
ar
X

iv
:1

80
4.

06
02

7v
1 

 [
cs

.L
G

] 
 1

7 
A

pr
 2

01
8

A Boosting Framework of Factorization Machine
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Abstract

Recently, Factorization Machines (FM) has become
more and more popular for recommendation systems,
due to its effectiveness in finding informative interac-
tions between features. Usually, the weights for the in-
teractions is learnt as a low rank weight matrix, which
is formulated as an inner product of two low rank matri-
ces. This low rank can help improve the generalization
ability of Factorization Machines. However, to choose
the rank properly, it usually needs to run the algorithm
for many times using different ranks, which clearly is in-
efficient for some large-scale datasets. To alleviate this
issue, we propose an Adaptive Boosting framework of
Factorization Machines (AdaFM), which can adaptively
search for proper ranks for different datasets without
re-training. Instead of using a fixed rank for FM, the
proposed algorithm will adaptively gradually increases
its rank according to its performance until the perfor-
mance does not grow, using boosting strategy. To ver-
ify the performance of our proposed framework, we con-
duct an extensive set of experiments on many real-world
datasets. Encouraging empirical results shows that the
proposed algorithms are generally more effective than
state-of-the-art other Factorization Machines.

1 Introduction

Originally introduced in [16], the Factorization Ma-
chines (FM) is proposed as a new model class that com-
bines the advantages of linear models, such as Support
Vector Machines (SVM) [5], with factorization models.
Like linear model, FM is a general model which will
learn a weight vector for any real valued feature vector.
However, FM also learn a pairwise feature interaction
matrix for all interactions between variables, thus it can
estimate interactions for highly sparse data(like recom-
mender systems) where linear models fail.The interac-
tion matrix is learnt using factorized parameters with
much smaller latent factor compared with the original
dimension of the instances. This introduced several ben-
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efits. Firstly, this acts as a kind of regularization, since
the rank of the interaction matrix is no more than the
latent factors and the number of parameters is much
lower than that of the full matrix. Secondly, this makes
the computation of the prediction score of FM can be
calculated in linear time and thus FMs can be opti-
mized directly. Because of these advantages, FM can be
used for any supervised learning tasks, including classi-
fication, regression, and recommendation systems. On
the other hand, FM can mimic most factorization mod-
els [19, 17], including standard matrix factorization [22],
SVD++ [10], timeSVD++ [11], and PITF (Pairwise In-
teraction Tensor Factorization) [20], just by feature en-
gineering. This property makes FM suitable to many
application domains, where factorization models are ap-
propriate. Practically, FM can achieve as good accuracy
performance as the best specialized models on the Net-
flix and KDDcup 2012 challenges [18].

Although the original Factorization machine is
successfully applied to optimize the accuracy of the
model [16].However, it is not guaranteed to optimize
ranking performance for recommendation system [3, 4].
Recently the Pair-wised Ranking based Factorization
Machines (PRFM) algorithm [15] is proposed to directly
optimize the Area Under the ROC Curve (AUC) per-
formance. However, AUC measure is not suitable for
top-N recommendation tasks [14], where the higher ac-
curacy at the top of the list is more important than that
at the low-position ( such as Normalized Discounted
Cumulative Gain (NDCG) and Mean Reciprocal Rank
(MRR) [12]). So, LambdaFM [25] is proposed to di-
rectly optimize the rank biased metrics, using the core
ideas of LambdaRank [1] where top pairs are assigned
with higher importance. Empirical results show that
LambdaFM generally outperforms PRFM in terms of
different ranking metrics. Although FM and their vari-
ants are successfully applied to many problems, it usu-
ally needs to run the algorithm for many times to choose
the rank properly. This clearly is inefficient for some
large-scale datasets.

Motivated by the above observations, we would like
to design an algorithm that can adaptively search for a
proper latent number for different datasets without re-
training. To achieve this goal, we adopt boosting tech-
nique, which was proposed to improve the performance
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(such as, AUC, NDCG, MRR) of models by combining
multiple weak models [8, 24], to propose an Adaptive
boosting framework of FactorizationMachine (AdaFM).
Specifically, AdaFM works in rounds to build multiple
component FMs bases on dynamically weighted train-
ing datasets, which are linearly combined to construct a
strong FM. In this way, AdaFM will adaptively gradu-
ally increases its latent number according to its perfor-
mance until the performance becomes saturated. As for
component FM, we can either choose the original FM,
PRMF or LambdaFM, according the performance that
we would like to optimize. To verify the performance of
our proposed framework, we conduct an extensive set
of experiments on many large-scale real-world datasets.
Encouraging empirical results shows that the proposed
algorithms are more effective than state-of-the-art other
Factorization Machines.

The rest of the paper is organized as follows. Sec-
tion 2 presents the proposed framework and algorithms.
Section 3 discusses our experimental results and Section
4 concludes our work.

2 Adaptive Boosting Factorization Machine

In this section, we will firstly introduce the problem
setting and Factorization Machine. Then, we will
present our Adaptive Boosting Factorization Machine
framework, following which we will give several specific
algorithms.

2.1 Problem Settings Our goal is to learn a func-

tion f : Rd → Y, based on a dataset
{

(xi, yi)|i ∈ [n] :=

{1, . . . , n}
}

, where xi ∈ R
d is the feature vector of the

i-th instance, yi ∈ Y is the label of xi. There are many
different choices of Y, which corresponds to different
problems. For example, when Y = {−1,+1}, we can
treat this problem as a classification problem.

2.1.1 Factorization Machine To learn a reason-
able f , Factorization Machines (FM) can be adopted.
Specifically, second order FM model predict the output
for an instance x using the following simple equation as:

fΘ(x) = w⊤x+
d

∑

l=1

d
∑

m=l+1

(VV⊤)lmxlxm(2.1)

where xl is the l-th element of x, and the model
parameters Θ to be learnt consists

w ∈ R
d, V = [v1, . . . ,vk] ∈ R

d×k

where k ≪ d is a usually prefixed parameter which
defines the rank of the factorization.

Intuitively, the vector w, the linear part of the
model, contains the weights of individual features for
predicting y; while the positive semidefinite matrix
VV⊤, the factorization part, captures all the pairwise
interactions between all the variables. Using the fac-
torized parametrization VV⊤ instead of a full matrix
is based on the assumption that the effect of pairwise
interactions has a low rank. This explicit low rank as-
sumption helps reduce the overfitting problem, and al-
lows FM to estimate reliable parameters even in highly
sparse data. In addition, this reduces the number of
parameters to be learnt from d2 to kd, and allows to
compute prediction efficiently by using

fΘ(x) = w⊤x+
1

2
(‖V⊤x‖22−

k
∑

s=1

‖vs ◦ x‖22)
(2.2)

where ◦ is the element-wise product. So, FM can be
computed efficiently with the computation cost O(kd)
instead of O(d2) when implemented naively.

Given the above parametric FM function, now we
take Y = {−1,+1} as a concrete example, which can be
treated as a classification problem. In order to learn the
optimal parameters for FM, we need introduce some loss
function ℓ(fΘ(xi), yi) to measure the performance of fΘ
on (xi, yi). One popular loss function is the well-known
logistic regression loss,

ℓ(fΘ(xi), yi) = ln
(

1 + exp(−yifΘ(xi))
)

,

which measures how much is violation of the desired
constraint yifΘ(xi) ≥ 0 by the function f . Under these
settings, FM is formulated as

min
Θ

1

n

n
∑

i=1

ℓ(fΘ(xi), yi) +
γ

2
‖Θ‖2(2.3)

where ‖Θ‖2 = ‖w‖22 + ‖V‖2F . The parameter γ > 0 is a
trade-off parameter for the regularization and empirical
loss.

2.1.2 Pairwise Ranking Factorization Machine

Although traditional FM can be applied to many differ-
ent problems with interactions hard to be estimated, it
is usually designed to approximately minimize the clas-
sification error, or regression loss, which is apparently
not appropriate for ranking tasks where the prediction
score does not matters while the ranks matter.

To solve this task, Pairwise Ranking Factorization
Machines (PRFM) is proposed. In PRFM, the dataset
is firstly transformed to a new one which is

{(xi,xj , yij)|i, j ∈ [n]},
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where yij = 1 if yi ≻ yj and yij = −1 otherwise. Then
the objective function of PRFM is defined as

min
Θ

1

n2

n
∑

i,j=1

ℓ(fΘ(xi)− fΘ(xj), yij)+

γ

2
‖Θ‖2

(2.4)

where ℓ is the logistic regression loss, and γ >
0 is a regularization parameter. Intuitively, PRFM
model would assign higher sores for positive instances
compared with negative instances, which is equivalent to
approximately maximize a concave lower bound of AUC
performance measure. In practice, PRFM dose work
much better than FM in the setting of recommendation
task measured by AUC.

2.1.3 Lambda Factorization Machine Although
PRFM can achieve significant higher AUC performance
compared with traditional FM. However, in PRMF, an
incorrect pairwise ordering at the bottom of list impacts
the score just as much as that at the top of the list, this
makes it not suitable to top-N recommendation tasks ,
where the higher accuracy at the top of the list is more
important to the recommendation quality than that at
the low-position. This can be further explained using
rank biased metrics, such as NDCG and MRR [12] , for
which higher weights are assigned to the top accurate
instances.

To address this issue, LambdaFM is proposed to
directly optimize the rank biased metrics, using the core
ideas of LambdaRank where different pairs are assigned
with different importance according to their positions
in the list. Specifically, three strategies are proposed in
LambdaFM. The first one is Static Sampler, in which
the item xj is assigned to a sampling probability

exp[−(r(xj) + 1)/(|I| × ρ)], ρ ∈ (0, 1],(2.5)

where r(xj) represents the rank of item xj among all
items I according to its overall popularity, ρ > 0 is
a parameter. The second one is Dynamic Sampler.
Dynamic sampler will first draw samples xj1 , . . . ,xjm

uniformly from unobserved item set I\Iu, where Iu
is the item set clicked by u, then sample one item
according to the distribution

pj ∝ exp [−(r(xj) + 1)/(mρ)] ,

where r(xjm ) ∝ 1/ŷ(xjm),
(2.6)

where ŷ(x) = fΘ(x). Different from the first two
samplers which would like to push non-positive items
with higher ranks down from top positions, the third
one is to pull positive items with lower ranks up from

the bottom positions. Specifically, for a pair of positive
and non-positive items (xi,xj), a rank-aware weight will
be assigned to it, where the weight is

Γ(r(xi)) = (

r(xi)
∑

r=0

1/(r + 1))/Γ(I),

Γ(I) =

|I|
∑

r=0

1/(r + 1).

(2.7)

However, it is impractical to compute r(xi) for large
scale datasets. To remedy this issue, an approximate
method is to repeatedly draw an item from I until
we obtain xj , s.t., ŷ(xi) − ŷ(xj) ≤ ǫ and yi � yj,
where ǫ is a positive margin value. Let T denote the
size of sampling trials before obtaining such an item,

then Γ(r(xi)) ≈ ⌈ |I|−1
T ⌉. Empirical results show that

the three variant of LambdaFM generally outperforms
PRFM in terms of different ranking metrics, such as
NDCG.

2.2 Algorithm The proposed Adaptive Boosting
Factorization Machine (AdaFM) framework aims to
provide a general framework to optimize the loss func-
tion defined based on various ranking metrics.

To introduce the proposed algorithm, we briefly de-
scribe the problem details with some notations. Specif-
ically, let U be the whole set of useres and I the whole
set of items, then our goal is to utilize the interactions
between U and I to recommend a target user u a list
of items that he may prefer. In training, a set of user
U = {ua|a = 1, . . . , n} is given. Each user ua is as-
sociated with a list of retrieved items Ia = {iab|b =
1, . . . , na} and a list of labels Ya = {yab|b = 1, . . . , na},
where yab denotes the rank of item iab for user ua. A
feature vector xab is created from each user-item pair
(ua, iab). The interaction yab belongs to the set of Y =
{r1, . . . , rq}. Thus the training set can be represented
as S = {(ua, Ia, Ya)}. For a user ua and item iab, we
denote his historical items by Iab = {iac ∈ Ia|yac = yab}
and define I−ab = {iac ∈ Ia|yac ≺ yab}.

2.2.1 AdaFM Our objective is to learn a Factoriza-
tion Machine f , such that for each user ua the function
f can assign its item list Ia with prediction scores that
generate a rank list as close as possible with Ya. To
achieve this goal, we introduce function π(ua, Ia, f) to
denote the rank list of items Ia for ua, resulted by the
learnt model f . Specifically, for Ia = {ia1, . . . , iana

},
π(ua, Ia, f) is defined as a bijection from {1, . . . , na} to
itself, where the b-th element of π(ua, Ia, f) denotes the
rank of item iab ∈ Ia.

Then the learning process is to maximize some
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Algorithm 1 The Component Algorithm

Input: The observed dataset S = {(ua, Ia, Ya)}, the
weight distribution {pta}, the learning rate η, and the
regularization parameter γ
Initialize: wl = 0, and vl,m using N (0, 0.1)
for e = 2, . . . ,MaxIter do

Uniformly draw ua from U
Uniformly draw iab from Iab
Several methods to draw iac from I−ab:

• Uniformly draw iac [PRFM]

• Randomly draw iac by Eq (2.5) [LFM-S]

• Randomly draw iac by Eq (??) [LFM-D]

• Randomly draw iac by Eq (??) [LFM-W]

Update the model based on

• θ ← θ − η
∂[(pt

a/n)ℓ(∆
t
abc,1)+γ/2‖Θ‖2]
∂θ ,

for PRFM, LFM-S, LFM-D

• θ ← θ − η
∂[Γ(r(xab))(p

t
a/n)ℓ(∆

t
abc,1)+γ/2‖Θ‖2]

∂θ ,
for LFM-W

end for

Output: the model ht, or Θt = {wt, V t}

performance which measures the match between
π(ua, Ia, f) and Yu, for all users ua, a = 1, . . . , n. Specif-
ically, we can use a general function E[π(ua, Ia, f), Ya]
to denote the ranking accuracy associated with each
user and its item list (ua, Ia). Then, the ranking ac-
curacy in terms of a ranking metric, e.g., MAP, on the
training data is re-written as below

1

n

n
∑

a=1

E[π(ua, Ia, f), Ya] ∝
∑

E[π(ua, Ia, f), Ya].

To maximize the ranking accuracy, we propose to
minimize the following loss function:

argmin
f∈F

n
∑

a=1

{1− E[π(ua, Ia, f), Ya]},

where F is the set of all possible FM. Observation
that this minimization is equivalent to maximizing the
performance measures. However E is a non-continuous
function, it is difficult to optimize the loss function
defined above. To solve this issue, we propose to
minimize its upper bound as follows:

argmin
f∈F

n
∑

a=1

exp{−E[π(ua, Ia, f), Ya]}.

The primary idea of applying boosting for Factorization
Machine is to learn a set of component FMs and then
create an ensemble of the components to predict the
users’ preferences on items. Specifically, we can use
a linear combination of component FM as the final
AdaFM model:

f(x) =

T
∑

t=1

αth
t(x)

where

ht = w⊤
t x+

d
∑

l=1

d
∑

m=l+1

(VtV
⊤
t )lmxlxm

is the t-th component FM with small rank k and αt

is a positive weight assigned to ht to determine its
contribution in the final model. Therefor, for f we can
get an equivalent formulation as:

f(x) =
T
∑

t=1

αt

[

w⊤
t x+

d
∑

l=1

d
∑

m=l+1

(VtV
⊤
t )lmxlxm

]

= w̄⊤
T x+

d
∑

l=1

d
∑

m=l+1

(V̄T V̄
⊤
T )lmxlxm

where

w̄T =

T
∑

t=1

αtwt ∈ R
d, V̄T = [

√
α1V1, . . . ,

√
αTVT ] ∈ R

d×kT .

This implies that the learnt f is still a Factorization
Machine, which rank kT .

In the training process, AdaFM runs for T rounds,
and one component FM is created at each round. At
the t-th round, given the former t− 1 components, the
optimization problem is converted to

(αt, h
t) = arg min

(α,h)

n
∑

a=1

exp{−E[π(ua, Ia, f
t−1 + αh), Ya]}

where f t−1 =
∑t−1

s=1 αsh
s.

To solve the above optimization, we first create an
optimal component ht by using a re-weighting strategy,
which assigns a dynamic weight βt

a for each user ua.
At each round, AdaFM increase the weights of the
observed users for which their item lists are not ranked
well by the ensemble components created so far. The
learning process of the next component will then pay
more attention to those ”hard” users. Once, ht is given,
the optimal αt can be solved. Finally, the details of the
AdaFM is summarized in Algorithm 1.
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Algorithm 2 The AdaFM Algorithm

Input: Dataset S = {(ua, Ia, Ya)}, and performance
measure E and round T , and latent factor k
Initialize: p1a = 1/n, ∀a
for t = 1, 2, . . . , T do

Solve ht = CA(S, {pta}, k)
Compute E[π(ua, Ia, h

t), Ya], ∀a
Compute αt =

1
2 ln

∑
a
pt
a{1+E[π(ua,Ia,h

t),Ya]}∑
a
pt
a{1−E[π(ua,Ia,ht),Ya]}

Update f t =
∑t

s=1 αsh
s

Compute pta = exp{−E[π(ua,Ia,f
t),Ya]}∑

a
exp{−E[π(ua,Ia,ft),Ya]}

∀a
end for

Output: the model f = fT

In algorithm 1, there is a key step using Component
Algorithm (CA)

ht = CA(S, {pta}, k, E),

for which the inputs are the data set S, the weights
{pta}, the latent factor k and the performance measure
E; and the output is a FMs model with latent factor k,
which is obtained through maximizing

max
h

n
∑

a=1

ptaE[π(ua, Ia, h), Ya].

The specific algorithm to solve the above problem will
be presented in the next subsection.

2.2.2 Component Algorithm To construct com-
ponent FMs, we can adopt the original FM, PRFM,
or LambdaFM model. Specifically, for each user ua and
an item iab ∈ Ia, we can use the score of FM on xab

to model the the relation between the user ua and item
iab, as follows:

hΘ(x) = w⊤x+

d
∑

l=1

d
∑

m=l+1

(VV⊤)lmxlxm,(2.8)

where w ∈ R
d and V ∈ R

d×k. At each round, the
accuracy of the component ht can be evaluated by the
ranking performance measure E weighted by pta. The
optimal ht is then obtained by consistently optimizing
the weighted ranking measure.

PRFM is selected as the component algorithm to
optimize AUC, which is chosen as the ranking metric.
Given the weight distribution pta, the accuracy of the
component ht measured by weighted AUC, is defined as

follows:

wAUC =
∑

a

pta
|Ha|

∑

Ha

I(πt
ab < πt

ac)

=
∑

a

pta
|Ha|

∑

Ha

I(ht
ab > ht

ac)

where Ha = {(b, c)|Yab ≻ Yac}, πt
ab denotes the rank

position of the item iab in the list ranked by ht for ua,
and ht

ab = ht(xab). Maximizing the weighted AUC is
equivalent to minimizing the following loss function:

min
h

∑

a

pta
|Ha|

∑

Ha

I(ht
ab ≤ ht

ac)

To solve this problem, we replace the indicator function
with a convex surrogate, i.e., the logistic regression loss
function, as follows:

ℓ(∆t
abc, 1) = ln

(

1 + exp(−∆t
abc, 1)

)

where ∆t
abc = ht

ab−ht
ac. The optimal component ht can

be found by optimizing the following objective function:

min
h

1

n

∑

a

pta
∑

Ha

1

|Ha|
ℓ(∆t

abc, 1) +
γ

2
‖Θ‖2

where γ > 0 is a regularization parameter. The problem
above can be solved by stochastic gradient descent,
which firstly uniformly sample one user ua from all the
users, then sample a pair (b, c) from Ha, and finally
update the model based on the following method:

θ ← θ − η
∂[(pta/n)ℓ(∆

t
abc, 1) + γ/2‖Θ‖2]
∂θ

where θ ∈ {wl, vl,m}, and η > 0 is the learning rate. To
calculate the gradient of the objective with respect to
θ, we can firstly derive the gradient using the property
of Multi-linearity:

∂ht
ab

∂θ
=

{

xl
ab if θ is wl

xl
ab

∑d
r=1 vr,mxr

ab − vl,m(xl
ab)

2 if θ is vl,m

Then, if we denote

λabc =
∂ℓ(∆t

abc, 1)

∆t
abc

=
− exp(−∆t

abc)

1 + exp(−∆t
abc)

the stochastic gradient for wl can be computed as

∂[(pta/n)ℓ(∆
t
abc, 1) + γ/2‖Θ‖2]
∂wl

=
pta
n

∂ℓ(∆t
abc, 1)

∆t
abc

∂∆t
abc

∂wl
+ γwl

= (pta/n)λabc(x
l
ab − xl

ac) + γwl
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and the stochastic gradient for vl,m can be computed as

∂[(pta/n)ℓ(∆
t
abc, 1) + γ/2‖Θ‖2]
∂vl,m

=
pta
n

∂ℓ(∆t
abc, 1)

∆t
abc

∂∆t
abc

∂vl,m
+ γvl,m

=
pta
n
λabc

{

d
∑

r=1

vr,m(xr
abx

l
ab − xr

acx
l
ac)− vl,m[(xl

ab)
2 − (xl

ac)
2)]

}

+γvl,m.

LambdaFM is selected to optimize NDCG, which
is chosen as the performance metric. For this case,
we can adopt the lambda sampling strategies [25] in-
stead of the uniform sampling one, i.e, the popular-
ity based Static Sampler (2.5), Rank-Aware Dynamic
Sampler (??), and Rank-aware Weighted Approxima-
tion (??).

Finally, the algorithm for building the component
is summarized in the following Algorithm 2.

3 Experiments

In this section, we report a comprehensive suite of ex-
perimental results that help evaluate the performance
of our proposed AdaFM algorithm on several recom-
mendation tasks. The experiments are designed to an-
swer the following open questions: (1) Whether the
proposed boosting approach is effective to improve the
ranking performances significantly? (2) Whether the
weak learner’s latent dimension has a great effect on
ranking performances.

Table 1: Basic statistics of datasets. Each entry
indicates whether a user has interacted with an item.

Datasets #Users #Items #Entries

Yelp 17,526 85,539 875,955
Lastfm 992 60,000 759,391
Yahoo 2,450 6,518 107,334

3.1 Experimental Testbed We evaluate our pro-
posed algorithm against several baselines on three pub-
licly available Collaborative Filtering (CF) datasets,
i.e., Yelp1 (user-venue pairs), Lastfm2 (user-music
pairs), and Yahoo music3 (user-music pairs). To speed
up the experiments, we perform the following sampling
strategies on these datasets. For Yelp, we filter out the
users with less than 20 interactions. For Yahoo, we de-
rive a smaller dataset by randomly sampling a subset of

1https://www.yelp.com/dataset\_challenge
2http://www.dtic.upf.edu/~ocelma/

MusicRecommendationDataset/lastfm-1K.html
3https://webscope.sandbox.yahoo.com/catalog.php?

datatype=r

users and items from the original dataset. The statis-
tics of the datasets after preprocessing are summarized
in Table 1.

To test the performances of our proposed AdaFM
framework under different optimization targets, we
adopt two standard ranking metrics: Area Under ROC
Curve (AUC) and Normalized Discounted Cumulative
Gain (NDCG).

3.2 Comparison Algorithms Our proposed
AdaFM is a general framework for improving the
performances of FM derived algorithms. Thus, we
compare the performances of the following FM derived
algorithms and their corresponding enhanced models
using our proposed AdaFM framework.

• The Original FM that is designed for the rating
prediction task, and its enhanced model using AdaFM
and we name it AdaFM-O for short;
• Pariwise Ranking FM (PRFM), which aims to max-
imize the AUC metric, and its adaptive version
(AdaFM-P);
• LambdaFM, which is designed to maximize the
NDCG metric. We use three different sampling
strategies to form the list pairs, i.e., Static sampler,
Dynamic sampler, and rank-aware sampler, as de-
scribed in Section 2.1.3, and we name them as LFM-
S, LFM-D, and LFM-W, respectively. We also name
their adaptive versions as AdaFM-S, AdaFM-D, and
AdaFM-W, respectively.

3.3 Hyper-parameter Settings The main param-
eters to be tuned in our experiments are as follows:
Learning rate η : For base learners, we first apply
the 5-fold cross validation to find the best η for FM
when k = 2, and then use the same η for the PRFM,
LambdaFM, AdaFM.
Latent dimension k: In order to compare the per-
formance of AdaFM and the base learners, we simply
choose the latent dimension of AdaFM from k ∈ {2, 3},
and range the latent dimension of the FM derived algo-
rithms in k ∈ [1, 20].
Regularization γ: FM derived algorithms have sev-
eral regularization parameters, including γwl

and γvl,m ,
which represent the regularization parameters of wl and
vl,m , respectively. During the experiments, we select
the best values of γ in {0.5, 0.1, 0.05, 0.01, 0.005} for
each FM derived algorithm. For simplicity, in our ex-
periments, we restrict γwl

and γvl,m to have the same
value of γ.
Distribution coefficient ρ: ρ controls the sampling
probability of Lambda FM, and is usually affected by
data distribution. Thus, we select the best values of ρ
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Figure 1: FM based learner’s results on different datasets. For FM, the horizontal axis denotes the latent
dimension. For AdaFM-O, the horizontal axis denotes the weak learner’s latent dimension multiplied by the
number of weak learners.
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Figure 2: PRFM based learner’s results on different datasets. The horizontal axis has the same meansing as
Figure 1.

Table 2: Performance on NDCG. The best result is indicated in bold.

Datasets FM PRFM LFM-S AdaFM-S LFM-D AdaFM-D LFM-W AdaFM-W

Yelp 0.204 0.205 0.217 0.225 0.215 0.228 0.221 0.227
Yahoo 0.382 0.383 0.386 0.407 0.392 0.408 0.395 0.410
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Figure 3: NDCG results on Yahoo dataset. The horizontal axis has the same meansing as Figure 1.
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Figure 4: NDCG results on Yelp dataset. The horizontal axis has the same meansing as Figure 1.
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Table 3: Performance comparision on AUC. The best
result is indicated in bold.
Datasets FM AdaFM-O PRFM AdaFM-P

Yelp 0.911 0.914 0.915 0.916

Lastfm 0.826 0.845 0.843 0.864

Yahoo 0.925 0.936 0.929 0.942

for LFM-S, LFM-D, and LFM-W in (0, 1].

3.4 Performance Evaluation

3.4.1 AUC Optimization We start by evaluating
the effectiveness of our proposed AdaFM framework
on AUC maximization task. The detailed results are
presented in Figure 1 and 2, and Table 3. Several
insightful observations can be made.

First, after combine the Adaptive Boosting and FM,
the final results are increased. As shown in Figure 1,
when use FM as weak learner, compare with the FM,
on Lastfm dataset, we get an 2.32% improvement. And
as shown in Figure 2, when use PRFM as weak learner,
compare with the PRFM, on Lastfm, we get an 2.49%
improvement.

Second, AdaFM shows better results by using less
parameters. This is clearly evident in Figure 1 and
2. For example, in all datasets, AdaFM with four
weak learners (which latent dimension is 2) achieves a
comparable or even better results than the base FM
and PRFM with k = 20. The results are encouraging
as it shows in the cases when the base FM and PRFM
stuck in a certain local optimum, our proposed boosting
framework can help to achieve better results.

Last but not least, as shown in Table 3, the AdaFM-
P has the best results on all the datasets. This shows
when using a better weak learner, i.e., PRFM in our
case, the AdaFM method achieves better results. This
further demonstrates the effectiveness of our boosting
framework.

3.4.2 NDCG Optimization We proceed to eval-
uate the effectiveness of our AdaFM framework on
NDCG maximization task. We use LambdaFM with
different samplers as our baselines, which are designed
to optimize the NDCG metric. More specifically, we
consider three variants of LambdaFM, i.e., LFM-S,
LFM-D, and LFM-W, with their corresponding boosted
versions, i.e., AdaFM-S, AdaFM-D and AdaFM-W. As
shown in the Table 2, LambdaFM is better than FM
and PRFM, as LambdaFM is designed to optimize the
NDCG metric. But our AdaFM methods outperform
all the three variants of LambdaFM: LFM-S, LFM-D,

and LFM-W. Specifically, on Yelp dataset, comparing
with the original algorithm, AdaFM-S, AdaFM-D, and
AdaFM-W get 3.6%, 6.04% and 2.7% improvement, re-
spectively. On Yahoo dataset, AdaFM-S, AdaFM-D,
and AdaFM-W get 4.8%, 2.19% and 3.8% improvement,
respectively.

And as shown in Figure 3 and 4, the findings are
similar to Figure 1 and 2 where our proposed AdaFM
achieves better results.

3.5 Effect of Latent Dimension In this section, we
study whether weak learner’s latent dimension affect the
final results of our proposed AdaFM.

From the experiments in Figure 1, 2, 3, and 4,
we find that: (1) with the increase of weak learner
numbers, the performances of our proposed AdaFM first
increase and then become stable, no matter the latent
dimension of weak learners; (2) AdaFM tends to have
similar performance even when the latent dimension
of the weak learners are different. For example, the
AUC performances of AdaFM-O-2 and AdaFM-O-3
both increase with the weak learner nubmers on Lastfm
(i.e., Figure 1(c)), however, they achieve quite similar
AUC performance after a certain weak learner numbers
(i.e., 0.845 vs. 0.844). This finding indicates that it is
easy for our proposed AdaFM to tune model parameters
in practice.

4 Conclusions

In this paper, we first proposed a novel Adaptive
Boosting framework of factorization machine(AdaFM),
which combines the advantages of adaptive boosting
and FM. Our proposed AdaFM is a general framework
that can be used to improve the performance of all the
existing FM derived algorithms, e.g., FM, PRFM, and
LambdaFM. We then presented the details of how to
combine adaptive boosting technique and FM derived
models. We finally performed thorough experiments to
evaluate our model performance on three real public
datasets. The results demonstrated that AdaFM is able
to improve the prediction performances in both AUC
and NDCG maximization tasks.
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