1(x) > 01if and only if ¢2(x) > 0. (4
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Since applying a logarithm to ¢ () and @np(X) does not change their classification, @np(X) is
optimal, i.e. pap(X) = @p(X),83% if log(pnp(X)) and log(p(x)) are the same sign.

Although the conditional independence assumption of @np(X) is usually unrealistic in
practice, the NB classifier has been shown to perform surprisingly well.8:9-13.36 Domingos
and Pazzani® explain that this is due to the zero-one loss function, which does not penalize
incorrect estimation of the posterior probability AC= ¢;| X = x) as long as this probability
is highest for the correct class. Specifically, even though ¢np(X) can produce very poor

estimates of A(C= ¢;| X = x), the class with the highest posterior probability remains the
same.4:8.20,36

While investigating the relatively high accuracy of @np(x), authors such as Kuncheval® and
Zhang36 determine the necessary and sufficient conditions for which ¢pp(x) is optimal for m
=2, despite the strong relationships that may exist among the different attributes. When
dealing with two binary attributes (X7, X5), where X7, X5 € {0, 1}, Kuncheva demonstrates
the optimality of onp(X) when mp = 7o and the covariance of X3 and X5 is the same for both
classes.1® Zhang36 goes beyond the binary case in determining the optimality conditions for
onb(X), using the fact that AX =X, C= ¢)) can be represented as an augmented naive Bayes
(ANB) network. An ANB network is a directed acyclic graph where: (1) one node denotes
the class variable Cwhile each of the other nodes denotes an attribute X}, (2) each directed
edge points from one parent node to its descendant, and denotes a link between the two
nodes, (3) each attribute node may have more than one parent, but one parent must be the
class node C, and (4) given its parents, each attribute is independent of all other
attributes.%23 Unlike an NB network, where each attribute node only has class node Cas its
parent, an ANB network represents the dependence that can exist between any attribute and
its parents.36 An example of an NB and ANB network is shown in Figs. 1(a) and 1(b).

The ANB representation of AX =x, C=¢)) is

P P
P(X=x, C’:ci):me(pra(xp), C=¢;) :mei(a?p\pa(xp)), (5)
p=1 p=1

where pa(x;) denotes the values of the parent attributes of X,.°1526:36 We may want to
represent AX = x, C= ¢ in a way that expresses the relationship between any pair (Xj, Xj)
(, k=1, ..., P, j# K) and another distinct set of attributes, which we denote by pa(.Xj, Xj).
In this case, we can use the following “pseudo” ANB representation of AX =x, C=¢)

P—2
mifi(xp) 11 filzr, 2 |paler, 2i41)) for odd P,
=1
1 odd
P(X=x,C=¢;) = P—3 (6)
mifi(xp_x,) 11 filz, 2 |pa(e;, 2141)) for even P,
=1
1 odd

where pa(x;, Xg1) = {Xu2, ..., Xp}. The ordering in (6) and the definition of pa(x;, xpx1) is
used for notational convenience in the next section, but we note that this ordering is arbitrary
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since the representation in (6) is not order-dependent. We define a “pseudo” ANB network
as a set of attributes where (1) (X, Xj) is related to class and another set of attributes pa(Xj,
Xj) and (2) given membership in class ¢jand pa(Xj, Xj), each pair (Xj, Xj) is independent
of all other attributes.

In his discussion, Zhang36 uses (5) to show that ¢4(x) is the product of ¢pp(x) and a quantity
that reflects the strength of the relationship between X, and pa(X) in each class. He then
uses this relation to develop the optimality conditions for ¢nn(X). In the process, he proves
that whether ony(X) is optimal depends on how the strength of the relationship between X),
and pa(.X}) compares across the two classes. Zhang?30 also establishes sufficient optimality
conditions for @nu(x) for bivariate normal data.

On the other hand, the optimality conditions of ¢np(X) may not be satisfied. For instance,
Kuncheval8 demonstrates that gpp(x) is not optimal in the case of binary attributes when 7;
is not the same for each class. If estimating ¢4(X) is problematic, then an alternate classifier
that falls between ¢np(X) and ¢ 4(X) needs to be considered. This has been recognized in the
literature by several authors in their proposals of such alternatives to account for the
relationships among subsets of the Pattributes (Chow and Liu,” Friedman et a/.,° Grossman
and Domingos,!! Hall, 12 Keogh and Pazzani,1>:16 Kononenko,!” Langley and Sage,?
Pazzani,2? Sahami,8 Silvescu et a/,2” Singh and Provan,28 Webb et a/.,31 Webb and
Pazzani,3? Xie et al.,33 Zaidi et al.,** Zhang,3® Zhang et al.,3”-38 and Zheng and Webb3? and
Zheng et al*9).

Of these techniques aimed at relaxing the conditional independence assumption of ¢pp(X),
we focus on five that have demonstrated considerable improvement in classification
accuracy relative to the NB classifier. Zheng and Webb3° develop a lazy Bayesian rule
(LBR) classifier that assigns x to the class ¢;that maximizes the estimate

P (CZCz‘|Xse1)H::113 (Xp=2p|C=ci, Xsel), where X is a subset of attributes that is
selected using a heuristic wrapper approach aimed at minimizing classification error.3°
Based on the Bayesian tree construction approach of Chow and Liu,” Friedman et a/.?
propose a tree augmented naive (TAN) classifier that assigns x to the class ¢jthat maximizes

the estimate ﬁiH:ZIP (Xp=p|C=ci, pa(xp)) where m;and A-) are computed using
smoothing techniques and the function pa(x) is chosen using the conditional mutual
information between X, and X; (j# p) given membership in class ¢; Keogh and Pazzani'%16
also develop a variant of TAN called Super-Parent TAN (SP-TAN) where pa(Xxy) is instead
chosen using a heuristic wrapper approach aimed at minimizing classification error. With
respect to accuracy, SP-TAN has been shown to outperform TAN and to be comparable to
LBR.15.16:30 | the spirit of the Bayesian network classification approach by Sahami,28
which assumes that each X, is dependent on class membership and at most s other attributes
(0 < s< P-1), Webb et a/31 develop their proposed classifier, based on averaged one-
dependence estimation (AODE), which assigns x to the class ¢;that maximizes the estimate
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P
Z P(X,=z,,C=c;) H Xi=z;|X,=z,,C=c;), o)

(P1<p<P)AF(wp)>ncut j=1
where P(-A) are computed using Laplace estimation, R}p) denotes the number of training
observations where attribute X), is equal to the value x;, and 77 is set to 30 to chosen to
ensure that A ) are based on adequate sample sizes. In addition, Zhang et a/.3" propose a
hidden naive Bayes (HNB) network, based on the hierarchical NB model of Zhang3® that
extends the NB network such that each attribute X}, not only has class node Cas its parent,
but also a hidden parent X}, , Based on this network, their proposed classifier assigns x to

A P -
the class ¢jthat maximizes the estimate Winzlp(Xp:%W:Cia Xnp=Zhp) where

]S(Xp::rp|C:cl—,thp:xh’p):zpjzl Wi - ﬁ(Xk::L‘k|C:CZ'7Xj:~Tj)

j£k and the weights
Wi are computed using the conditional mutual information between Xjand Xj (f# k). The
total time complexities (training time + classification time) involved in applying LBR, TAN,
SP-TAN, AODE, and HNB are displayed in Table 1 (see Refs. 9, 15, 16, 31, 37 and 39 for
details).

However, one potential issue for each of these approaches is that they all require discrete
valued attributes. In particular, in applying their proposed classifiers for continuous X,
Zheng and Webb, Friedman et al., Keogh and Pazzani, Webb et a/., and Zhang et al. all
discretize the attribute data using the entropy minimization approach by Fayyad and Irani10
to partition the range of each Xj, In discretizing the data, important information may be lost
and may lead to higher classification error for classifiers using sample probabilities relative
to those using density estimates.

Therefore, to address these potential issues, we propose an alternate “pairwise naive” (PNB)

P >
classifier that accounts for the relationships between all ( 2 ) attribute pairs and is
applicable for both discrete and continuous data. Our proposed classifier is given by

¢pnb(x): H H fl x,]?xk) ®)

T2 501 pmipa 2% Zk)

for m= 2, which classifies x into class ¢y if opnp(X) = 1 and into class ¢, otherwise. For /m>

P—-1yqP
2 classes, f{(x) in (1) is replaced with Hj:l Hk:j+1fi(mja k). We can then compute (8)
using bivariate density or Laplace estimation, depending on X. Estimating the pairwise
probabilities 7{x;, Xx) based on Ztraining observations is of time complexity O(tP), while

classifying a single observation using the estimates H::11Hk2j+1fi(fjv z)(i=1,...,m)jg
of time complexity #(mP2). Thus, the total time complexity involved in applying Ppnb(X) is
O(tP) + 0 (mP2). The total computational time complexity for our proposed classifier is also
displayed in Table 1.
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It is reasonable to expect that any classifier which relaxes the conditional independence
assumption of NB will yield higher classification accuracy relative to NB, since such a
classifier should yield more precise estimates of the probabilities m; f{x) needed to compute
¢ x). Therefore, in proposing @pnn(X), we could have extended beyond pairs of attributes
and instead accounted for the relationship between attribute triples, quadruples, etc.
However, in considering only relationships between attribute pairs, our proposed classifier
minimizes the risk of encountering computational issues that may arise from taking into
account the relationship between attributes in a particular subset. For instance, in the case of
discrete valued attributes where X}, has at least two values, the sample probabilities used to
estimate each of the probability mass functions £{x;, xx) in class c;are larger than those used
to estimate 7{x; Xk, X)), (X Xk, X}, Xo), etc. Thus, compared with a classifier that considers
the relationship between each attribute triple, quadruple, etc., pnp(X) is less likely to have to
deal with noninformative sample probabilities. Also, for discrete X, @pnp(X) has a smaller
chance of running into estimability issues since it is more likely that (x;, xx) will arise in the
training sample than (x;, Xk, X)), (Xj, Xk X5, Xp), €tc. In the case of normal attributes, it is less
likely that the covariance matrix for (X, Xj) will run into any singularity issues compared
with the covariance matrices for (X, X, X)), (X, Xk, X Xo), etc. and, thus, less likely that
the pairwise density estimation required for ¢pnp(x) will encounter any computational issues.

In this paper, we successfully develop our PNB classifier as an alternative to the NB, LBR,
TAN, AODE, and HNB classifiers when the Bayes classifier is not computationally feasible
and show, through extensive simulation studies and applications to actual data sets, that the
increase in accuracy of our PNB classifier using normal density estimation is statistically
significant in data sets containing at least some continuous attributes. In addition, we show
through these studies and applications that our PNB classifier using normal density
estimation is statistically significantly more accurate than even the Bayes classifier for data
sets with all normal attributes.

In Sec. 2, we provide a necessary and sufficient condition for which @pny(x) is optimal,
along with a necessary and sufficient condition for which @pnp(X) gives the same
classification results as epp(X). We then explore sufficient conditions for the optimality of
@pnb(X) and enp(x) for normal X in Sec. 3. Next, we evaluate the classification performance
of the Bayes, PNB, NB, LBR, TAN, AODE, and HNB classifiers using simulation studies in
Sec. 4 and selected data sets from the UCI Machine Learning Repository2® in Sec. 5. For
these applications, SP-TAN is not considered due to its comparable accuracy to LBR. We
then conclude with a final discussion in Sec. 6.

2. Equivalence of PNB Classifier to Bayes and NB Classifiers

We use the pseudo ANB representation in (6) to develop the conditions for which pnp(X)
produces the same classification results as ¢g(x) and ¢npp(X) for m = 2. Before we do so, we
need to define a measure of the relationship in class ¢;between an attribute pair (X}, Xj) and
its parent set pa(Xj, Xj) for a pseudo ANB network. We call this measure the /oca/
dependence of (X, X) in class ¢; which we define in Sec. 2.1 and use to state the
equivalence conditions for opnp(X) in Sec. 2.2.
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2.1. Measure for the local dependence of a pair of attributes

In a pseudo ANB network 7, we define the following measure for the local dependence of
(X, Xi)-

Definition 1—For A= (X;, X ( k=1, ..., P, j< k) in T, the local dependence derivative
of Ainclasses ¢; and ¢, are

fa(alpa(a))

aa alpa(a) =D a2 alpaa) = REPE).

fi(a)

Intuitively, the ratio ddiT(a|pa(a))>l determines how strongly the set of attributes pa(.Xj Xy
affect node A = (X, Xy in each class. If Ais not related to any other nodes, then

dd. (a|pa(a))=dd? (a|pa(a))=L. If dd. (a|pa(a))>1, then the set pa(A) = pa(X; Xk
increases the probability of A in class ¢c;and helps to support classification into class c;.
However, we want to determine the class for which the set pa(Xj, Xj) has greater influence
and, thus, the ratio of the two derivatives in (9) is primarily of interest.

Definition 2—For node A = (Xj, Xj) in 7, the local dependence derivative ratio at A is
dd; (a|pa(a))

ddr, (a)=—"2""—"" (10)
T ddz(alpa(a))

which measures the influence of the local dependence of A on the classification results. In
addition,

1. If pa(A) is empty, ddrr (&) = 1. This makes intuitive sense since A not being related
to any other attribute means there is nothing to support classifying A into one class
or another.

2. ¢ dd} (a|pa(a))=dd? (a|pa(a)), then ddrr (&) = 1. This implies that the local
dependence of A is evenly distributed in both classes. Thus, regardless of how
strong an influence the set pa(A) has in each class, it has no effect on classification.

3. If ddrr (&) > 1, then the local dependence of A in class ¢j is stronger than in class
¢ and vice versa if ddrr(8) < 1.

2.2. Conditions for equivalence of PNB classifier to Bayes and NB classifiers

In this section, we explore the conditions under which our proposed PNB classifier ¢opnn(X)
produces the same classification results as the Bayes and NB classifiers ¢4(x) and ¢pp(X). In
doing so, we utilize
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D)= 72 fa(z,)

P2 P -
m fi(zp) I fi(zy 2 paler, 2i41)) [_11—[ fi(zj, k)] I

(ja k) ¢ {(132)3 (334)3 cee 7(P - 2aP - 1)}’

pP-3

— -! )Ple
1 |

drT(al) [f1($p s H

[
|
7=
[ o

(ja k) ¢ {(1’2)’ (3’4)a te >(P - 37P - 2)}'7

P
= H ddr,(zp), (11)

for a given x = (X, ..., Xp), where A;= (X}, Xp1).

Page 8

AT & el )

[fQ(mp) jljlk:]urlfl(mjamk)

2(x7v$k)
fQ(-TP 19 P)] 1h— ]+1f1(xjv$k)

The following theorem defines the relation between ¢4(x) and @pnp(X).

Theorem 1—For a “pseudo” ANB T,

{ ¢b(x):¢pnb(x) -D  odd P, 12

Op(X)=pub(x) - D’ even P.

Proof: Based on (6), (9), and (10), we have that for odd A,

P-1 | P2

fale, i lpalz, 2ia)) | w2 i1 kmg1 125 2x)

=1 =1
1 odd 1 odd

For (. §) ¢ {(, 2), (3, 4), ..., (P— 2, P- 1)},
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1(z, 241 |palzy, ©141)) fa (2, -77l+1)‘|
H f

Jo(zi, zra|palay, 2i41)) f1 (2, 2ig)

®u(x) ¢pnb(x [
p

I

H dd1 (ar|pa(a;)) ‘ xP o f2(-73jaxk)—‘

dz:l2 (a|pa(a;)) 2(z,) i lk_]+1f1($j,90k)

=1
| 1odd J

~

- (z folzj,x
=@pnb(X) H ddr, (a;) [f:(.’fp H H 2\, k]

I=1 P) iz 150 2E)
| 1odd

A similar argument holds for even P.

From Theorem 1, we see that two factors differentiate ¢ 4(x) from @pnp(X):
1. the product of the local dependence derivative ratios for { X1, X5}, { X3, X4}, ...,

2. the product of the ratios of the group conditional probabilities for all other pairs
{X, Xi} (and Xpfor odd A).

Thus, Dand D' show how the local dependence of { X1, X5}, { X3, X4}, ... distributes in
each class, and how these local dependencies work together with the relationships existing
among all other {.X;, Xj}. For instance, if D=0’ = 1, then ¢4(x) and @pnp(X) are equivalent.
Although it is clear from (12) that D=1 or D' = 1 is sufficient for the equivalence of ¢4(x)
and @pnp(X), it is not a requirement. A necessary and sufficient condition for the equivalence
of 4(x) and @pny(X) is provided in the following corollary, which follows from Theorem 1
and (4).

Corollary 1—For a givenx, the classifiers ¢ X) and opnn(X) are equal under zero-one 10ss,
1.6. p(X) = @pnv(X) /fand only if

1
(odd P) when pnn(X) = Lps Gpnb(X) or when epnp(x) < 1, >¢pnb( X),

1 1
' D! 1D/>¢pnb( )

If this condition holds for every xin the attribute space, i.e. ¢ = @pnp, then the PNB
classifier is globally optimal.

(even P) when opnn(X) 2 1, 7; < @pun(X) or when opnp(x) < 1
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Suppose there are instances where we can compute @pnp(X), O, and L', but not ¢(x), e.g.
high-dimensional normal data sets. Corollary 1 describes when @pnp(X) would give the same
classification as @x(x) if ¢4(X) were possible to compute.

From Theorem 1, Corollary 1, and the results in Ref. 36, we also have the following
corollary.

Corollary 2—For D and D" defined as in (11),
1.

{¢pnb(X)=¢nb(x)~D‘1~D” odd P,

Bpub(X) = (X) - D'7'. D" even P.

2. Foragivenx, opnn(X) = onn(X) /fand only if
(odd P) when gpnp(X) = 1, D710 < @pnp(X) or when gpnp(X) < 1, O71D" >
(Ppnb(x)v
«  (even P) when opnp(X) 2 1, D'"LD" < @pp(X) or when oppp(X) < 1, O71D" >
Ppnb(X)-

3. Sufficient Conditions for Optimality of PNB Classifier: Normal Case

We now demonstrate sufficient optimality conditions for ¢pny(x) for /=2 classes, where we
focus on the normal case due to its ubiquity in practice. In our discussion, we work with

log(¢n(%)) = ¢5(x), 10g(dpub (X)) = Gpup (%), AN log (b, (x)) = ¢, (x) and assume equal
priors.

We assume X is normally distributed in class ¢; with known mean vector p;= (U1 ..., Hp)
and covariance matrix X such that X}, has known variance o2 and (X, Xi) have known
correlation p. To ensure that X is positive definite, we assume —1/(P- 1) <p < 1. We then
define

1 1
TERA ) TR E - D]

aj=Wj1 — H1j2,

J,¢ 2

1 P
wje=r; — = (njatpi2),  LG=[1HP =2)plzje—p Y Tre
k=1 (14)

k#j

P
mj=(P —2)xj.—p Z Thoes
k=1
k+j
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noting that both w; and w; are positive. Using normal density formulas and matrix
properties, we have that ¢*, (x) is not optimal if

oy (x) {Za ljz;, c'FZ Z ajap(z; i+ l; )} . (15)

J=1lk=j+1

is negative. On the other hand, ¢y, (x) is optimal if

P P-1 P
Gy (X) Py (X)=w1 [02¢Z(X)¢>Eb(x)+w2 (Za?ljmj > ajak(ljmﬁlkmj))} (16)
j=1

j=lk=j+1

is non-negative. For instance, ¢y, (x) is optimal, while ¢*, (x) is not, when x = (2.047,
1.896, 0.972), p1 = (1, 2, 3) and py = (3, 2, 3), 02 = 1, and p = —0.45. Therefore, (15) and
(16) provide explicit conditions for when the PNB classifier is optimal and NB is not.

Suppose we consider the case of equal mean differences (a;= a), where Zhang?® states that

¢, (x) is optimal for 2= 2 only under certain conditions. We have that ¢y,,,;,(x) and ¢, (x)
are always optimal if a;= a, where (15) and (16) simplify to

2
& (%) by (x)=wa(1 = p ( Z%) ,

P 2
G (%) G (X)=(P — Dwrws [a(l - p)ij,c] ,

=1

both of which are always non-negative.

4. Simulation Studies

We now investigate the classification performance of our proposed PNB classifier relative to
the Bayes, NB, LBR, TAN, AODE, and HNB classifiers for discrete and continuous data,
where we focus on classification into m = 2 classes. All analyses are run using R software
version 3.1.2,24 with the RWeka package used to construct the LBR, TAN, AODE, and
HNB classifiers.

4.1. Binary data

We first consider the case of correlated binary attributes. Using the algorithm of Kang and
Jung,1* we simulate S= 50 data sets such that in each, AVobservations y = (4, J», y3) have
prior probability 0.5 of belonging to class ¢; (/= 1, 2), where
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exp(X0 18+ ok Vi gk Yk 1 Y2y3)
= .
Zall values of (yl,y2,yg)exp(zj‘:l(sijyj+Zi<j’7i,jkyjyk+aiy1y2y3)

Ji(y1,y2,y3)= 17)

In our simulations, we consider the following cases:

1. Case 1: 81 = (811, 812, 813) = (0.1, 0.2, 0.3), 83 = (821, 822, 823) = (0.1, 0.2, 0.3); y1 =

(v1,12: Y1,13: ¥1,23) = (0, 0, 0), v2 = (v2,12, ¥2,13: ¥2,23) = (0.1,0.2,0.3); a3 = 2, ap =
1.

2. Case 2: 51 = (511, 812, 813) = (0.1, 0.2, 0.3), 82 = (821, 822, 823) = (0.1, 0.2, 0.3); Y1 =

(v1,12: Y1,13, ¥1,23) = (0.55, 0.66, 0.77), v2 = (v2,12, ¥2,13: Y2,23) = (0.06, 0.05, 0.08);
a = -5, ap = -1

We consider /=100, 200 observations for each case when applying each classifier. Using
10-fold cross-validation (CV), we compute the error rates for each classifier, all of which are
estimated empirically. Also, to test whether one classifier has a significantly higher or lower
CV error rate than another for a particular data set, we use the Nadeau and Bengio’s?
corrected resampled £test, which they show yields statistical tests with correct test sizes and
high power. In Table 2, we present, for each (/V, case) and classifier, the mean CV error rate
and CPU time in seconds (training time + classification time) averaged across simulations,
along with the numbers of wwins (data sets where the classifier has the lowest error), d
draws (data sets where the classifier does not have significantly higher error than the winner
at the 10% level), and /losses (data sets where the classifier has significantly higher error
than the winner at the 10% level). Although our proposed PNB classifier does not appear to
dominate if one examines its mean CV error rate and CPU time, we do see that it wins most
often in three out of the four (/N,case) scenarios among all classifiers other than the Bayes
classifier. In addition, the PNB classifier draws with the winner most often for three out of
the four scenarios and is never significantly worse than the winner.

4.2. Continuous data: Normal case

To assess the classification performance of our proposed PNB classifier relative to the other
classifiers discussed based on data that one could encounter in practical applications, we
conduct a simulation study using biomarker data from a cardiovascular study conducted by
the High Risk Plaque Initiative [BG Medicine Inc. (Waltham, MA) and other partners].3 In
modeling this simulation study, we consider the 591 continuous biomarkers measured on NV
= 136 subjects belonging to either one of two diagnostic groups, namely, individuals who
underwent a near-term cardiovascular event and those who did not. For each of S= 25 data
sets, we simulate /=136 observations x = (X, ..., xp) such that each has prior probability
;= 0.5 (/= 1, 2) of belonging to class ¢; We assume X is normally distributed with mean
l;and covariance X;in class c;, where [1;and X, are set to equal the sample mean vector and
covariance of the Pbiomarkers in the /th diagnostic group. To examine the results compare
for differing number of attributes, we simulate the observations (x, ..., Xp) based on the
sample mean vectors and covariance matrix of 2= 25, 50, 100, 300 randomly selected
biomarkers, and also on the sample mean vectors and covariance matrix of all 7= 591
biomarkers.
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In estimating the LBR, TAN, AODE, and HNB classifiers, we discretize all attributes using
Fayyad and Irani’s discretization method, since all four classifiers used this entropy
minimization-based approach in their applications. To estimate the Bayes, PNB, and NB
classifiers, we first use normal density estimation assuming either X, # X, or X1 = Xy, under
which we use either the sample pooled covariance Egom or the sample class covariances E,f.
Next, we empirically estimate the PNB and NB classifiers. Since Fayyad and Irani’s entropy
minimization-based discretization approach has been noted to fail in certain data sets,2° we
instead discretize each X}, by rounding its values to two decimal places and categorizing the
rounded values, which we then use to empirically estimate the PNB and NB classifiers. We
round to two decimal places to reduce computation time and the chance of obtaining non-
informative sample probabilities. In computing the error rates for each classifier, we use 2-
fold CV for each data set.

In Table 3, we present, for each Pand each classifier, the mean CV error rate and mean CPU
time in seconds averaged across simulations, along with the numbers of wwins, ddraws,
and /losses using the statistical testing approach described in Sec. 4.1. We see that what our
proposed PNB classifier may lack in computational speed, it compensates for in terms of
accuracy when we use normal density estimation. Specifically, for each Z, the lowest error
rates and highest number of wins are obtained when we correctly assume %1 # ¥, and use
the estimates Z,T. In addition, with the exception of P= 25, we see that in computing the
normal-based PNB classifier using Z}; it consistently wins across all data sets for each ~.
Considering that this result holds for 2= 300, 591, where /=136 < P, the potential benefit
of this normal-based PNB classifier with respect to accuracy in high-dimensional data sets is
worth noting.

5. Applications

We then examine the performance of the Bayes, PNB, NB, LBR, TAN, AODE, and HNB
classifiers as applied to 22 data sets from the UCI Machine Learning Repository,2° the
description of which can be found in Table 4. For each data set, we only consider attributes
with complete cases. In addition, we examine the BG Medicine biomarker data described in
Sec. 4.2, along with genetic microarray data obtained from a study conducted by Wang ef
al.2® which are labeled “BG Medicine” and “MDACC” in Table 4.

Since we are mainly interested in how results are affected by data type, we consider data sets
with either all quantitative or categorical attributes and those with a mix of quantitative and
categorical attributes. For the quantitative data sets, we consider the empirical PNB, NB,
HNB, AODE, LBR, and TAN classifiers, where attributes are discretized using the approach
described in Sec. 4.2. We also apply the normal-based Bayes, PNB, and NB classifiers,
which are computed as in Sec. 4.2. In cases where X is categorical or mixed, we consider the
empirical PNB, NB, HNB, AODE, LBR, and TAN classifiers. However, for mixed X, we
also estimate 7(x; xy) for the PNB classifier and 7(x)) for the NB classifier using normal
density estimation for quantitative attribute pairs (Xj Xj) and single attributes X, and
Laplace estimation for categorical (X}, Xj) and X;. For attribute pairs (X, Xj) where Xjis
continuous and X categorical, Xjis discretized and 7{xj, xy) is estimated using Laplace
estimation.
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In Tables 5 and 6, we display the CV the error rates for each data set and classifier using
normal density and empirical probability estimation, respectively. For each data type, we
also display the numbers of wwins, ddraws, and /losses, along with mean CPU time
averaged across data sets. With the exception of the “balance” data set, the HNB classifier
has the lowest error across the data sets with categorical X. In addition, it also has the fastest
mean computation time and most wins. For the mixed data sets, the HNB and normal-based
PNB classifiers generally dominate in terms of error rates and number of wins. For the
continuous data sets, the normal-based Bayes has most wins and the lowest error, followed
by our normal-based PNB classifier.

In short, although its computation time is longer compared with the Bayes, NB, HNB,
AODE, LBR, and TAN classifiers, the relatively high accuracy level (in terms of error rates
and number of wins) for our proposed normal-based PNB classifier in the mixed and
continuous data sets examined cannot be ignored. For instance, if computation of the
normal-based Bayes classifier for the continuous data sets was not feasible, the normal-
based PNB classifier would have had the most wins among the NB, HNB, AODE, LBR, and
TAN classifiers. Due to the varying performance of the normal based PNB classifier for
these data sets based on whether the estimates 2p00| or E,are used, we recommend applying
this classifier using both types of covariance estimates. We note that in the continuous and
mixed data sets, the empirical PNB classifier generally does not outperform its normal-based
counterpart in terms of accuracy. However, in recognition of the fact that the normal-based
PNB classifier retains more information than the empirical PNB classifier by not discretizing
the continuous attributes, the superior performance of the normal-based PNB classifier is not
surprising.

6. Conclusion

We propose the PNB classifier as an alternate approach to not only NB, but also to the LBR,
TAN, AODE, and HNB classifiers aimed at relaxing the conditional independence
assumption integral to NB. However, our classifier also goes beyond the HNB, AODE, LBR,
and TAN classifiers in that rather than discretizing continuous attributes and potentially
losing information, which can lead to increased error, it instead allows for the use of density
estimation. Through comprehensive simulation studies and applications to actual data sets,
we illustrate that the use of normal density estimation for the PNB classifier leads to an
increase in computational accuracy over the NB, LBR, TAN, AODE, and HNB classifiers
that is statistically significant in data sets with continuous attributes. In data sets containing
all normal attributes, we also show that the PNB classifier has an increase in accuracy over
the Bayes classifier that is statistically significant. We also formulate exact conditions where
the Bayes and PNB classifiers have the same classification performance, even when there
are strong dependencies that extend beyond a pair of attributes. In particular, we show that
these conditions are based solely on how the relationships between each pair of attributes
and all other attributes work together to support or cancel one another to determine
classification.

Despite the amount of computation time involved, our experimental results show that the
high level of computational accuracy displayed by our proposed normal-based PNB
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classifier in the examined data sets with all or mostly continuous attributes is highly
beneficial. Specifically, for these types of data sets, our experimental results demonstrate
several instances in which the normal-based PNB classifier is statistically significantly more
accurate than not only NB, but also the more established HNB, AODE, LBR, and TAN
classifiers that have been shown to yield higher accuracy relative to NB. In our simulation
study, we have also shown that the increase in accuracy of our normal-based PNB classifier
over the normal-based Bayes classifier is statistically significant in certain instances,
including those dealing with high-dimensional data where computational issues for the
normal-based Bayes classifier are likely to arise. Considering the simplicity of the normal-
based PNB classifier and the breadth of the attribute relationships it accounts for, along with
the ubiquity of data sets with continuous attributes and the assumption of normality when
analyzing such attributes, the normal-based PNB classifier is a promising algorithm that can
potentially yield important results in many practical applications.
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Fig. 1.
Examples of Bayesian networks. (a) ANB and (b) NB.
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Table 1

Computational time complexity.

Classifier Total Time Complexity

NB oup + O(mp)

LBR Op) + O(mt)

TAN O(P(t+ m2 + log(P) + O (mP)
SP-TAN O(mtB) + O(mP)

AODE O@tP) + O(mP)

HNB OR(t+ mA) + O(mP)
PNB OtP) + O(mP)

Note. mis the number of classes, Pis the number of attributes, vis the average number of values for each attribute, and ¢is the number of training
examples
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