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Abstract

Lane changes are important behaviors to study in driving research. Automated detection of lane-

change events is required to address the need for data reduction of a vast amount of naturalistic 

driving videos. This paper presents a method to deal with weak lane-marker patterns as small as a 

couple of pixels wide. The proposed method is novel in its approach to detecting lane-change 

events by accumulating lane-marker candidates over time. Since the proposed method tracks lane 

markers in temporal domain, it is robust to low resolution and many different kinds of 

interferences. The proposed technique was tested using 490 h of naturalistic driving videos 

collected from 63 drivers. The lane-change events in a 10-h video set were first manually coded 

and compared with the outcome of the automated method. The method’s sensitivity was 94.8% 

and the data reduction rate was 93.6%. The automated procedure was further evaluated using the 

remaining 480-h driving videos. The data reduction rate was 97.4%. All 4971 detected events were 

manually reviewed and classified as either true or false lane-change events. Bootstrapping showed 

that the false discovery rate from the larger data set was not significantly different from that of the 

10-h manually coded data set. This study demonstrated that the temporal processing of lane 

markers is an effcient strategy for detecting lane-change events involving weak lane-marker 

patterns in naturalistic driving.
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1. Introduction

According to the World Health Organization’s 2015 global status report on road safety, 

about 1.25 million people die each year as a result of road traffic crashes.44 Considerable 

research effort has been devoted to understanding driving behaviors and factors affecting 

driving safety. Driving simulators and closed road tests are common methods to assess 

driving performance. However, they might not capture the combination of complex factors 

involved in real-world vehicle crashes. To address the limitations of conventional paradigms, 
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naturalistic driving studies have been increasingly conducted. Since the first naturalistic 

driving study was launched,31 naturalistic recordings have been used to document daily 

driving of different cohorts, including younger or older drivers,8,11,43 visually or cognitively 

impaired drivers,11,25 and passenger car or truck drivers.32,30,38

Naturalistic driving studies have yielded a wealth of data (e.g. driving videos, Global 

Positioning System (GPS) tracking, sensor logs, etc.). For example, the 100-Car Project 

recorded the driving of 100 volunteers across a one-year period and resulted in 42 300 h of 

driving footage.12,30,31 The successive Strategic Highway Research Program 2 (SHRP) 2 

study gathered over 1.2 million h of recordings from the vehicles of approximately 3000 

volunteers.38 To manually review this volume of data is practically impossible, and fully 

automated, intelligent analyses of such big data are still in development. Therefore, data 

reduction by automatically detecting driving behaviors of interest is crucial for the analysis 

of naturalistic driving data. In the 100-Car Project, event triggers were set for segments with 

high lateral or longitudinal acceleration.12,30 In West et al.’s study,43 software was used to 

mark the video segments recorded at intersections. To study the driving of visually impaired 

people using bioptic telescopes, Luo et al.25 developed automated identification techniques 

for driving events such as the use of the telescope or unsteady steering. To be effective, 

automated detection methods must have a high sensitivity for important events and a high 

data reduction rate to facilitate manual offline review of relevant segments only. With a high 

reduction rate, false alarms are usually tolerable because they can be easily rejected upon 

visual examination and the increase in work load is negligible.

Among various driving events, lane keeping and lane changing are especially important, and 

they have been widely used to evaluate driving behaviors, especially for driver distraction.
9,15,27,46–48 Using the crash data of 5345 older drivers in Florida, Classen et al.9 found that 

lane maintenance, yielding, and gap acceptance errors predicted crash-related injuries with 

almost 50% probability. He et al.15 studied driving performance under varying cognitive 

loads by assessing drivers’ lane position variability, and suggested that lane keeping is an 

indicator of cognitive distraction. Lee et al.21 investigated driving safety by comprehensively 

examining naturalistic lane changes associated with turn signal use, braking and steering 

behavior, and eye glance patterns. Bowers et al.6,5 used lane keeping as a metric to examine 

driving performance for drivers with vision impairments. Nobukawa et al.32 studied gap 

acceptance during lane changes using naturalistic driving data and found that lane changes 

were a dominant source of major two-vehicle crashes involving one heavy truck and one 

light vehicle.

For abrupt lane position changes (e.g. weaving), accelerometer-based methods may be easy 

to implement and work well in some cases.10,18,25 However, these methods are not suitable 

for lane-change detection, because most lane changes are smooth making the signature 

signal within the acceleration data weak. Advanced Driver Assistance Systems (ADAS) 

usually use vision-based lane-change or lane-departure detection methods, which have been 

applied in commercial vehicles4,16,17,23,45 However, these methods require high-resolution 

lane markers, typically in good road conditions. For example, Satzoda et al.’s 

methods28,36,37 were evaluated using images with lane markers at the scale of 10 pixels wide 

and up to 300 pixels long, and Gaikwad et al.’s method14 involved lane markers at the scale 
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of 10 pixels wide and 150 pixels long. Although some methods1,19,39 address complicated 

scenarios, such as urban streets with passing vehicles and shadows, they also relied on high-

resolution lane markers. Kim’s method19 was designed to detect lane markers in local streets 

with the images captured with the camera facing downward and the lane markers could 

therefore be as large as 10 × 120 pixels.

Due to in-car recording technology limitations and the need to record multiple channels (e.g. 

driver view and back view) using one digital video recorder (DVR), videos for the road 

scenes in naturalistic driving studies sometimes have low-resolution lane markers. The 

videos recorded by a Brown University study involving people with cognitive impairments 

were captured with a large field of view, resulting in lane markers usually narrower than 3 

pixels, and as short as 10 pixels in the case of dashed lane markers.11 The front video 

resolution of the 100-Car study was 310 × 240, typically resulting in lane markers of 3 × 50 

pixels.30 While videos can be recorded using high-resolution recorders nowadays, if the field 

of view of the camera lens is large (e.g. 170° as commonly designed in many commercially 

available vehicle DVRs, like the E-PRANCE EP503), the width of lane marker is still small. 

Figure 1(a) presents a frame of a video captured by the E-PRANCE EP503 vehicle camera.
13 In addition, the problem of low resolution raised here is not only about lane-marker width. 

It represents a weak-signal problem that frequently occurs in natural driving conditions. It 

may be due to many other reasons (e.g. bad weather, low illumination, poor road conditions, 

etc.). As Figs. 1(a) and 1(c) show, both images have weak lane-marker signals, despite being 

high-resolution images.

In existing literature, it is rare to evaluate lane-marker detection or lane-change event 

detection using vast naturalistic driving data. In this paper, we report an automated method 

for lane-change detection in a data set of 490-h long, low-resolution naturalistic driving 

videos, which was much larger than most testing data sets used in previous literature. 

Because the goal of our study was to reduce the effort and time required for manually 

reviewing the naturalistic driving videos offline, with minimal loss of true lane-change 

events, we tuned the detection method to increase the data reduction rate rather than reduce 

the false discovery rate, to the extent that most of the lane-change events would be detected.

The main contribution of our work is twofold: (1) we proposed to detect lane-change events 

by accumulating lane-marker candidates over time, i.e. tackling the problem in the temporal 

domain, which effectively overcame the difficulty due to low resolution, and (2) the 

proposed method was tested on a large volume of naturalistic driving videos in low 

resolution to demonstrate its utility in practical problem solving.

2. Method Overview

Compared to high-resolution videos, low-resolution videos have shorter and narrower lane 

markers and therefore result in a weaker signal for detection. Conventional methods cannot 

reliably detect the weak lane markers. Figure 2 shows the lane-marker detection for three 

types of images using Hough transform and Tomazas’ method,34 which is based on 

references.7,24,40 The edges are extracted from the original image by a Sobel operator, and 

the Hough transform image is derived from the edge image. The highlighted area in the 
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Hough transform image corresponds to the highlighted area in the edge image. The brighter 

the highlighted area in the Hough transform image, the more obvious the edge. For an 

artificial image (Fig. 2(a)), Tomazas’ method can easily detect the lane markers. For an 

image with high-resolution lane markers (Fig. 2(b)), the marked edge was mapped as a 

bright spot in the Hough transform image, and Tomazas’ method can detect line patterns 

including the lane markers reasonably well. By contrast, for a low-resolution image from our 

naturalistic driving videos (Fig. 2(c)), the lane-marker edges are likely not the bright spots in 

the Hough transform image (see the red circle in Fig. 2(c)). While Tomazas’ method was 

able to detect long line patterns, such as road curbs far from the car, it completely missed the 

actual dashed lane marker right under the vehicle.

The fundamental limitation with these conventional lane-marker detection algorithms is that 

they essentially detect long, strong line patterns (not necessarily solid lines). However, in 

low-resolution videos such as our data set, the visible lane markers are usually short and 

thin, due to the strong perspective effect of wide-angle cameras. To overcome the problem, 

we propose a method to detect weak lane markers by examining a number of consecutive 

frames. As Fig. 3 shows, the proposed method consists of four steps.

1. Obtain the spatial properties of preliminary lane-marker candidates.

For each car, we set a detection line 15 pixels above the vehicle hood manually 

(the red line in Fig. 4(a)). In each video frame, the features of strip patterns (e.g. 

lane makers) along the detection line is extracted by an adaptive Gaussian-

matched filter26 and the background variation is evaluated by a pair of conjugate 

windows.

2. Detect preliminary lane-marker candidates by the spatial properties.

The preliminary lane-marker candidates are detected according to the spatial 

properties of strip patterns, such as the best-matched parameters and the 

background variation.

3. Detect the lane markers that form a line.

As Fig. 4(b) shows, an accumulated image is built by stacking up the preliminary 

lane-marker candidates on the detection lines over time. The real lane markers of 

the same lane usually form a line in the accumulated image, while the incorrect 

detection results appear like noise dots. By detecting lane-marker candidates that 

form continuous lines, the final lane makers are labeled (referred to as labeled 

lane markers).

4. Detect the lateral-shift based on labeled lane markers.

If a vehicle maintains its lane position, the labeled lane markers usually form a 

straight vertical line in the accumulated images. Therefore, the lane-change 

events can be detected by analyzing the lateral shift of the labeled lane markers.
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3. Obtain the Spatial Properties of Lane-Marker Candidates

The proposed method detects lane markers based on the features of strip patterns as well as 

the variation of background. A detection line, along which the preliminary lane markers are 

detected, is placed close to the vehicle hood (Fig. 4(a)). This is because lane markers appear 

longer, wider, and have more reliable orientation at near distances to the camera. A second-

order Gaussian-matched filter is used to extract the features of strip patterns, including the 

orientation, the width, and the filter response. Additionally, the background variation of a 

lane marker is another important clue for lane-marker detection, and we evaluated the 

background variation using a pair of conjugate windows.

3.1. Extracting features of strip patterns using a Gaussian-matched filter

The second-order Gaussian-matched filter (matched filter for short) is effective at detecting 

strip patterns with orientation, such as retinal blood vessels and layers in retinal optical 

coherence tomography (OCT) images.26,49 Similarly, we apply the matched filter to detect 

lane markers, and accordingly utilize the parameters of the matched filter to represent the 

features. The model of the matched filter is given by26,49:

f x, y = 1
2πσ3.5 x2 − σ2 e

− x2

2σ2
, x − c ≤ w/2, (1)

where σ controls the spread of the filter, c is the x position of the center line of the filter 

window along the y axis, and w is the width of the filter window.

Equation (1) assumes that the orientation of the filter is aligned along the y axis. For lane 

markers, the orientations are arbitrary. Therefore, one more parameter, θ, is added to 

describe the orientation, and Eq. (1) is revised as

f ′ x, y, θ = − 1
2πσ3.5 sinθ · x − cosθ · y 2 − σ2 e

− sinθ · x − cosθ · y 2

2σ2
,

D L′c x , xy ≤ w/2,

(2)

where D L′c, xy  is used to constrain the distance from the point (x, y) to the center line L′c, 

which is defined as sin θ · x − cos θ · y = c.

3.2. Computing the background variation using a pair of conjugate windows

While the matched filter can detect weak lane markers, it is also sensitive to step edges. As 

Figs. 5(a) and 5(b) demonstrate, the edges of the road and the garage frame may be detected 

as lane markers. The proposed method eliminates the falsely detected edges, based on an 

assumption that the background (road surface) of the lane marker is uniform in a local area.
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Although the road surface is uniform in local areas, illumination variation may occur within 

one frame (e.g. shadow) or across different frames, making it difficult to set a universal 

threshold to determine the uniformity of the background. For instance, the highlighted areas 

in Figs. 5(a) and 5(b) have different illumination, and the shadow in Fig. 5(c) causes the two 

local areas in the same frame to be different. According to Retinex theory, reflectance is 

invariant to the illumination,20,22,41,42 so our method uses reflectance rather than the raw 

image to evaluate the background variation. Based on Retinex theory, the reflectance of a 

window can be derived by

R x, y = SQ cx + x, cy + y /Ie, (3)

where (cx; cy) indicates the centers of the window, SQ indicates the lightness of the window, 

Ie is the environment illumination, which is simply estimated by the average lightness of the 

brightest 10% pixels in the window, and R (x; y) is the reflectance of the window.

Our method uses a pair of conjugate windows (as shown in the highlighted insets in Fig. 5) 

to measure the difference between the reflectance on the two sides of the lane marker. The 

two windows are named the left and right windows, as shown in Fig. 6(b). The difference 

between the two conjugate windows is computed as follows:

Dcq = 1
N ∑

i = − win

win
∑

j = − win

win
Rl i, j − Rr i, j , (4)

where the win is empirically set to 4, the width of the window is 2 ∗ win + 1 = 9, and the 

number of pixels in each window is N = 2 ∗ win + 1 2.

4. Detect Lane Markers by the Spatial Properties

The proposed method detects preliminary lane-marker candidates using the best-matched 

parameters of the filter and the background variation. Only the strip patterns with large 

response peak, reasonable direction and width, and small background variation are 

considered as final lane markers. Specially, the preliminary lane markers that satisfy the 

following criteria are preserved:

a. The filter response peak RSPpeak is greater than an empirically set lower bound, 

RSPlower = 60.

b. The range of the parameter σbest, which depends on the width of the lane marker, 

is set to [0.5,5]. A small range is useful to speed up the computation, while a 

large range makes the method more robust to lane-change width variation.

c. The range of the best-matched orientation θbest is empirically set to [30°, 150°], 

to exclude strip patterns along the horizontal direction. The method can tolerate 

different ranges of this parameter as far as the horizontal strip patters can be 

excluded.
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d. The background reflectance variation is less than an empirically set upper bound, 

CJDupper = 60.

After obtaining the preliminary lane-marker candidates for each frame, we stack up the 

detection line in chronological order to obtain an accumulated image (Fig. 4(b)). Each row 

of the accumulated image is a detection line from one frame, with 1 indicating the lane-

marker candidate and 0 indicating the nonlane-marker candidate.

5. Detect Lane Markers Forming a Line

In the accumulated image, the true lane markers of the same lane usually form a line 

(referred to as the lane-marker line), such as the four obvious lines in Fig. 4(b). The 

direction of the lane-marker line would be almost vertical in the case that the vehicle 

maintains a steady lane position, while it would deviate from the vertical direction in the 

case that the vehicle turns. Therefore, the challenge of lane-change detection can be 

transformed into a line-orientation detection problem.

Since naturalistic driving conditions vary greatly, the accumulated image may have many 

false lane markers (Fig. 4(b)), which can cause false alarms. The proposed method filters out 

false lane markers by double checking the preliminary lane markers using an oriented 

histogram. To obtain the oriented histogram, a circle is centered on the preliminary lane 

marker. For each direction of 1°, 2°, 3°, … 180°, an oriented stripe across the center of the 

circle (the area marked by the red rectangle shown in Fig. 7) is defined, and the number of 

preliminary lane markers in the stripe is counted. The diameter of the circle is set equal to 

the lane width wl, and the width of the stripe is set to wl ∗ 0.15. The oriented histogram is 

defined as an array of preliminary lane-marker counts obtained from the 180 evenly 

distributed stripes around the center.

The oriented histogram typically has a peak along the orientation of the lane-marker line 

(Fig. 7 (b)). To check if the distribution of preliminary lane markers forms a lane-marker 

line, the proposed method uses a threshold Plower:

Plower = t · ∑
i = 1

N
h i /N, (5)

where h(i) indicates the value of the ith histogram bin, t is a constant value, empirically set 

to 4.

If the highest peak in the histogram is above the threshold Plower, the candidate is regarded 

as a final lane marker, and also its orientation is assigned as the orientation of the histogram 

peak. Otherwise, the lane-marker candidate is removed. The labeled lane markers are later 

used to compute the lateral shift of the vehicle.
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6. Detect Lane-Change Events

Lane-change events were detected by the lateral variation of lane markers. In the 

accumulated image, since a vertical lane-marker line implies no vehicle lateral shift, we only 

considered lane markers with orientation in [30°, 80°] and [100°, 150°]. At a small scale, the 

lane-marker line is approximately a straight line, which can be modeled using the position 

and the orientation of a lane marker, but it may not be true at a larger scale. Therefore, our 

method analyzed the lane-marker line in a segment-wise manner.29

As Fig. 8 shows, given a labeled lane marker P, the line Llm passing through it is

sin θ · x − cos θ · y = sin θ · x0 − cos θ · y0, (6)

where (x0, y0) and θ are the coordinates and the orientation of the lane marker P (obtained 

from the oriented histogram).

All the lane markers (x, y), which satisfy the criteria defined by Eqs. (7) and (8), are found.

D x, y , x0y0 ≤ wl/2, (7)

where D((x, y), (x0, y0)) indicates the distance from the lane marker at (x, y) to (x0, y0)

D Llm, x, y ≥ wl ∗ 0.075, (8)

where D(Llm, (xy)) indicates the distance from the lane marker at (x, y) to the line Llm

Among all the surrounding lane markers satisfying Eqs. (7) and (8), assume R1 is the one 

with the largest horizontal coordinate, i.e. the rightmost. The line passing through R1 can 

also be modeled according to its coordinate and orientation, and then a new rightmost 

candidate R2 can be found using R1 as reference. This process is repeated as long as the 

distance between the latest rightmost lane marker and P is less than 2wl. Such a threshold is 

set to avoid analyses over a too long range, which may complicate data involved. In Fig. 8, 

the final rightmost lane-marker candidate is R4. The leftmost lane marker can be found in a 

similar way.

A lane-change event is detected if the rightmost and the leftmost lane markers meet the two 

criteria: (1) The horizontal distance (lateral shift) between the rightmost and the leftmost 

lane markers is larger than 0.8wl. In other words, only the events with obvious lateral shift in 

a local area are considered as lane-change events. (2) The rightmost and the leftmost lane 

markers are on two opposite sides of the middle line of the accumulated image. This requires 

that the lane marker should run across the camera center.

Wang et al. Page 8

Intern J Pattern Recognit Artif Intell. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Experiments

7.1. Experimental setup

The test data consisted of 490 h of naturalistic driving video collected by Ott et al. from 63 

cognitively impaired drivers in a previous study.2,33 Cameras were installed in the drivers’ 

cars, and continuous video recording was collected over a two-week period. Cameras 

captured front, sides, and rear views (four channels). Video from the cameras was 

automatically saved to a portable digital video-recording device that was placed under the 

passenger seat. Participants were instructed to drive in their typical environment and routine. 

The resolution of each video channel was 352 × 240 and lane markers, which are from the 

front-view channel, were typically no wider than 3 pixels.

Many of the driving videos were not reviewed manually in Ott’s clinic studies, due to the 

large amount of labor and time required. The proposed lane-change detection technique was 

used for data reduction. The experimental environment is an Intel (R) Core (TM) i7-4790 

CPU @ 3.6 GHz, Windows 7, and Microsoft Visual Studio 2008 C#. Our goals were (1) 

detecting lane-change events with minimum missed detections; and (2) reducing the quantity 

of data to an acceptable level for manual review. Therefore, unlike previous papers,1,45 this 

experiment did not focus on the evaluation of lane-marker detection for each frame. Instead, 

the sensitivity of lane-change detection, the false discovery rate, and the data reduction rate 

were the main outcome measures.

To evaluate the sensitivity of the proposed method, a 10-h subset from the 490-h data set was 

arbitrarily selected and 154 real lane-change events were manually labeled. The labeled 

lane-change events served as the ground truth. The average duration of a lane-change event 

is 9 s. Compared to previous studies1,45 which usually had less than 2 h of manually coded 

videos, our test videos contained much more complicated road conditions. The remaining 

480-h videos were processed by the proposed method to detect the lane-change events. A 

bootstrapping method was used to determine whether the results from the 10 h of test videos 

could be generalized to the other 480-h data set. Finally, we summarized the causes for 

incorrectly detected lane-change events.

7.2. Results

The proposed method is rather effcient, since this method is designed to process only one 

line for each frame. Our program needs around 5 min to process a 1-h video. For the 10 h of 

coded video, the proposed method correctly detected 146 of the 154 labeled events, and 

falsely marked 111 nonlane-change events. In other words, the method achieved a sensitivity 

of 94.8% (146/154) with a false discovery rate of 43.2% (111/257). Based on the total length 

of lane-change event clips, the data reduction rate was 93.6%. Given such a high data 

reduction rate, the 43.2% of additional video-reviewing effort due to false discoveries was 

acceptable, as it was only 38.6 min out of 10 h. The eight missed lane-change events were 

respectively due lane-marker missing (one event), image sensor smear from the sun (one 

event), windshield wiper occlusion (two events), spots on windshield (two events), and slow 

lateral shift (two events). Reasons for these missed events are elaborated below.
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a. Lane-marker missing: Figs. 9(a)–9(c) illustrate three frames in chronological 

order of such a missed lane-change event. The lane marker could be seen at the 

beginning and the end of the lane change, but disappeared for most of time of the 

lane change (Fig. 9(b)). Our method failed to detect the lateral shift of the lane 

marker as a lane-change event.

b. Image sensor smear: The image sensor smear due to the sun was a white line 

crossing the image vertically. Since the smear was brighter than the real lane 

marker, it was identified as a lane marker instead. When a true lane-change event 

happened, the smear line maintained its horizontal position as Figs. 9(d)–9(f) 

show, and therefore our method mistakenly determined the lane position was 

steady.

c. Windshield wiper occlusion: The windshield wiper occluded the view so that the 

proposed method failed to detect the lane marker. Figure 9(g) illustrates a frame 

of a missed lane-change event due to windshield wiper occlusion.

d. Spots on windshield: in one subject’s video, a white spot on windshield 

happened to be on the detection line, as shown in Fig. 9(h). The spot resulted in a 

steady lane-marker line in the accumulated image, and therefore it was assumed 

that the vehicle kept the lane position.

e. Slow lateral shift: The lateral shift was so slow that it took a much longer time 

than was typical (and therefore many more frames) to finish the lane-change 

event. Since our method was set to detect lane change within 320 frames, it 

failed to find such slow lane-change events.

For the 480 h of video, 4971 lane-change events were flagged by our method. All of them 

were manually reviewed, and the results indicated that 2370 flagged events (47.7%) were 

real lane changes and the other 2601 (52.3%) were not. In other words, the false discovery 

rate was 52.3%, and the data reduction rate was 97.4%. Sensitivity was unknown as we 

could not practically code all 480 h of video.

According to our review, the false positive lane-change events were mainly due to three 

causes: lane variation (1409 events), other bright patterns (697 events), and incorrect lane-

marker detection (495 events).

a. Lane variation: Road curvature, road division, merging roads, and lane width 

change are common lane variation. Figures 10(a) and 10(b) illustrate two frames 

of a falsely detected event due to lane width change. The right lane marker did 

shift to the right, but that was because the car moved to the center of a widening 

lane.

b. Bright patterns: Some bright patterns, such as the sensor smears and white posts 

in the light color, were incorrectly identified as lane markers and shifted laterally 

when the vehicle made a turn. Figures 10(c)–10(e) show three frames in 

chronological order of a falsely detected event due to smear. The smear moved 

from left to right relative to the camera, resulting in a falsely detected event.
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c. False lane-marker detection: Due to environment changes and noises, the 

proposed method sometimes could not detect lane markers correctly, and further 

resulted in falsely detected events.

To test if the false discovery rate of the 480 h of data (52.3%) was similar to that of the 10-h 

coded sample (43.2%), we used a bootstrapping procedure in which we randomly selected 

10-h samples from the 480-h data set 10,000 times and then calculated the distribution of the 

false discovery rates, as shown in Fig. 11. We found that the false discovery rate (43.2%) of 

the 10-h fully coded data set was within the 95% confidence interval ([39.2%, 64.3%]). 

Therefore, the 10-h coded data set can be considered as a reasonable approximation of the 

whole 490-h data set, as far as lane-change detection is concerned. This finding might 

suggest that the sensitivity (94.8%) based on the 10-h data set is also representative of the 

490-h data set. In general, when a method is tuned for detection, an increase in false 

discovery rate is associated with an increase in sensitivity. As the 10-h false discovery was at 

the lower side of the 480-h false discovery rate distribution, it could be speculated that the 

actual sensitivity of the 480-h data set might be higher than the sensitivity of the 10-h fully 

coded data set.

We have also tested some existing lane detection methods on the naturalistic driving videos.
7,24,40 None of the methods can detect the low-resolution lane markers in our videos. One of 

the methods we tested is shown in Fig. 2. We can see that it failed completely for our 

images. Because they cannot detect lane markers, it is not fair conduct lane-change detection 

comparison in this paper.

In addition, we have also tested the proposed method on a recently released data set,35 which 

has totally 500-min recording involving six drivers. The videos of this data set are in higher 

resolution than our naturalistic driving data set. Overall, the data reduction rate is 92% and 

the sensitivity of lane-change events is 97.0%. Note: 20 incorrectly labeled ground truth 

events were excluded after visual examination. For example, the duration of the second 

video of subject D1 is 638 s, but two ground truth events are labeled at 646 and 656 s. Table 

1 shows the detection results, which are similar for all drivers except for D5. The missed 

detection for D5 was mainly due to the window shield occlusion. In general, the sensitivity 

of lane-change events on this data set is higher than that on our naturalistic driving data set. 

That is because the videos of this data set have higher resolution and the weather conditions 

were mostly better than in our videos.

8. Discussion and Conclusions

We have proposed a lane-change detection method based on temporally accumulated 

images. Our method is different from existing methods in that lane markers are detected over 

time rather than in a single frame, which overcame the difficulty due to low-resolution and 

possible interferences, such as occlusion within a single frame. This is critical for processing 

low-resolution images, where many existing methods failed.

We set the parameters of the method empirically, instead of using a machine learning 

procedure to tune the parameters. Systematically fine-tuning parameters could increase the 

method’s performance. However, despite using empirical parameters, the method was not 
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sensitive to the complexity of the images involving diversified driving conditions. Being able 

to successfully process an enormous amount of driving videos recorded from 63 people in 

their own environments demonstrated the robustness of the proposed method.

Although the image resolution in other applications is not always low, situations in which 

lane markers are difficult to discern are not rare in naturalistic driving videos. The causes 

include faded markers, bad weather, low illumination, etc. Fundamentally, the challenge is 

how to detect the weak signals of lane markers in those conditions. Because of the optical 

perspective effect, the width of lane markers in images shrinks with distance, and the 

perspective effect quickly increases with the field of view of the camera. In naturalistic 

conditions, the lane markers in the distance can easily be buried in other image patterns. 

Focusing only on lane markers at close distances, where lane markers are relatively easier to 

detect, and tracking them over time, i.e. temporal processing of lane markers, can be a sound 

strategy to resolve the weak-signal problem.

Data reduction of naturalistic driving videos is not only needed for driving safety research, it 

is also highly demanded in machine learning or deep learning work used in ADAS and self-

driving applications. This type of work requires enormous natural driving data, hand coded 

by human observers. Without data reduction, the hand coding burden can be prohibitively 

high. A reduction rate of 97% as we achieved in this study can be appealing. We envision 

that methods of lane-change detection from naturalistic driving videos can be useful to train 

machines to make lane changes like humans. Similar efforts have been initiated to train 

machines to steer a cars using deep learning neural networks.3
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Fig. 1. 
Lane markers with weak signals. (a) An image with high resolution 1604 × 768 captured by 

the E-PRANCE EP503 vehicle camera.13 (b) A frame with resolution 480 × 360 from 

SHRP2 study.38 (c) An image with high resolution 1604 × 768 but weak lane-marker signal.
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Fig. 2. 
Lane-marker detection for three types of images. (a) An artificial image with ideal lane 

markers, (b) A high-resolution image with lane markers around 270-pixels long,1 and (c) A 

low-resolution image with lane markers around 8-pixels long from our videos. The results of 

Hough transform and Tomazas’ method34 are demonstrated here. The highlighted edges in 

the second column correspond to the circle-highlighted spots in the Hough transform 

images. Line patterns can be detected by finding bright spots in the Hough transform 

images. The last column demonstrates the detection results of Tomazas’ method,34 which 

cannot detect low-resolution lane markers in (c).
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Fig. 3. 
Overview of the proposed lane-change detection framework. The first two steps are 

completed on each frame independently, and the last two steps are performed on the 

accumulated image, i.e. the detection lines from all frames in chronological order.
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Fig. 4. 
(a) A detection line (the red line) is set across the road and close to the vehicle hood, where 

the lane markers are most obvious. (b) The accumulated image is obtained by stacking up 

the preliminary lane-marker candidates on detection lines over time. The value of a pixel in 

the accumulated image is set to 1 if it is detected as a preliminary lane-marker candidate, 

and otherwise the pixel value is set to 0 (color online).
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Fig. 5. 
Background of lane-marker candidates. The original areas (marked by dashed lines) are 

processed to obtain the reflectance (indicated by the inset rectangles, which were magnified 

for illustration). The step edges in (a) and (b) look like lane markers but the reflectance 

insets clearly show the lack of background uniformity. (c) The two marked areas along the 

same lane marker in the same frame appear different due to the shadow; however, they are 

similar in the reflectance insets because reflectance is invariant to the ambient illumination.
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Fig. 6. 
Illustration of conjugate windows. (a) A naturalistic driving image. (b) Magnification of the 

marked area in (a), with a pair of conjugate windows and a center window. The red line in 

(b) connects the centers of the left window and the right window, perpendicularly to the 

direction of the lane marker, and the centers of the window lie on the lane marker (color 

online).
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Fig. 7. 
Illustration of an oriented stripe and an oriented histogram. (a) An oriented stipe is an area 

crossing the center of a circle, with two long sides equidistant from a diameter of the circle, 

and the other two sides on the boundary of the circle. (b) The oriented histogram, i.e. lane-

marker candidate count, obtained from 180 evenly distributed stripes around the center of 

the yellow circle in Fig. (a) (color online).
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Fig. 8. 
Detection of the rightmost and leftmost lane markers along a lane-marker line. The line 

passing through a lane marker is modeled using its coordinate and orientation.
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Fig. 9. 
Examples of missed lane-change events. (a–c) Three frames in chronological order of a 

missed lane-change event due to lane marker missing during the lane change. (d–f) Three 
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frames in chronological order of a missed lane-change event due to sensor smear. (g) A 

frame of a missed lane-change events due to windshield wiper occlusion. (h) A frame of a 

missed lane-change event due to a spot on windshield.

Wang et al. Page 25

Intern J Pattern Recognit Artif Intell. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Examples of false positive events. (a) and (b) are two frames in chronological order showing 

a falsely detected event due to lane width change. The car drove on the right lane maker first, 

and then moved to the lane center when the lane became wider. (c)–(e) Three frames in 

chronological order of a falsely detected events due to smear. The smear moved from left to 

right relatively to the camera when the car turned, resulting in a falsely detected event.
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Fig. 11. 
Distribution of false discovery rate for the 10,000 10-h samples from the 480-h data set. The 

95% confidence interval of the false discovery distribution is [39.2%, 64.3%], and the mean 

is 52.4%. The red line marks the false discovery rate (43.2%) of 10-h coded videos (color 

online).
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