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Abstract

There are a large number of methods for solving under-determined linear
inverse problem. Many of them have very high time complexity for large
datasets. We propose a new method called Two-Stage Sparse Representa-
tion (T'SSR) to tackle this problem. We decompose the representing space of
signals into two parts, the measurement dictionary and the sparsifying basis.
The dictionary is designed to approximate a sub-Gaussian distribution to
exploit its concentration property. We apply sparse coding to the signals on
the dictionary in the first stage, and obtain the training and testing coeffi-
cients respectively. Then we design the basis to approach an identity matrix
in the second stage, to acquire the Restricted Isometry Property (RIP) and
universality property. The testing coefficients are encoded over the basis and
the final representing coefficients are obtained. We verify that the projection
of testing coefficients onto the basis is a good approximation of the signal
onto the representing space. Since the projection is conducted on a much
sparser space, the runtime is greatly reduced. For concrete realization, we
provide an instance for the proposed TSSR. Experiments on four biometrics
databases show that TSSR is effective and efficient, comparing with several
classical methods for solving linear inverse problem.
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1. Introduction

Linear inverse problems arise throughout engineering and the mathemat-
ical sciences. In most applications, these problems are ill-conditioned or
under-determined, so we must apply additional regularizing constraints in
order to obtain interesting solutions. Most modern approaches use the spar-
sity of the solution as a regularizer [1, [2]. In this paper we first give a brief
view of these algorithms for sparse approximation. Then we propose a new
two-stage sparse representation method solving linear inverse problem.

Roughly there are four class of approaches to solve linear inverse problems:
greedy, convex relaxation, proximal and combinatorial methods. Orthogonal
Matching Pursuit (OMP) [3] is one of the important greedy algorithms. OMP
finds one atom at a time for approximating the solution of the [y problem:

minflally st |y @] <e () (1)

where y is a target signal, € > 0 is some error tolerance. We refer to the vector
x as representing coefficient of y respect to the dictionary ®. We say x is
K-sparse when ||z]|o < K. The dictionary ® € R™*" is a real matrix whose
columns have unit Euclidean norm: |¢,|[;=1 for j = 1,2,...,N. OMP
accumulates the vectors which have the least residual with the representing
coefficients. The accuracy is restricted since OMP does not consider that
the multiple correlated atoms might be jointly selected. The other greedy
algorithms, including st-OMP [4], ROMP [5], etc, use [;-norm to replace the
NP-hard [p-norm minimization:

minflally st [y @] <e (P (2)

They work well when z is very sparse, but will deviate from the ideal solution
of Eqn. () when the number of non-zero entries in x increases, as illustrated
in the paper [6].

CoSaMP [7], as a combinatorial method for solving (P;), is a widely used
method which avoids the pure greedy nature of OMP which can never remove
any atom once they are selected. It provides rigorous bounds on the runtime
that are much better than the available results for interior-point methods
[8] - e.g. Li-Magic [9]. The uniformity property of CoSaMP shows it can
recover all signals given a fixed sampling matrix and the stability property
guarantees its success when the samples are contaminated with noise.



The convex relaxation methods, as another branch, relaxes the (FP,) form
by (P;). Basis Pursuit denoising (BPDN) [10], solves a regularization prob-
lem with a trade-off between having a small residual and making coefficients
simple in the l; sense. Basis Pursuit (BP) series methods are far more com-
plicated than OMP series, because these methods obtain the global solution
of the optimal problem in each iteration.

L,-Magic [9] is a collection of matlab routines which are based on standard
interior-point methods. One class of algorithms within reformulates linear
inverse problem as the second-order cone program, and solve it with log-
barrier method, which use conjugate gradient method as inner core.

Least-angle regression (LARS) [11], as an active set method, performs
model select to find the optimal point iteratively. It produces a full piecewise
linear solution path, which is useful in cross-validation or similar attempts
to tune the model.

Among the proximal methods, Iterative Shrinkage-Thresholding Algo-
rithm (ISTA) |12] solves the variant of the problem (P),

min 1/2[[®z — y||* + Alz]],, (3)

where )\ is a regularization parameter. Roughly speaking, each iteration com-
prises of a multiplication by ® and its adjoint, along with a scalar shrinkage
step on the obtained result. A short survey on the applications of ISTA series
can be found in [13]. FISTA [14], as a quicker version of ISTA, is proposed
recently. Still FISTA needs many iterations for solving inverse problem if A
is small which is required for a good approximation of Eqn. ().

IHT [16] is based on the surrogate objective from [17]:

Ciy.z) =z =@yl +X [y llo — |y — P23 + ||y — 2|3 (4)

For || ® ||o< 1, the above is a majorisation of the [y regularized sparse coding
objective function. Using a fixed threshold, the author show IHT converges
to a local minimum. It also needs many iterations and the per-iteration cost
is about the same as Matching Pursuit.

GISA [18] cleverly extended the soft-thresholding operator for [,-norm
regularized sparse coding problem. Instead of a fixed threshold (e.g. .5 in
[HT), the authors derived the following non-linear equation for the threshold
T

7ET(A) = (2M(1 = p)F7 + Ap(2A(1 — p)) 5= (5)



using the above threshold GST can always find the correct solution to the [,-
minimization problem min £ (y —x)?+ Alz|?. The authors show one iteration

of GISA is sufficient for image deconvolution. Hence it is very efficient.

To reduce the iterations for a proximal approach, the Linearized Breg-
man (LB) algorithm [19] is produced which is equivalent to gradient descent
applied to a certain dual formulation. The analysis shows that LB has the
exact regularization property; namely, it converges to an exact solution of
(P;) whenever its smooth parameter « is greater than a certain value. The
LB algorithm returns the solution to (P;) by solving the model:

min ||z||, + 1/2a||z||3 st. Pz =y, (6)

LB replaces the quadratic penalty in (P;) with a linear term and uses
a mixture of [; and [y norm for the regularization. This key modification
produces a strictly convex differentiable objective function.

The LB method requires O(%) iterations to obtain an e-optimal solution,
while Accelerated Linearized Bregman Method (ALB) 23] reduces the iter-
ation complexity to O(%) while requiring almost the same computational
effort on each iteration. ALB converges much quicker than LB on three
types of sensing matrices generated by the randn(m,n) function [23], which
are standard Gaussian matrix, Normalized Gaussian matrix and Bernoulli
+1/-1 matrix. The other merit is that the relative errors obtained by ALB
as a function of the iteration number are much smaller than LB does.

How to quickly represent data has been an open problem to deal with in
academic and industrial area.

Many algorithms similar to above representative approaches adopt one-
stage coding technique, which encodes the original samples in a large pro-
jected space. Among them many recast (P;) as a convex program with
quadratic constraints, the computational cost for practical applications can
be prohibitively high for large-scale problems. Honglak Lee [20], etc., how-
ever, proposed an efficient sparse coding algorithm, iteratively solving two
convex optimization problems: an L; regularized least squares problem and
an Lo-constrained least square problem. In [21], an online tracking algorithm
with two stage optimization was proposed to jointly minimize the target
reconstruction error and maximize the discriminative power by selecting a
sparse set of features. It is very effective in handling a number of challeng-
ing sequences. TSR [22] proposed a robust and fast sparse representation



method based on divide and conquer strategy. It divided the procedure of
recognition into outlier detection stage and recognition stage.

FSR [24], first uses KSVD method [25] to construct an dictionary for
sparse representation, then applies OMP [3] to the dictionary to generate co-
efficients, and forms a reduced dictionary with the coefficients for the sparse
coding. It runs much quicker than L;-Magic solver, but the KSVD method
assumes an overcomplete dictionary and has trivial problem when the di-
mension of the signal is larger than that of the dictionary.

As signals can be modelled by a small set of atoms in a dictionary, FSRM
[26] exploits the property and shows that the /;-norm minimization problem
can be reduced from a large and dense linear system to a small and sparse
one. It exploits CoSaMP to generate sparse coefficients to do the next coding.
Experimental results with image recognition indicate FSRM achieves double-
digit gain in speed with comparable accuracy compared with the L;-Magic
solver, and solves the trivial problem FSR has.

The above two methods shares the same two-stage structure. The core of
both is to design a projected sparsifying basis in the first stage to represent
the signals, and do sparse coding in the second stage. Motivated by it, we
propose a Two-Stage Sparse Representation (TSSR) method to design the
basis for rapid speed. TSSR makes the sparse approximation computation-
ally tractable without sacrificing stable convergence. It represents the data
in a smaller space for discriminative representation and reduces the runtime
dramatically.

The remainder of the paper is organized as follows. Section 2 presents the
derivation of TSSR for verification and the algorithm flowchart as well as the
complexity analysis. Section 3 gives an example to facilitate the method and
shows the experimental results with discussion, and finally Section 4 offers
the conclusion.

2. Two-Stage Sparse Representation

We first describe the derivation of TSSR, which generates a new form of
(Py), then give an example to show the performance of the method.

2.1. The Derivation of TSSR

The signal y € R™ can be approximated in two ways:
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Figure 1: The mechanism of one-stage sparse representation (a) and TSSR (b)

1. ® is viewed as a dictionary, ® € R™". x € RY is then the generated
sparse coefficient vector over ®, and

y=dr + e, (7)

where ® = [¢1,...,0;,...,dn]. P is supposed to satisfy the Restricted Isom-
etry Property (RIP) of order 2K [27], and e; is the residual. The illustration
of Eqn. (@) is shown as Figure [I[(a).

2. We can generate a new space U(), here W is viewed as a measurement
dictionary, and ©Q = [wy,...,w;,...,wn]| represents a sparsity basis or dic-
tionary in which w; expresses the i-th sparse vector. Then we have another
description of the signal y over the U2 other than Eqn. (). The mechanism
of TSSR is illustrated in Figure [[[(b). To minimize the residual of the signal
¢;, min Zfil |¢i — Pw;||?, whose another form is min |[|® — ¥Q||?, we have

d = W) + eo. (8)

Here U € R™N O € RY*N and e, is supposed to obey the Gaussian



distribution in the new space U() for sparse reconstruction. Then we can

obtain
y = VQx + e 9)

After measuring the signal y, we can describe the intermediate representing

coefficients z as
z = Qu + es. (10)

es is a small constant, while in Eqn. (&) [les]l2 < V/Ne (e, € R™N). By
introducing the residual signals to Eqn. (I0) and integrating Eqn. (@), we
can obtain

Uz +es = VQr + eqx
=VUz — UQx = ey — ey.

(11)
Here e4 is the same residual as e; in Eqn. (@) and |le4|]2 < ¢, for a small
constant €. With bi-Lipschitz property [28], we can derive
(1= 9)llz = Qa3 < [Tz — ¥Qz|3 < (1+ )]z — Qa3 (12)
given {Qz} € RY. In fact, assume z is K-sparse, from Eqn. (1)), we have
W (z — Qz)ll2 < (K + 1)e. (13)

Let s = z — Qx, which is also a sparse vector, we have ||Usl|ls < (K + 1)e.
Recall that ¥ satisfies the RIP of order K with constant dx < 1 if

Isllo < K = (1= dx)lsll3 < @[5 < (1+ dx)lIs]3- (14)
We can derive the upper bound for s using Eqn. (I3) and Eqn. (I4).
(1= dr)lls]l3 < [1s]3 < (K +1)%. (15)
From Eqn. (I5) we have

(K +1)e
V1—10g
Then the projection of z onto €2 as shown in Figure[Il(b) is the approximation

to that of y onto W.
So the original problem (P;) is modified by

Islla = [lz = Q|2 < =€ (16)

min [[z]]; st ||Y(z— Q)| < g (17)



Since the ||¥|| is a constant, which has little effect on the solution of
the object function, Eqn. (7)) then can be approximated by the following
equation

min ||z]|; st ||z — Qx| < e (18)

€; and ey are small different constants.

Since the projection at the second stage is conducted on a much sparser
space 2 than ® in the first one, the runtime is greatly reduced. Also the
derivation above verifies the stability of TSSR, which satisfies the RIP con-
dition under certain assumption.

The space ® is approximated by the space U2 as Eqn. () indicates, and
the ¥ and € are designed as follows:

We can design U to obey or nearly obey Gaussian distribution with the
training data through matrix computation. Since Gaussian distribution with
bounded support is Sub-Gaussian [28], we can exploit the concentration prop-
erty which only requires Sub-Gaussian.

Any distribution satisfying a concentration inequality [29] will provide
both the canonical RIP and the universality with respect to a certain spar-
sity basis 2. Here € is represented as an identity N x N matrix and = € Y,
each K-dimensional subspace from ) . = ) () is mapped to a unique
K-dimensional hyperplane in RY. Once Y, has a sufficient amount of inde-
pendence, the concentration of measure tends to be sub-gaussian in nature.
Then we can acquire signals (x that are sparse or compressible in practice.
So €2 is designed to approach an identity matrix after the first-stage imple-
mentation to have the property described above. By choosing K-dimensional
subspaces spanned by sets of K columns of W, theorem 5.2 of |39] establishes
the RIP for U(2 for each of the distributions.

The transformation from the first stage to the second one can be mo-
tivated by Concentration of Measure principle [29] and bi-Lipschitz theory
[28]. Further derivations are found in the Appendix.

2.2. The Algorithm Flowchart of TSSR
The flowchart of TSSR is described as follows,

1. Input: A test signal y € R™, training signals Y € R™ ¥ sparsity level
K, a measurement matrix ¥ € R™*" with each column normalized.



2. Generate the features of Y over U, using Eqn. (8), and form Q to ap-
proach an identity matrix, Q = [wi,...,w;,...,wy] € R¥*N in which w;
expresses the i-th sparse vector.

3. Obtain the feature z of y over U, using y = Uz + ¢4, where z € RV,

Reformulate the objective function (P;) as Eqn. (IS]).

5. Apply sparse coding to obtain representing coefficients € RY over €.

=

Since the 2 is contained in a much sparser space than W) does, the
implementing speed increases dramatically, while the solution = approaches
the original one solving (P;).

2.3. Complexity Analysis

We give a brief description of the complexity analysis comparison be-
tween solving Eqn. (@) and Eqn. (I8). The computational cost for the
former hinges on ® representing y, while that for the latter lies in 2 rep-
resenting z. For the ® is contained in the space generated by the original
data, the implementation over it completely depends on the ability of coding.
Differently, the €2 can be designed to approach an identity matrix or a sparse
matrix which has maximum value at the diagonal and small number of minor
values off-diagonal of it. To do the coding task with the same optimization
method, the time to take one sweep over the columns of ® and 2 then need
quite different cost. For instance, if we use CoSaMP [7] for coding, we need
O(m x N) and nearly O(N) flops for ® and 2 respectively. As a result, the
recognition rate of the proposed TSSR is much quicker than many one-stage
methods.

To demonstrate the effectiveness of the method, we give an application
to the method in the next section.

3. Experimental Results and Discussion

3.1. An Instance of TSSR

An instance of TSSR is shown in the following. In the first stage, we
adopt the ALB [23] to generate sparse coefficients of samples over ¥, which
has merits of very small relative errors, and achieves the desired convergence
with small number of iterations. ¥ can be formed by the training dataset
Y which are normalized, as shown in Figure [Il and we can make ¥ obey or
nearly obey the Gaussian distribution. The sparse coefficients (features) 2
corresponds to training data Y, and forms a square matrix (dictionary), in

9



which each column is composed of the representatives of one sample. With
sparse coding by ALB for different datasets, the generated € is similar to an
identity matrix or a sparse matrix which has maximum value at the diagonal
and relatively small values off-diagonal of it.

Then we use CoSaMP [7] to acquire the sparse coefficients z of test data
y over ¥ and then represent z over 2. The uniformity property of CoSaMP
shows it can recover all signals given a fixed sampling matrix and the stabil-
ity property guarantees its success in solving problem (P;) when the samples
are contaminated with noise. CoSaMP performs signal estimation and resid-
ual update, and then generates K (sparsity level) non-zero coefficients for z
[27]. As section 2] shows, the problem (P;) then becomes searching for the
sparsest solution on the basis Q as Eqn. (I8]) shows.

For classification we use the sparse representation classifier (SRC) [30]
which is known to have good robustness against signal corruption and noise.
SRC minimizes the residuals between the test sample and training samples
of different classes, and find the label of test sample which corresponds to
the minimum residual.

Note that TSSR structure can accommodate other sparse solvers as well
as different measure matrices.

We present experimental results on real data sets to demonstrate the
efficiency and effectiveness of the proposed algorithm. All the experiments
were carried out using MATLAB on a 3.0GHz machine with 2G RAM. The
time to classify one image is averaged over 10 runs. The bold values indicate
the best performances under specific condition. The parameter o adopted
in ALB depends on the data [35], but a typical value is 1 to 10 times the
estimate of ||x_truel|,. Here we assume that an observed sample belongs to
one certain class and can be well represented using samples from the same
class.

We present image recognition results with our TSSR in comparison with
several benchmark methods solving linear inverse problem: matching pursuit
method (CoSaMP), interior point method (L;-Magic), active set method
(Homotopy [34]), proximal method (FISTA), bregman method (ALB), and
two-stage structure methods (FSR and FSRM).

3.2. Face Recognition
3.2.1. PIE Database

The CMU PIE database http://vasc.ri.cmu.edu/idb/html/face/ con-
tains 68 human subjects with 41,368 face images as a whole. We choose the

10
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Table 1: Recognition accuracy and speed comparison using PIE database.

Samples PIE (1-30) PIE (3-30) PIE (6-30)
Method | Acc. (%) | T.(s) | Acc. (%) | T. (s) | Acc. (%) | T. (s)
TSSR 73.09 4E-04 90.69 6E-04 92.25 0.001

Homotopy 66.23 0.002 86.37 0.005 91.27 0.008
CoSaMP 72.65 0.004 89.56 0.007 93.09 0.009
L,-Magic 75.69 0.005 94.36 0.019 95.49 0.14

ALB 74.85 0.091 92.6 0.148 93.58 0.24
FISTA 75.1 0.093 92.45 0.198 94.8 0.424

five near frontal poses (C05, C07, C09, C27, and C29) and use all the images
under different illuminations and expressions, thus we get 170 images for each
individual. Each image is manually aligned to 32 x 32 according to the eyes
positions, with 256 gray levels per pixel. So each image can be represented by
a 1024-dimensional vector in image space. No further preprocessing is done.
For PIE, we randomly select 1, 3, 6 samples for training, and the other 30
for test (i.e., cases 1-30, 3-30, 6-30) to evaluate the performance. The results
are shown in Table 1.

As you see in table 1, TSSR is the fastest among all the methods. The
rest of the methods except Homotopy need ten times longer than TSSR does
for all the cases, and FISTA even needs 230 times more to run. TSSR is also
more accurate than Homotopy for all the cases. The reason that Homotopy
runs quickly is due to the fact that it iteratively adds or removes nonzero
representing coefficients one at a time, and is clearly more efficient when
the signal is very sparse. The time ratio of L;-Magic, achieving the highest
accuracy for all cases, to TSSR, changes rapidly as the training samples
becomes larger, from 12.5 to 140. This may due to the fact that least square
method within it needs much more time to run when the number of samples
changes.

3.2.2. AR Database

The AR database [32] we choose contains 2600 color images corresponding
to 100 people’s faces (50 men and 50 women). Images feature frontal view
faces with different facial expressions, illumination conditions, and occlusions
(sun glasses and scarf). Each person participated in two sessions, separated

11



Table 2: Recognition accuracy and speed comparison using AR database.

Samples AR (1-13) AR (3-11) AR (7-7)
Method [ Acc. (%) | T. (s) | Acc. (%) | T. (s) | Acc. (%) | T. (s)
TSSR 70.31 8E-04 80.64 0.001 97 0.005

Homotopy 73.85 0.044 88.36 0.032 96 0.0052
CoSaMP 71.92 0.023 89.95 0.041 97.29 0.083
Ly-Magic 69.31 0.011 90.91 0.304 98.71 0.068

ALB 71.15 0.583 86.91 1.577 99.14 3.231
FISTA 75.46 0.565 93 2.333 99.57 5.825

by two weeks time. The size of the each image is 120x165 pixels, and was
reduced to 40 x 55, i.e. a 2200 dimension vector. Similarly, for AR, we
randomly select 1, 3, 7 samples for training, and the rest for test , we use
cases 1-13, 3-11, 7-7. The results are shown in Table 2.

TSSR is the fastest among all the methods as shown in table 2. For all
the cases, ALB and FISTA can both obtain quite high accuracy but at high
cost. For example, ALB (1.5771s) needs 1120 times more to run than TSSR
(0.0014s) does for case (3-11). Both ALB and FISTA have high accuracy, this
maybe because ALB has a small relative error, while FISTA is a proximal
method with good convergence property. On the other side of view, the
performance of TSSR on AR database is overall worse than the others, this
may because the sparse basis 2 constructed can not expressed the space
information of the images very well.

3.3.  Palmprint Recognition

The PolyU palmprint database [33] contains 386 palms and each palm
has about 20 samples, collected in two sessions separated by two months.
The size of the each image is 384 x 284 pixels, and was reduced to dimension
1131. All the data are normalized. For PolyU palmprint, we uses cases 1-10,
3-10, and 6-10. The results are shown in Table 3.

We can see in table 3 TSSR is superior to other methods in speed. Ho-
motopy and CoSaMP have comparable speed, and run faster than the rest
of the methods except TSSR. For CoSaMP, the RIP ensures that the least-
square problems encountered are always well conditioned, so the iteration

12



Table 3: Recognition accuracy and speed comparison using PolyU database.

Samples PolyU (1-10) PolyU (3-10) PolyU (6-10)
Method [ Acc. (%) [ T. (s) | Acc. (%) | T. (s) | Acc. (%) | T. (s)
TSSR 85.4 0.002 98.6 6E-04 99 0.001

Homotopy 84 0.002 97 0.002 98.8 0.005
CoSaMP 86.6 0.005 98.4 0.004 99.2 0.006
L,-Magic 86.8 0.005 98.2 0.027 98.4 0.197

ALB 85.8 0.074 98.8 0.12 99 0.205
FISTA 84.8 0.073 98 0.169 99 0.317

converges quickly. Interestingly the accuracy of TSSR is nearly the same as
the methods with the highest accuracy in all the cases.

From all the experiments with the three databases, the results indicate
TSSR is effective and efficient. We note that sparsity level K should be
carefully chosen when TSSR is implemented. In the following section, we’ll
consider how to pick a good K for a dataset.

3.4. Choosing Sparsity Level

Before indicating how we choose K, we first describe the relation between
sparsity and mutual coherence [36]. For a dictionary ¥, ¥ € R™%N  its
coherence is bounded by

| N—m 1

Since every entry in the off-diagonal of ¥ is at most M, this leads to the
condition (K — 1)M < 1, then

1 m(N —1)
— 4+ 1=/ —=+1. 20
M + N—m + (20)
M is the Mutual Coherence, which is a measure of how similar the columns
in U are to each other. If M is large (close to 1, since 0 < M < 1), it
implies atoms are highly correlated and will led to poor performance for

sparse representation. Geometrically this implies we want the atoms to be

13



Table 4: The Accuracy and speed comparison of FSR, FSRM and TSSR using Extended
Yale B database

[tem Acc. (%) T. (s) Speed
Method | FSR | FSRM | TSSR | FSR | FSRM | TSSR | up
K1=5 | 83.15| 90.87 | 94.19 | 0.011 | 0.049 | 0.014 1
K2=10 | 90.79 | 91.2 | 93.20 | 0.163 | 0.052 | 0.015 11
K3=13 | 93.36 | 93.03 | 94.36 | 0.432 | 0.052 | 0.014 31
K4=18 | 92.61 | 90.62 | 93.53 | 0.755 | 0.054 | 0.015 52
K5=20 | 91.95 | 90.71 | 92.78 | 0.837 | 0.053 | 0.014 61

as orthogonal to each other as feasible - i.e. to form a Grassmanian frame in
the sense of Benedetto [37].

The Extended Yale B database [31] consists of 2432 grey images of 38
subjects under 9 poses and 64 illumination conditions. We choose the frontal
pose and use all the images under different illumination, thus we get 64
images for each person. Each image is manually aligned to 32 x 32 according
to the eyes positions, with 256 gray levels per pixel. So each image can
be represented by a 1024-dimensional vector in image space. No further
preprocessing is done.

For the (132 x 1209) dictionary ¥, which we use in all the following
experiments, the sparsity level is K < 13.2 as prescribed by Eqn. (20). To
verify this method of estimating K, we begin our experiments with K set to
5, 10, 13, 18, and 20 and study the various methods’ performance.

We compare TSSR with FSRM and FSR [24] to evaluate their perfor-
mance since they are all algorithms with two-stage structure and using spar-
sity level K to represent coefficients. For FSR, the KSVD algorithm [25]
within it is constrained by the dimension of training vectors, and trivial so-
lution would occur if the dimension of the training vector is larger than the
size of the dictionary. So we performed all the experiments on the extended
YaleB database, using half of samples for training and the rest for testing
as FSR did [24]. The speed comparison between FSR and TSSR and the
accuracy of all the algorithms under different K can be seen in Table 4 and
Figure[2l We can find:

1. TSSR is more accurate than the other two methods. Interestingly for
the methods themselves, there is a trade-off between recognition accuracy

14
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Figure 2: The sparsity level K selection using FSR, FSRM and TSSR

and speed. Each method obtains its highest accuracy at the predetermined
value K, i.e., 13.2. This may be due to precondition that the normalization
of the original data satisfies the requirement of Gaussian distribution, and
Eqn. (20) does its work.

2. The TSSR is the fastest among all the methods in most cases. As K
increases, the run time ratio of FSR to TSSR becomes larger, which is from
1 (K =5) to 61 (K = 20). FSR needs a little less time than TSSR when
K =5, which is much lower in accuracy than the others.

3. FSRM runs faster than FSR for most cases. This is because KSVD
adopted in FSR needs much time to generate coefficients for the second
coding, while FSRM feeds the adopted L;-Magic with a much smaller input
set in a two-stage process. Meanwhile, TSSR needs almost the same time to
run for every K, which is similar to FSRM. The reason is that TSSR and
FSRM have similar two-stage structure and both encode coefficients sparse
enough which are generated in the first stage.

3.5. Discussion

Extensive experiments on four biometrics databases have revealed some
significant points, from which we can find the following:

1. Comparing with several classical methods for solving linear inverse
problems, experiments on PIE, AR and PolyU palmprint databases show
that TSSR is an effective and efficient method.

2. TSSR almost uses the same time for different K to run. This indicates
the robustness of algorithm, which is not sensitive to the parameter K. This
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happens as long as we can obtain a small number of good discriminative
features in the first stage to do the second sparse coding.

3. Since TSSR reaches the highest accuracy at about the predetermined
value K, we can first use Eqn. (20) to get the initial K for a dataset, then
adjust K in experiments to acquire the desired results. This may give us
freedom and avoid trial and error.

4. ALB and FISTA can obtain quite high accuracy for all the three
databases, which can be used in the situation when highest accuracy is de-
sired and we can afford the time.

5. TSSR structure can accommodate different sparse solvers as well as
different measure matrices, if W is designed to obey or nearly obey Gaussian
distribution with the training data, while {2 approximates an identity matrix.

6. Since the sparsity basis €2 is approaching identity matrix but not
exactly, this may have effect on recognition rate. So the design of €2 is worth
studying further.

4. Conclusions and Future Work

We have proposed a new method of Two-Stage Sparse Representation
(TSSR) for solving linear inverse problem. TSSR makes the sparse approxi-
mation computationally tractable without sacrificing stable convergence. Ex-
perimental results with image recognition indicate TSSR is more efficient
with comparable accuracy than several classic methods solving linear inverse
problem. As the proposed method provides a good way to exploit the special
structure of biometric datasets and is helpful for achieving rapid speed, it
can be also applied to other recognition tasks.

References

[1] J.A. Tropp, S.J. Wright, Computational methods for sparse solution of
linear inverse problems, P IEEE, 98 (2010) 948-958.

[2] H. Cheng, Z. C. Liu, L. Yang, X.W. Chen., Sparse representation and
learning in visual recognition: Theory and applications, SIGNAL PRO-
CESS, 93 (2013) 1408-1425.

[3] Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal matching pur-
suit: recursive function approximation with applications to wavelet de-
composition, in: 27th Asilomar Conference on Signals, Systems and
Computers, 1993, pp. 40-44.

16



[4] D.L. Donoho, Y. Tsaig, I. Drori, J.L. Starck, Sparse solution of underde-
termined systems of linear equations by stagewise orthogonal matching
pursuit, IEEE T INFORM THEORY 58 (2012) 1094-1121.

[5] D. Needell, R. Vershynin, Signal recovery from incomplete and inaccu-
rate measurements via regularized orthogonal matching pursuit, IEEE
J-STSP, 4 (2010) 310-316.

[6] M.D. Plumbley, M. Bevilacqua, Sparse reconstruction for compressed
sensing using Stagewise Polytope Faces Pursuit, in: 16th International
Conference on Digital Signal Processing, 2009, pp. 1-8.

[7] D. Needell, J.a. Tropp, CoSaMP: Iterative signal recovery from incom-
plete and inaccurate samples, APPL COMPUT HARMON A, 26 (2009)
301-321.

[8] M.H. Wright, The interior-point revolution in optimization: history, re-
cent developments, and lasting consequences, B AM MATH SOC, 42
(2005) 39-56.

[9] E.J. Cand‘es, J. Romberg, L;-magic: Recovery of sparse signal via con-
vex programming, (2005) pp. 19.

[10] D.L. Donoho, X. Huo, Uncertainty principles and ideal atomic decom-
position, IEEE T INFORM THEORY 47 (2001) 2845-2862.

[11] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression,
ANN STAT, 32 (2004) 407-451.

[12] 1. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algo-
rithm for linear inverse problems with a sparsity constraint, COMMUN
PUR APPL MATH, 57 (2004) 1413-1457.

[13] W. Yin, Stanley and Goldfarb, Donald and Darbon, Jerome, Bregman
iterative algorithms for /;-minimization with applications to compressed
sensing, STAM J IMAGING SCI, 1 (2008) 143-168.

[14] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm
for linear nverse problems, STAM J IMAGING SCI, 2 (2009) 183-202.

[15] M.  Davenport, Sub-gaussian ~ random  variables, URL
http://cnx.org/content /m37185/latest /, 2011.

17


http://cnx.org/content/m37185/latest/

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

Blumensath, T. and Yaghoobi, M. and Davies, M. E., Iterative hard
thresholding and [y regularisation, ICASSP 07, 877-880.

Herrity, KK and Gilbert, AC and Tropp, JA, Sparse approximation via
iterative thresholding, ASSP (2006), 624-627.

Zuo, Wangmeng and Meng, Deyu and Zhang, Lei and Feng, Xiangchu
and Zhang, David, A generalized iterated shrinkage algorithm for non-
convex sparse coding, ICCV (2013).

W. Yin, Analysis and generalizations of the linearized bregman method,
SIAM J IMAGING SCI, 3 (2010) 856-877.

H. Lee, A. Battle, R. Raina, and A. Y. Ng, Efficient sparse cod-
ing algorithms, Advances in Neural Information Processing Systems in
NIPS’2007, 2007.

B. Y. Liu, L. Yang, J. Z. Huang, and P. Meer, Robust and fast collab-
orative tracking with two stage sparse optimization, Proc. of the 11th
European Conf. on Computer Vision, in: ECCV’2010, 2010, pp. 1-14.

R. He, B.G. Hu, W.S. Zheng, and Y.Q. Guo, Two-stage sparse repre-
sentation for robust recognition on large-scale database. in: AAAI'2010,
2010, pp 475-480.

B. Huang, S. Ma, D. Goldfarb, Accelerated linearized bregman method,
J SCI COMPUT larXiv:1106.5413v1 (2011).

J.-B. Huang, M.-H. Yang, Fast sparse representation with prototypes,
in: CVPR’ 2010, 2010, pp. 3618-3625.

M. Aharon, M. Elad, A. Bruckstein, K-SVD: Design of dictionaries for
sparse representation, in: Proceedings of SPARS’ 2005, 2005, pp. 9-12.

C.Y. Peng, JJW. Li, Fast sparse representation model for /;-norm min-
imisation problem, ELECTRON LETT, 48 (2012) 162-164.

E.J. Candes, J.K. Romberg, T. Tao, Stable signal recovery from incom-
plete and inaccurate measurements, COMMUN PUR APPL MATH, 59
(2006) 1207-1223.

18


http://arxiv.org/abs/1106.5413

28]

[32]

[33]

[34]

M.A. Davenport, P.T. Boufounos, M.B. Wakin, R.G. Baraniuk, Signal
processing with compressive measurements, IEEE J-STSP, 4 (2010) 445-
460.

M. Talagrand, A new look at independence, ANN PROBAB, 24 (1996)
1-34.

J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma, Robust face recognition
via sparse representation, IEEE T PATTERN ANAL, 31 (2009) 210-227.

A.S. Georghiades, P.N. Belhumeur, D. Kriegman, From few to many:
illumination cone models for face recognition under variable lighting
and pose, IEEE T PATTERN ANAL, 23 (2001) 643-660.

A.M. Martinez, A.C. Kak, PCA versus LDA, IEEE T PATTERN
ANAL, 23 (2001) 228-233.

D. Zhang, W.-K. Kong, J. You, M. Wong, Online palmprint identifica-
tion, IEEE T PATTERN ANAL, 25 (2003) 1041-1050.

D.L. Donoho, Y. Tsaig, I. Drori, J.-L. Starck, Fast solution of /;-norm
minimization problems when the solution may be sparse, IEEE T IN-
FORM THEORY, 54 (2008) 4789-4812.

M.-J. Lai, W. Yin, Augmented [, and nuclear-norm models with a glob-
ally linearly convergent algorithm, CoRR, larXiv:1201.4615/ (2012).

T. Strohmer, R.W.H. Jr., Grassmannian frames with applications to
coding and communication, APPL. COMPUT HARMON A, 14 (2003)
257 - 275.

Benedetto, John J., Kolesar, J. D, Geometric properties of grass-
mannian frames for R2 and R3, EURASIP J. Adv. Sig. Proc.,
doi:10.1155/ASP /2006/49850, 2006 (2006).

E.J. Cand‘es, The restricted isometry property and its implications for
compressed sensing, C. R. Acad. Sci. Paris S’er. IMath. , 346 (2008)
589-592.

R.G. Baraniuk, M.A. Davenport, R.A. DeVore, M.B. Wakin, A simple
proof of the restricted isometry property for random matrices, CONSTR
APPROX, 28 (2008) 253-263.

19


http://arxiv.org/abs/1201.4615

Appendix A. Concentration of Measure

Suppose we have a signal y € R™, and a matrix ® € R™¥ in which the
signal is presented. We want to obtain a sparse set of coefficients (sparsity
level K) to represent the signal. Assume that an observed sample belongs to
one certain class and can be well represented using samples from the same
class. We say that the matrix ® satisfies RIP of order K with constant
0 =0k < 1if

lzllo < K = (1= dx) 2]l < [®zll5 < (14 0k )|z (A1)

RIP is a measure of closeness to an identity matrix for sparse vectors.
Define that @ selects K columns from ®, the RIP then suggests that every
® should behave like an isometry - not changing the length of the vector
it multiplies. If ||z||o is small enough, the norm ||®z||3 can be constrained
to a small enough value, in which case a sparse representation can be stably
determined [38].

We can generate random m x N matrices ® by choosing the entries ¢;;
as independent and identically distributed (i.i.d.) random variables. For
any x € RY, the random variable ||®|2 is strongly concentrated about its
expected value, that is,

2

Pr(l|ez(lz — |z]3] > allz]l2) < 2e7, (A.2)

where the probability is taken over ® and ¢ is a constant, for any « € (0, 1).
This is called concentration of measure inequalities.

Any distribution satisfying a concentration inequality will provide both
the canonical RIP and the universality with respect to a certain sparsifying
basis U. Here U is represented as a N x N identity matrix and z € X, with
which we can acquire signals Wx that are sparse or compressible in practice.
By choosing K-dimensional subspaces spanned by sets of K columns of U,
theorem 5.2 of [39] establishes the RIP for ®W for each of the distributions.
See [15] for more details on Sub-Gaussian random variables.

If the matrix ®V satisfies the RIP of order 2K, then ® is a J-stable
embedding of (¥(> ), ¥(> ), where ¥(> ) = {Vx : z € > .} We
would require that ®W satisfies the RIP, and thus bound the error ||z — z||2
introduced by the embedding. See the appendix B.
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Appendix B. Bi-Lipschitz Theory

Theorem 1 Suppose that ® satisfies the RIP of order 2K with isometry
constant § < v/2 — 1. Given measurements of the form y = ®x + e, where
|le||l2 < e, the solution Z to

argxrlrelg}v |2'||1 s.t. ||z — yll2 < € (B.1)
obeys
. r—x
||l'—ll§'||2 SCQE—FCl%, (BQ)
where Cy = 4T ﬁjﬁ)&’ Cy = 2%, rx is denoted as the vector x with

all but the K-largest entries set to zero. We can restate the RIP in a more
general form. Let 6 € (0,1) and U,V € RY be given, we say a mapping ® is
a 0-stable embedding of (U, V) if

(L= 0)[lu—vll3 < [|®u—Pv|5 < (1+0)]u—wv]s3, (B.3)

for all w € U, v € V. A mapping satisfying the property is commonly called
bi-Lipschitz [39].

Lemma 1 [28]: Let U and V be sets of points in RY. Fix «, 3 €
(0,1). Let ® be an m x N random matrix with i.i.d. entries chosen from a
distribution satisfying Eqn. (B.I)). If

(U][V]) + In(2/5)

1
m > - : (B.4)

then with probability exceeding 1 — 3, ® is a J-stable embedding of (U, V).
With Lemma 1, we can derive that ® is a d-stable embedding of (yo, {Pox}).
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