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Abstract—Mathematical morphology is a theory and technique 

to collect features like geometric and topological structures in 

digital images. Given a target image, determining suitable 

morphological operations and structuring elements is a 

cumbersome and time-consuming task. In this paper, a 

morphological neural network is proposed to address this 

problem. Serving as a nonlinear feature extracting layer in deep 

learning frameworks, the efficiency of the proposed morphological 

layer is confirmed analytically and empirically. With a known 

target, a single-filter morphological layer learns the structuring 

element correctly, and an adaptive layer can automatically select 

appropriate morphological operations. For practical applications, 

the proposed morphological neural networks are tested on several 

classification datasets related to shape or geometric image 

features, and the experimental results have confirmed the high 

computational efficiency and high accuracy.  

 
Index Terms—Deep learning, deep morphological neural 

network, morphological layer, image morphology. 

 

I. INTRODUCTION 

ATHEMATICAL morphology, based on set theory and 

topology, is a feature extracting and analyzing technique, 

where dilation and erosion, i.e., enlarging and shrinking the 

objects respectively, are the two elementary operations. 

Applying structuring elements (SE) as sliding windows to 

identify the feature on digital images, mathematical 

morphology is typically applied in many core applications in 

image analysis to extract features like shapes, regions, edges, 

skeleton, and convex hull [13]. Hence, it facilitates a wide range 

of applications like defect extraction [4], edge detection [20], 

and image segmentation [14]. 

In computer vision, deep learning has become an efficient 

tool since the development of computer hardware brings an 

increased computational capability. Many deep learning 

structures have been proposed based on convolutional neural 

networks (CNN) [6]. For example, LeNet [8] was proposed for 

document recognition. Nowadays, deepening the CNN 

structures enables many computer vision applications, 

especially for image recognition [18]. 

In image morphology, given a desired target, it is time-

consuming and cumbersome to determine appropriate 

morphological operations and SE. From the perspective of 
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neural networks and deep learning, researchers have proposed 

the concept of morphological layers for this issue. Different 

from the convolutional layers that compute the linear weighted 

summation in each kernel applied on an image, the dilation 

layers and erosion layers in morphological neural network 

(MNN) approximate local maxima and minima and therefore 

providing nonlinear feature extractors. Similar to the CNN that 

trains the weights in convolution kernels, MNN intends to learn 

the weights in SE. Besides, a morphological layer also needs to 

decide the selection between the operations of dilation and 

erosion. Since the maximization and minimization operations 

in morphology are not differentiable, incorporating them into 

neural networks needs smooth and approximate functions. 

Ritter et al. [11] presented an attempt of MNN formulated by 

image algebra [12]. Masci et al. [10] approximated the dilation 

and erosion in deep learning framework using counter-

harmonic mean. However, only the pseudo dilation and erosion 

can be achieved since the formulation requires infinite integers. 

Most recently, Shih et al. [17] proposed a deep learning 

framework to tackle this issue and introduced smooth local 

maxima and minima layers as the feature extractors. Their 

MNN roughly approximates dilation and erosion, and learns the 

binary SE, but cannot learn the non-flat SE and the 

morphological operations. 

In this paper, we propose morphological layers in deep neural 

networks that can learn both the SE and the morphological 

operations. Given a target, a morphological layer learns the SE 

correctly, and an adaptive morphological layer can 

automatically select appropriate operations by applying a 

smooth sign function of an extra trainable weight. Considering 

the strength of morphology in analyzing shape features on 

images, a residual MNN pipeline and its applications are 

presented to validate the practicality of the proposed layer. The 

MNN residual structure is compared against CNN of the same 

structure on several datasets related to shape features. 

Experimental results have validated the superior of the 

proposed MNN in these tasks. 

The remainder of this paper is organized as follows. Section 

II introduces the morphology layers and the residual 

morphological neural network for shape classifications. Section 

III presents an adaptive morphological layer for determining the 

proper morphological operations from the original images and 
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the desired result images. Section IV shows the experimental 

results. Finally, conclusions are drawn in Section V. 

II. DEEP MORPHOLOGICAL NEURAL NETWORK 

A. The Proposed Morphological Layer 

Morphological dilation and erosion are approximated using 

counter-harmonic mean in [10]. For a grayscale image 𝑓(𝑥) 

and a kernel 𝜔(𝑥), the core is to define a PConv layer as: 

 

𝑃𝐶𝑜𝑛𝑣(𝑓; 𝜔, 𝑃)(𝑥) =
(𝑓𝑃+1∗𝜔)(𝑥)

(𝑓𝑃∗𝜔)(𝑥)
= (𝑓 ∗𝑃 𝜔)(𝑥)    (1) 

 

where “∗” denotes the convolution, and 𝑃 is a scalar controlling 

the choice of operation ( 𝑃 < 0  is pseudo-erosion, 𝑃 > 0  is 

pseudo-dilation, and 𝑃 = 0  is standard convolution). Since 

performing a real dilation or erosion is to require 𝑃 to be an 

unachievable infinite number, this formulation can be highly 

inaccurate in  implementation. 

Shih et al. [17] represented the dilation and erosion using the 

soft maximum and the soft minimum functions. In a dilation 

layer, the 𝑗-th pixel in the 𝑠-th feature map 𝑧 ∈ ℝ𝑛 is 

 

 𝑧𝑗
𝑠 = ln(∑ 𝑒𝜔𝑖𝑥𝑖𝑛

𝑖=1 )  (2) 

 

where 𝑛 is the total number of weights in a SE, 𝑥𝑖  is the 𝑖-th 

element of the masked window in the input image, and 𝜔𝑖 is the 

𝑖-th element of the current weight. The 𝑧 is similar in an erosion 

layer as 

 

 𝑧𝑗
𝑠 = − ln(∑ 𝑒−𝜔𝑖𝑥𝑖𝑛

𝑖=1 )          (3) 

 

Although Shih et al. [17] approximates dilation and erosion 

theoretically, it failed to learn the SE accurately. Training on 

the samples of input images and desired morphological images, 

a single-layer and single-filter MNN always miss some 

elements on the SE. Fig. 1 presents the architecture of the 

single-layer MNN and Fig. 2 shows some SE learned, from 

which we can observe the errors. These missing points are 

caused by rounding errors. Eqs. (2) and (3) do not round the 

floating points when computing the maxima and minima in a 

sliding window, while the neural network tries to minimize the 

difference between the predicted and the target images. As a 

result, the learned SE compensates these floating points and 

hence contains the rounding errors. The notations and terms 

used in this paper are listed in Table I. 

 
Fig. 1.  Architecture of the single layer MNN. 

 
 

 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. (a) The horizontal, diagonal, vertical, and diamond 3 × 3 structuring 

elements applied to input images when creating target images, (b) the 

corresponding structuring elements learned by the single dilation layer MNN, 

(c) the original 45°, crossing 5 × 5 structuring elements and horizontal line 

1 × 5 structuring elements applied on the inputs images when creating target 

images, (d) the corresponding structuring elements learned by the single 

dilation layer MNN. 

 

 
TABLE I 

NOTATIONS AND TERMS USED IN THIS PAPER 

𝜔 The weight of morphological layer. 

 

𝑥 The input image of morphological layer. 

 

𝑏 The bias matrix. 

 

𝑛 = 𝑎 × 𝑏 The total number of weights in a SE, 𝑎 is the width and 

𝑏 is the height of SE. 

 

𝑊𝑖 The 𝑖-th element of the SE 𝑊. 

 

𝑋𝑖 The 𝑖-th element of the current masked  

window in the original image 𝑋. 

 

𝑦̂ The output of the network. 

 

𝑦 The target of the network. 

 

Definition 1: The differentiable binary dilation of the 𝑗-th 

pixel in an output image 𝑌 ∈ ℝ𝑛 is defined as 

 

                                 𝑌𝑗 = 𝑙𝑛(∑ 𝑒𝑊𝑖𝑋𝑖𝑛
𝑖=1 )                             (4) 

 

where 𝑊  is a binary SE slid on the input image 𝑋 , and the 

default stride is 1. We denote it as 𝑊 ⊕ 𝑋, where 𝑊 ∈ ℝ𝑛 and 

𝑋 ∈ ℝ𝑛. 
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Definition 2: The differentiable binary erosion of the 𝑗-th 

pixel in an output image 𝑌 ∈ ℝ𝑛 is defined as 

 

                                𝑌𝑗 = −𝑙𝑛(∑ 𝑒−𝑊𝑖𝑋𝑖𝑛
𝑖=1 )                          (5) 

 

where 𝑊 is the binary SE slid on the input image 𝑋, and the 

default stride is 1. We denote it as 𝑊 ⊖ 𝑋, where 𝑊 ∈ ℝ𝑛 and 

𝑋 ∈ ℝ𝑛.  

When the binary dilation is learned, 

 

 

             𝑙𝑛(∑ 𝑒𝑊𝑖𝑋𝑖𝑛
𝑖=1 ) ≥ 𝑚𝑎𝑥 (𝑊𝑖𝑋1, 𝑊2𝑋2, … , 𝑊𝑛𝑋𝑛)      (6) 

 

which indicates that 

 

                                 𝑙𝑛(∑ 𝑒𝑊𝑖𝑋𝑖𝑛
𝑖=1 ) ≥ 𝑋𝑖.                             (7) 

 

Therefore, we have 

 

                                   ∑ 𝑒𝑊𝑖𝑋𝑖𝑛
𝑖=1 ≥ 𝑒 𝑋𝑖.                                (8) 

 

Clearly, Eq. (8) is invalid. To tackle this issue, a slack variable 

𝜁 is added to obtain 

 

                                 ∑ 𝑒𝑊𝑖𝑋𝑖𝑛
𝑖=1 𝜁 ≥ 𝑒 𝑋𝑖 .                                  (9) 

 

Note that Eq. (9) is valid when 𝜁 ≥
𝑒𝑋𝑖

∑ 𝑒𝑊𝑖𝑋𝑖𝑛
𝑖=1

. Similarly, a slack 

variable can be applied to validate the differentiable binary 

erosion. 

Inspired by the CNN and Eq. (9), we apply bias variables to 

correct the rounding errors caused by the soft maximum and 

soft minimum functions. Different from the traditional way of 

applying one bias number in each filter, our bias is a matrix of 

the same size as the input image to correct the error of each 

point. In a binary dilation layer, the 𝑠-th feature map 𝑧 of a 

binary dilation layer will be 

 

 𝑧𝑠 = 𝜔 ⊕ 𝑥 + 𝑏  (10) 

 

where 𝜔 ∈ ℝ𝑛, 𝑥 ∈ ℝ𝑛, and 𝑏 ∈ ℝ𝑛.  

The 𝑠-th feature map 𝑧 in a binary erosion layer is 

 

 𝑧𝑠 = 𝜔 ⊖ 𝑥 + 𝑏.            (11) 

 

After adding 𝑏 in Eq. (10), we can obtain 

 

                             (∑ 𝑒𝑊𝑖𝑋𝑖𝑛
𝑖=1 ) ∙ 𝑒𝑏 ≥ 𝑒𝑋𝑖 .                           (12) 

 

Note that Eq. (12) is valid when 𝑏 ≥ ln
𝑒𝑋𝑖

∑ 𝑒𝑊𝑖𝑋𝑖𝑛
𝑖=1

. Therefore, 

dilation layer is correct if 𝑏 ≥ ln
𝑒𝑋𝑖

∑ 𝑒𝑊𝑖𝑋𝑖𝑛
𝑖=1

 after training. We 

can derive the correctness condition for an erosion layer 

similarly. 

Definition 3: The differentiable grayscale dilation of the 𝑗-th 

pixel in an output image 𝑌 ∈ ℝ𝑛 is defined as 

 

                                 𝑌𝑗 = 𝑙𝑛(∑ 𝑒𝑊𝑖+𝑋𝑖𝑛
𝑖=1 )                          (13) 

where 𝑊 is the non-flat SE slid on the input image 𝑋, and the 

default stride is 1. We denote it as 𝑊⨁𝑔𝑋, where 𝑊 ∈ ℝ𝑛, and 

𝑋 ∈ ℝ𝑛. 

Definition 4: The differentiable grayscale erosion of the 𝑗-th 

pixel in an output image 𝑌 ∈ ℝ𝑛 is defined as 

 

                                𝑌𝑗 = −𝑙𝑛(∑ 𝑒−(𝑊𝑖−𝑋𝑖)𝑛
𝑖=1 )                    (14) 

 

where 𝑊 is the non-flat SE slid on the input image 𝑋, and the 

default stride is 1. We denote it as 𝑊 ⊖𝑔 𝑋, where 𝑊 ∈ ℝ𝑛, 

and 𝑋 ∈ ℝ𝑛. 

When learning a dilation with a non-flat SE like Eq. (6), there 

should have 

 

𝑙𝑛(∑ 𝑒𝑊𝑖+𝑋𝑖𝑛
𝑖=1 ) ≥ 𝑚𝑎𝑥 (𝑊𝑖 + 𝑋1, … , 𝑊𝑛 + 𝑋𝑛).     (15) 

 

We can obtain 

 

∑ 𝑒𝑊𝑖+𝑋𝑖𝑛
𝑖=1 ≥ 𝑒𝑊𝑖+𝑋𝑖 .                         (16) 

 

Clearly Eq. (16) is valid. Therefore, we can prove the 

correctness of differentiable grayscale dilation. Like in the 

binary dilation layer, we apply a bias vector to correct the 

rounding errors caused by the soft maximum and soft minimum 

functions. The 𝑠-th feature map 𝑧𝑠 of a grayscale dilation layer 

is 

 

 𝑧𝑠 = 𝜔⨁𝑔𝑥 + 𝑏  (17) 

 

where 𝜔 ∈ ℝ𝑛, 𝑥 ∈ ℝ𝑛, and 𝑏 ∈ ℝ𝑛.  

In grayscale erosion layer, the 𝑠-th feature map 𝑧𝑠 is 

 

 𝑧𝑠 = 𝜔 ⊝𝑔 𝑥 + 𝑏            (18) 

 

where 𝜔 ∈ ℝ𝑛, 𝑥 ∈ ℝ𝑛, and 𝑏 ∈ ℝ𝑛.  

The gradient of the proposed morphological layer is 

computed by the back-propagation [8] following the chain rule. 

Denoted the objective function as 𝐽(𝜔, 𝑏; 𝑦, 𝑦̂), the gradient 𝛿(𝑙) 

of the 𝑙-th layer of the network with respect to weight ω is 

 

                                   𝛿(𝑙) =
𝜕𝐽(𝜔,𝑏;𝑦,𝑦̂)

𝜕𝜔(𝑙) .              (19) 

 

Assuming that the learning rate is 𝜂, the weight 𝜔 of the 𝑙-th 

layer in 𝑡-th iteration is updated as 

 

                                𝜔𝑡+1
(𝑙)

= 𝜔𝑡
(𝑙)

− 𝜂𝛿𝑡
(𝑙)

.                        (20) 

 

The bias 𝑏 is updated as 

 

                              𝑏𝑡+1
(𝑙)

= 𝑏𝑡
(𝑙)

− 𝜂
𝜕𝐽(𝜔,𝑏;𝑦,𝑦̂)

𝜕𝑏𝑡
(𝑙) .                  (21) 
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B. Deep MNN with Stacked Morphological Layers 

The target images with multiple morphological operations 

can be learned by stacking the morphological layers to construct 

a multi-layer MNN. Assuming that the 𝑙-th layer of multi-layer 

MNN is a dilation layer, the 𝑠-th feature map 𝑧𝑠
(𝑙)

∈ ℝ𝑛 is 

 

 

𝑧𝑠
(𝑙)

= 𝜔 ⊕ 𝑧(𝑙−1) + 𝑏                              (22) 

 

where 𝜔 ∈ ℝ𝑛 , and  𝑧(𝑙−1) ∈ ℝ𝑛  is the output of (𝑙 − 1) -th 

layer. 

 If the 𝑙-th layer of multi-layer MNN is an erosion layer, 

the 𝑠-th feature map of the output 𝑧 ∈ ℝ𝑛 of current layer will 

become: 

 

𝑧𝑠
(𝑙)

= 𝜔 ⊖ 𝑧(𝑙−1) + 𝑏                              (23) 

 

 

where 𝜔 ∈ ℝ𝑛. 

Fig. 3 shows the architecture of the multi-layer deep MNN. 

The inputs are the original images, and the outputs are the 

predictions of network after multiple morphological layers. The 

target images are created by a sequence of morphological 

operations. At convergence, the deep MNN can learn the SE 

that minimizes the distance between the input and the target 

images. 

 
Fig. 3. Architecture of the multi-layer deep morphological neural network. 

 

 

The gradient of multi-layer DMNN is computed by back-

propagation with chain rule. Let the objective function be 

denoted as 𝐽(𝜔, 𝑏; 𝑦, 𝑦̂). The gradient 𝛿(𝑙) of the 𝑙-th layer with 

respect to weight 𝜔 can be expressed as 

 

𝛿(𝑙) =
𝜕𝐽(𝜔,𝑏;𝑦,𝑦̂)

𝜕𝜔(𝑙) =
𝜕𝐽(𝜔,𝑏;𝑦,𝑦̂)

𝜕𝑧(𝑙)

𝜕

𝜕𝜔
𝜎(𝑧(𝑙))            (24)  

 

where 𝜎(∙)  is the activation function. Assuming that the 

learning rate is 𝜂, the weight 𝜔 of the 𝑙-th layer in iteration 𝑡 is 

updated by 

 

𝜔𝑡+1
(𝑙)

= 𝜔𝑡
(𝑙)

− 𝜂𝛿(𝑙).                         (25) 

 

C. Residual MNN 

Mathematical morphology is designed to deal with shapes 

and structures [5, 19] in applications. In pattern recognition, 

mathematical morphology is used for preprocessing and feature 

extraction. In this residual MNN, we aim to apply opening with 

circular SE on the original image to round the corners of a shape 

and subtract the rounded-corner image from the original image. 

The morphological residuals that indicate the corners of a shape 

can help classification. Fig. 4 shows an example of a 

morphological residual model. 

 
Fig. 4. The morphological residual model. Applying opening on the original 

image with circle structuring elements, then subtraction of result image from 

original image can obtain the morphological residuals. 

 

 

We construct this residual MNN for shape classification as 

shown in Fig. 5. The input of the neural network is batches of 

images and an erosion layer followed by a dilation layer means 

applying an opening on the input images. After the subtraction 

layer, the neural network finishes the preprocessing progress 

and delivers the residuals to a classifier. There are two fully-

connected layers to take the votes of each pixel in the residuals. 

 
Fig. 5. The architecture of residual MNN. 

 

 

The configuration of the residual MNN is shown in Table II. 

The number of channels 𝑚 should be the same in each layer. 

 
TABLE II 

THE CONFIGURATION OF RESIDUAL MORPHOLOGICAL NEURAL NETWORK 

 Input 

1 Erosion 3 × 3 × 𝑚 

2 Dilation 3 × 3 × 𝑚 

3 Subtraction 𝑚 

4 FC-1024 

5 FC-512 

6 Soft-max 

 

The residual MNN can be trained by back-propagation. The 

weights of dilation layer, erosion layer and fully-connected 

layers are updated by Eqs. (24) and (25). The weights are not 

updated in the subtraction layer, i.e., the residual MNN just 

transmits the gradient from the fourth layer to the second layer. 
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Assuming that the gradient of the fourth layer is 𝛿(4) , the 

gradient of subtraction layer is 𝛿(3) = 𝛿(4). 

III. ADAPTIVE MORPHOLOGICAL LAYER 

Determining appropriate operation is a crucial task in the 

proposed MNN. Among various morphological operations, 

such as dilation, erosion, opening, and closing, the proposed 

layer aims to make a decision on the atomic ones including 

dilation and erosion.  

Obviously, the difference between the differentiable binary 

dilation and the differentiable binary erosion is the sign before 

the weights. Therefore, we can apply a sign function to choose 

between maximum and minimum. To make the sign trainable, 

an extra weight is introduced in the MNN kernels. We call such 

a morphological layer with this extra weight as an adaptive 

morphological layer. Mathematically, the 𝑗 -th pixel on the 

output 𝑧 ∈ ℝ𝑛  of the dilation and erosion layers can be 

represented by 

 

𝑧𝑗 = 𝑠𝑖𝑔𝑛(𝑎) ∙ 𝑙𝑛(∑ 𝑒𝑠𝑖𝑔𝑛(𝑎)∙𝜔𝑖𝑥𝑖𝑛
𝑖=1 ) + 𝑏           (26) 

 

where 𝑎 is an extra trainable variable aside from 𝜔𝑖 and 𝑏. If 

𝑠𝑖𝑔𝑛(𝑎)  is +1 , the operation of current layer is dilation; if 

𝑠𝑖𝑔𝑛(𝑎) is −1, the operation of current layer is erosion. Since 

the sign function is not a continuous function and not 

differentiable, it cannot be used in the neural network. 

Therefore, we adopt a smooth sign function in the interval 

[−1,1]. Eqs. (27) and (28) show the soft sign function and the 

hyperbolic tangent function, respectively. 

 

𝑓(𝑥) =
𝑥

1+|𝑥|
                                (27) 

𝑔(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                              (28) 

 

We replace the sign function in Eq. (26) by the hyperbolic 

tangent function and the soft sign function to maintain the 

gradient flow. Then the 𝑗-th pixel on the output 𝑧 ∈ ℝ𝑛 of the 

adaptive morphological layer is computed in two ways: 

 

𝑧𝑗 =
𝑎

1+|𝑎|
∙ ln(∑ 𝑒

𝑎

1+|𝑎|
∙𝜔𝑖𝑥𝑖𝑛

𝑖=1 ) + 𝑏                 (29) 

or 

𝑧𝑗 =
𝑒𝑎−𝑒−𝑎

𝑒𝑎+𝑒−𝑎 ∙ ln(∑ 𝑒
𝑒𝑎−𝑒−𝑎

𝑒𝑎+𝑒−𝑎∙𝜔𝑖𝑥𝑖𝑛
𝑖=1 ) + 𝑏             (30) 

 

where 𝑎 is a trainable variable and 𝑎 ∈ ℝ. 

Fig. 6 compares the soft sign function and the hyperbolic 

tangent function. The hyperbolic tangent function reaches −1 

and +1 ahead of the soft sign function in that the value of soft 

sign function is around −0.5 when tanh function reaches −1. 

Similarly, the value of the soft sign function lies around 0.5 

when tanh function almost reaches +1. Therefore, the gradient 

of the soft sign is always smaller than the hyperbolic tangent 

function. In conclusion, the hyperbolic tangent function 

outperforms the soft sign function theoretically. 

 

 
Fig. 6.  The soft sign function and hyperbolic tangent function. 

 

 

A single-layer MNN with the adaptive morphological layer 

is constructed to test performance. The input is the original 

images, and the target images are dilated or eroded images. The 

proposed adaptive morphological layer successfully learns both 

the target and the choice between dilation and erosion. Fig. 7 

shows the flow chart of detecting morphological operations by 

a single adaptive morphological layer MNN. The MNN 

minimizes the distance between target and output images. After 

converges, if the smooth sign function is +1, the target images 

are dilated images; if the smooth sign function is −1, the target 

images are eroded images. 

 
Fig. 7. The flow chart of detecting morphological operations by a single 

adaptive morphological layer MNN.  

 

 

In the adaptive layer, the gradients are updated by back-

propagation with chain rule. The weight is updated by gradient 

descent for optimization. Let the objective function of such a 

neural network be 𝐽(𝜔, 𝑏, 𝑎; 𝑦, 𝑦̂). The gradient 𝛿(𝑙) of the 𝑙-th 

layer with respect to weight 𝑎 is: 

 

𝛿(𝑙) =
𝜕𝐽(𝜔,𝑏,𝑎;𝑦,𝑦̂)

𝜕𝑎(𝑙) =
𝜕𝐽(𝜔,𝑏,𝑎;𝑦,𝑦̂)

𝜕𝑧(𝑙)

𝜕𝑧(𝑙)

𝑎(𝑙) =
𝜕𝐽(𝜔,𝑏,𝑎;𝑦,𝑦̂)

𝜕𝑧(𝑙) 𝜑′(𝑎) (31) 

 

where 𝜑(∙) is the soft sign or the hyperbolic tangent function. 

Assuming that the learning rate is 𝜂, the weight 𝑎 of the 𝑙-th 

layer in 𝑡-th iteration is updated by 

 

𝑎𝑡+1
(𝑙)

= 𝑎𝑡
(𝑙)

− 𝜂𝛿(𝑙).                            (32) 
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IV. EXPERIMENTAL RESULTS 

The experiments are performed on a 4 NVIDIA Titan X GPU 

system. We present our experimental results on four datasets 

including MNIST, a self-created geometric shapes (SCGS) 

dataset, a German Traffic Sign Recognition Benchmark 

(GTSRB) dataset [16], and a brain tumor dataset [1], to 

highlight the strength of the proposed MNN in analyzing shape 

features. 

MNIST dataset is a database consisting of 70,000 examples 

of handwritten digits 0~9. It has 60,000 training images and 

10,000 testing images. They are all 28 × 28 grayscale images 

in 10 classes. The SCGS dataset contains 120,000 grayscale 

images of size 64 × 64  in 5 classes: ellipse, line, rectangle, 

triangle, and five-edge polygon. The images are created by 

randomly drawing white objects on a black background, where 

the size, position, and orientation are randomly initialized. 

There are 20,000 images in each class for training and 5,000 

images used in each class for testing. GTSRB introduces a 

single-image, multi-class classification problem, and there are 

42 classes in total. The images contain one traffic sign each, and 

each real-world traffic sign only occurs once. We resize all the 

images into 31 × 35, and select 31,367 images for training and 

7,842 images for testing. All the images are converted to 

grayscale. The MRI Brain Tumor Dataset [1] contains 3,064 

grayscale T1-weighted contrast-enhanced images from 233 

patients with three kinds of brain tumor: meningioma (708 

samples), glioma (1426 samples), and pituitary tumor (930 

samples). We resize all the images into 64 × 64  for 

classification, and 2,910 images are used for training and 154 

images for testing. Fig. 8 shows some examples from the four 

datasets. 

 
Fig. 8. The examples from the four datasets in the experiments. The first row is 

the images from MNIST dataset, the second row from SCGS dataset, the third 

row from GTSRB dataset, and the fourth row from brain tumor dataset. 

 

 

A. Learning the SE and Morphological Targets 

We randomly select 10,000 images from MNIST dataset, and 

construct a single-layer MNN as shown in Fig. 1 to learn a 

single binary SE. Mean squared error (MSE) is adopted to 

measure the distance between the target and predicted images 

to minimize the number outliers. The target images are created 

by applying dilation or erosion on the original input images. A 

mini-batch SGD [9] with a batch size of 64 and the learning rate 

𝜂 = 7.50 are selected. When learning binary SE, we adopt three 

examples, 3 × 3  diamond SE, 5 × 5  crossing SE, and 1 × 5 

horizontal line SE. The experiment is repeated 100 times by 

randomly selecting 10,000 training images each time. The 

single-layer MNN has 100% accuracy on learning the 3 × 3 

diamond SE and the 1 × 5  horizontal line SE, and 91% 

accuracy on the 5 × 5 crossing SE. Furthermore, if we increase 

the epochs from 20 to 100, the accuracy on learning the 5 × 5 

crossing SE is increased to 97%. Fig. 9 shows three examples, 

where the learned and the original structuring elements are 

identical. 

 

 
(a) 

 
(b) 

Fig. 9. (a) The diamond 3 × 3 structuring element, crossing 5 × 5 structuring 

element, and 1 × 5 structuring element, (b) the learned structuring elements by 

a single dilation layer MNN after improvement. 

 

 

All the settings in the grayscale morphology experiment are 

the same as the binary SE case, except that the targets are 

created by applying non-flat SE, the learning rate is 𝜂 = 1.0 for 

learning dilated images, and 𝜂 = 0.5  for learning eroded 

images. 

   We adopt the taxicab distance to measure the distance 

between the learned non-flat SE and the applied non-flat SE 

after training. Let two matrices be 𝑨 = (𝑎𝑖𝑗)  and 𝑩 = (𝑏𝑖𝑗) . 

The taxicab distance between 𝑨 and 𝑩 is computed as 

 

𝑑1(𝑨, 𝑩) = ∑ ∑ |𝑎𝑖𝑗 − 𝑏𝑖𝑗|𝑛
𝑗=1

𝑛
𝑖=1                    (34) 

 
For learning grayscale dilation and erosion, the MNN is 

converged in 20 epochs. For learning the morphological SE, 

100 experiments are done on the same dataset to obtain the 

distance between the 3 × 3 SE and the learned SE. The average 

distance is 0.0706 in learning dilation and 0.0875 in learning 

erosion. For learning the morphological targets, the MSE is 

around 3.43 × 10−5 in dilation, and 7.59 × 10−5 in erosion. 

Fig. 10 show some examples of learning a non-flat SE. It is 

observed that the original non-flat SE and the learned SE are 

very close. Fig. 11 shows the target images and the prediction 

of the network. 
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                                 (a)                                                   (b) 
Fig. 10. (a) The top box shows the original structuring element and the bottom 

box shows the learned structuring elements by a single dilation layer MNN. (b) 

The top box shows the original structuring elements and the bottom box shows 

the learned structuring elements by a single erosion layer MNN. 

 

 

  
                                 (a)                                                     (b) 
Fig. 11. The results of learning grayscale (a) dilation and (b) erosion operations 

by MNN. The first row shows the original images, the second row shows the 

target images, and the third row shows the output of the network after training 

20 epochs. 

 

 

In mathematical morphology, opening and closing are also 

important, where the opening is an erosion followed by a 

dilation, and conversely, the closing is a dilation followed by an 

erosion. Therefore, we construct a two-layer MNN to learn the 

opening or closing. The corresponding targets are the opened or 

the closed image, and the MNN consists of two layers of 

dilation after erosion or erosion after dilation. The mini-batch 

SGD with a batch size of 64 and the learning rate 𝜂 = 10.0 are 

selected. The loss is converged at around 0 within 10 epochs. 

Fig. 12 shows some examples. 

  
                            (a)                                                      (b) 

Fig. 12. The results of learning (a) opening and (b) closing operations by 

DMNN. The first row shows the original images, the second row shows the 

target images, and the third row shows the output of the network after training 

20 epochs. 

 

 

B. Learning the Morphological Operations 

We choose 10,000 images from the MNIST dataset randomly 

for learning the morphological operations. The MNN consists 

of a single adaptive morphological layer that minimizes the 

distance between dilated (or eroded) and the predicted images. 

At the convergence, the extra weight 𝑎 in Eqs. (29) and (30) 

indicates the operation by its sign. The target images are 

predicted as dilated images if soft sign or hyperbolic tangent 

function is rounded to +1 and as eroded images if −1. 

The mini-batch SGD is used to optimize the network. The 

batch size of 64 and the learning rate 𝜂 = 10.0 are selected. The 

distance between the predicted and target images is measured 

by MSE loss. After 20 epochs, the single adaptive MNN 

converges, and the MSE loss decreases to around 3 × 10−4. If 

the value of the smooth sign function larger than 0.5, we round 

it to 1; if the value of the smooth sign function smaller than -

0.5, we round it to -1. The values of smooth sign function are in 

the interval [−1,1]. The experiment is repeated 100 times by 

randomly selected 10,000 images from MNIST each time. 

Table III shows the detection accuracy of dilation/erosion by 

two smooth sign functions. 

 
TABLE III 

DETECTION ACCURACY OF TWO SMOOTH SIGN FUNCTIONS 

 Dilation Erosion 

Soft sign  100% 100% 

 

Hyperbolic tangent  100% 100% 

 

C. Classification 

The mini-batch algorithm with a batch size 64 and learning 

rate 𝜂 = 0.0001  are selected. The residual MNN converges 

within 100 epochs for all the datasets. The testing accuracy of 

the residual MNN is 98.93% on MNIST dataset, 98.89% on 

self-created geometric shape dataset, 95.35% on GTSRB, and 

95.43% on MRI brain tumor dataset. We add a dropout layer 

after the second fully-connected layer to prevent the overfitting 

when training on the GTSRB, the testing accuracy increases to 

96.49%. Table IV shows the configurations of the residual 

MNN when training on four datasets, where 𝑎  indicates the 

number of filters applied in each layer. 

 
TABLE IV 

STRUCTURES OF RESIDUAL MNN ON FOUR DATASETS 

 MNIST SCGS GTSRB Brain 

tumor 

Erosion 

layer 

3 × 3 × 𝑎 3 × 3 × 𝑎 3 × 3 × 𝑎 3 × 3 × 𝑎 

Dilation 

layer 

3 × 3 × 𝑎 3 × 3 × 𝑎 3 × 3 × 𝑎 3 × 3 × 𝑎 

Subtraction 

layer 

28 × 28 × 𝑎 64 × 64 × 𝑎 31 × 35
× 𝑎 

64 × 64
× 𝑎 

Fully-

connected 

layer 

120 1024 1024 512 

Fully-

connected 

layer 

84 512 512 N/A 

Output 10 5 43 3 

 

To quantitatively compare the residual MNN against other 

methods, we add one more convolutional layer to extract more 

features and decrease the size of the filters from 5 × 5 to 3 × 3 

in LeNet and name it as Modified LeNet (MLeNet). Table V 

shows the configuration of MLeNet. 

 
TABLE V 

CONFIGURATION OF MLENET 

 Input 

1 Convolutional layer 3 × 3 × 16 
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2 Max pooling 2 × 2 

3 Convolutional layer 3 × 3 × 32 

4 Max pooling 2 × 2 

5 Convolutional layer 3 × 3 × 64 

6 Max pooling 2 × 2 

7 Fully-connected 2048 × 1 

8 Fully-connected 1024× 1 

9 Softmax 

 
TABLE VI 

COMPARISON OF RESIDUAL MNN WITH STATE-OF-ART CONVOLUTIONAL 

NEURAL NETWORKS 

Classifier Dataset Testing 

accuracy 

Number of 

parameters 

MCDNN [3] MNIST 99.77% 2,682,470 

 

Residual MNN MNIST 98.93% 104,181 

 

MLeNet SCGS 99.50% 10,493,795 

 

Residual MNN SCGS 98.89% 4,721,175 

 

MLeNet GTSRB 

(Grayscale) 

 

97.94% 4,202,339 

Residual MNN GTSRB 

(Grayscale) 

 

96.49% 1,594,903 

MLeNet Brain tumor 96.10% 10,493,795 

 

Residual MNN Brain tumor 95.43% 4,721,175 

 

Table VI shows the comparisons between the residual MNN 

against some state-of-the-art CNNs when 𝑎 = 1. Although the 

residual MNN loses on the testing accuracy as compared to 

some of state-of-the-art CNNs, it has much less parameters. 

Especially in the feature extraction layers, the residual MNN 

has only 20 parameters in total, while the CNNs have at least 

thousands of parameters. We also show the comparison of the 

number of parameters in feature extraction layer of residual 

MNN with state-of-art CNN in Table VII. From Tables VI and 

VII, we conclude that residual MNN uses much less parameters 

in feature extraction layers without significantly compromising 

the model accuracy. The residual MNN has great a tradeoff 

between the computational efficiency and testing accuracy. 

 
TABLE VII 

COMPARISON OF NUMBER OF PARAMETERS IN FEATURE EXTRACTION LAYER 

OF RESIDUAL MNN WITH STATE-OF-ART CNN 

Model Number of parameters in feature 

extraction layers 

Residual MNN 20 

 

MLeNet 2,912 

 

MCDNN 739,900 

 

To further demonstrate the advantages of the proposed 

morphological layers, we construct a CNN that has the same 

configuration with the residual MNN and compare their 

performance on shape related classification. Table VIII shows 

the configuration of the CNN, which is named as residual CNN, 

where 𝑏 denotes the number of filters in each layer. 

 

TABLE VIII 

CONFIGURATION OF RESIDUAL CNN 

 Input 

1 Convolutional layer 3 × 3 × 𝑏 

2 Convolutional layer 3 × 3 × 𝑏 

3 Subtraction layer 3 × 3 × 𝑏 

4 Fully-connected 2048 × 𝑏 

5 Fully-connected 1024× 𝑏 

6 Softmax 

  

Table IX shows another comparison of the residual CNN 

against the residual MNN on classifying the four datasets. 

When working on the brain tumor dataset, we remove the fourth 

layer shows in Table VIII to keep the configuration of residual 

CNN as same as the residual MNN in the fifth column of Table 

IV. 

 
TABLE IX 

COMPARISON OF RESIDUAL MNN AND RESIDUAL CNN 

 Residual 

MNN  

(𝑎 = 1) 

Residual 

CNN 

(𝑏 = 1) 

Residual MNN 

(𝑎 = 16) 

Residual 

CNN 

(𝑏 = 16) 

MNIST 98.93% 97.14% 97.78% 98.18% 

 
SCGS 98.89% 98.25% 98.90% 98.91% 

 

GTSRB 96.49% 90.60% 97.48% 93.39% 
 

Brain tumor 95.43% 96.10% 96.75% 94.15% 

  

In table IX, when 𝑎 = 1 and 𝑏 = 1, the residual MNN has 

better testing accuracy on all these datasets than the residual 

CNN. When a= 16 and 𝑏 = 16, the residual MNN has better 

testing accuracy on GTSRB dataset. In brain tumor dataset, the 

residual MNN performs better when 𝑎 = 16, but loses a little 

bit when 𝑎 = 1. The morphological layers perform better on 

MRI brain tumor dataset when each layer has multiple filters. 

Therefore, morphological layer outperforms convolutional 

layers if both neural networks have same structure in general. 

Especially on GTSRB dataset that is closely related to shape 

features, morphological layer significantly improves the testing 

accuracy, which indicates that proposed MNN has advantages 

in shape feature extractions. 

Therefore, with same number of parameters, the residual 

MNN loses a little bit on MNIST dataset, but performs the best 

on GTSRB and brain tumor datasets which are related to shape 

features. In general, morphological layer works better on 

extracting shape features than convolutional layer when the 

residual MNN has same number of parameters as residual CNN. 

In summary, MNN has better accuracy in the selected 

datasets when it has the same number of parameters and the 

same structures with the CNN. In addition, MNN significantly 

saves parameters when it has similar accuracy with the CNN. 

The proposed residual MNN provides a tradeoff between model 

accuracy and model complexity. 

V. CONCLUSIONS 

We propose deep morphological neural networks in this 

paper that can learn both the operations and corresponding 

structuring elements in mathematical morphology. The 

promising performance of the proposed morphological layers, 
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serving as an effective non-linear feature extractor, is confirmed 

theoretically and experimentally. We also present an 

architecture of residual MNN for the feature extraction in shape 

classification tasks to validate the practicality of our 

morphological neural networks, which shows its superior by 

providing a good tradeoff between model accuracy and 

computational complexity. 
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