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ABSTRACT
Community search over bipartite graphs has attracted significant

interest recently. In many applications such as user-item bipartite

graph in E-commerce, customer-movie bipartite graph in movie rat-

ing website, nodes tend to have attributes, while previous commu-

nity search algorithm on bipartite graphs ignore attributes, which

makes the returned results with poor cohesion with respect to

their node attributes. In this paper, we study the community search

problem on attributed bipartite graphs. Given a query vertex q, we

aim to find attributed (𝛼, 𝛽)-communities of 𝐺 , where the struc-

ture cohesiveness of the community is described by an (𝛼, 𝛽)-core
model, and the attribute similarity of two groups of nodes in the

subgraph is maximized. In order to retrieve attributed communities

from bipartite graphs, we first propose a basic algorithm composed

of two steps: the generation and verification of candidate keyword

sets, and then two improved query algorithms Inc and Dec are pro-

posed. Inc is proposed considering the anti-monotonity property

of attributed bipartite graphs, then we adopt different generating

method and verifying order of candidate keyword sets and propose

the Dec algorithm. After evaluating our solutions on eight large

graphs, the experimental results demonstrate that our methods are

effective and efficient in querying the attributed communities on

bipartite graphs.
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1 INTRODUCTION
With the proliferation of graph data, research efforts have been

devoted to many fundamental problems in managing and analyz-

ing graph data [9–11, 21, 24, 45, 47–52, 54]. Bipartite graphs are

widely used to represent the relationships between two different

types of entities in many real-world applications, such as user-page
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networks [7, 36], customer-product networks [35, 40], collabora-

tion networks [8, 30], gene co-expression networks [28, 57]. In

these practical networks, community structure naturally exists,

and a number of cohesive subgraph models (e.g., (𝛼, 𝛽)-core [31],
bitruss [43], and biclique [33]) are proposed to capture the commu-

nities in the bipartite graphs. Following these models, community

search over bipartite graphs that aims to find densely connected

subgraphs satisfying specified structural cohesiveness conditions

has been studied in applications such as anomaly detection [33],

personalized recommendation [29], and gene expression analysis

[34].

In the aforementioned real-world applications, the entities mod-

eled by the vertices of bipartite graphs often have properties repre-

sented by text strings or keywords. When performing community

search over such bipartite graphs, previous studies often only focus

on the structural cohesiveness of communities but ignore the at-

tributes of the vertices. However, these attributes are important for

making sense of communities[4–6], and taking the attributes into

consideration provides more personalization and interpretation re-

garding the returned results[17, 26], while there are few researches

on community search based on attributed bipartite graphs.

Figure 1: A customer-movie network
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Motivated by this, we study the 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 (𝛼, 𝛽)-𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦
𝑠𝑒𝑎𝑟𝑐ℎ problem on attributed bipartite graphs in this paper. Specif-

ically, given an attributed bipartite graph 𝐺 and a query vertex

𝑞 ∈ 𝐺 , we aim to find one or more attributed communities in 𝐺

such that these communities meet both structure cohesiveness (e.g.,

each vertex in upper layer has at least 𝛼 neighbors and each vertex

in lower layer has at least 𝛽 neighbors) and keyword cohesiveness

(e.g., vertices in the same layer share the most keywords).

Applications. Attributed (𝛼, 𝛽)-community has many real-world

applications. For example,

• Personalized product recommendation. Attributed (𝛼, 𝛽)-commu-

nity can be used to recommend personalized products. Consider

the sub customer-movie subnetwork of IMDB (https://www.imdb.

com), where the vertices in the upper layer represent the con-

sumers and the associated attributes describe his or her prefer-

ence for movies, the vertices in the lower layer represent the

movies and the associated attributes describe its genres. The

platforms can utilize the attributed (𝛼, 𝛽)-community model to

provide personalized recommendation. For example, as Fig.1

shows, if we regard 𝑢2 as the query customer, we can find a

(2,2)-community composed of viewers {𝑢2, 𝑢3, 𝑢4, 𝑢5} andmovies

{𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}. In this community “u2” who prefer “Drama”

and “Romance” movies may not be interested in “v2”. We further

consider the keyword cohesiveness of this community and find an

attributed (2,2)-community containing viewers {𝑢2, 𝑢3, 𝑢4} who
share the same preference for “Drama” movies and the movies

{𝑣3, 𝑣4, 𝑣5} with genre “Drama”. We can recommend the movie

“v5” which the user is likely to be interested in to the query

viewer “u2”.

• Team Formation. In a bipartite graph composed of developers

and projects, an edge between a developer and a project indi-

cates that the developer participates in the project, the keywords

of developers show their skills while that of projects indicate

the technology it requires. When there is a new project to com-

plete, a developer may wish to form a team as cohesive as pos-

sible with all developers in this team having the skills that the

project requires, which can be supported by an attributed (𝛼, 𝛽)-
community search over the bipartite graph through specifying

keywords of the new project.

Although attributed (𝛼, 𝛽)-community search is useful in real

applications. it is still inapplicable if the search cannot be finished

efficiently, considering that attributed bipartite graph can be very

large, and the (structure and keyword) cohesiveness criteria can be

complex to handle. A simple way is first to consider all the possible

attribute combinations, and then return the corresponding (𝛼, 𝛽)-
community that have the most shared attributes. However, the

possible number of attribute combinations is exponential, which

makes this approach infeasible in practice.

To address this problem, we observe that the attributed (𝛼, 𝛽)-
community owns the anti-monotonicity property, namely, for a

given set A of attributes, if it appears in every vertex of an attrib-

uted (𝛼, 𝛽)-community, then every subset A ′ of A, there exists an

attributed (𝛼, 𝛽)-community in which every vertex contains A ′.
Following this observation, we devise efficient algorithms which

can significantly reduce the search space when compute the results.

Contributions. In this paper, we make the following contributions.

• The first work on attributed (𝛼, 𝛽)-community search over at-

tributed bipartite graphs. In this paper, we propose the (𝛼, 𝛽)-
community search problem. To the best of our knowledge, this

is the first work on attributed (𝛼, 𝛽)-community search.

• Efficient algorithms to conduct the (𝛼, 𝛽)-community search.

Based on the anti-monotonicity property, we devise efficient

algorithms to conduct the (𝛼, 𝛽)-community search.

• Extensive experiments on real datasets. We conduct extensive

experiments to evaluate the performance of the proposed algo-

rithms. The experimental results demonstrates the efficiency of

our proposed algorithms.

Outline. The remainder of this paper is organized as follows. Sec-

tion 2 presents some related works. Section 3 describes the proposed

problem and definitions. A basic solution, enumerating all possible

keyword sets and searching for (𝛼, 𝛽)-communities with the most

shared keywords, is described in Section 4. Section 5 describes two

more efficient algorithms generating and verifying candidate key-

word sets in different ways. Section 6 discusses the obtained results

with our approaches. Finally, conclusion will be found in Section 7.

2 RELATEDWORK
2.1 Community search on unipartite graphs.
Community search performed on unipartite graphs usually us-

ing different cohesiveness models such as k-core[38], k-truss [12],

clique[20]. For a detailed survey, see Ref. [18]. Based on k-core,

two online algorithms and one index-based algorithm for k-core

community search on unipartite graphs are studied, Cui et al.[13]

propose a local search algorithm, Sozio et al.[39]propose a global

search algorithm, Barbieri et al.[3] propose a tree-like index struc-

ture, and Wu et al.[46] study the maximal personalized influen-

tial community search. Using k-core, Fang et al.[15, 17, 19] fur-

ther integrate the attributes of vertices to identify community and

then the spatial locations of vertices are also considered to iden-

tify community[16, 27, 41]. For the truss-based community search,

Huang et al.[23] propose the triangle-connected k-truss commu-

nity model and then study the closest model.[25], Akbas et al. [2]

also study the triangle-connected k-truss community model and

propose an index-based search algorithm. Acquisti et al.[1] present

an efficient k-clique component detection algorithm and Yuan et

al.[53] study the problem of densest clique percolation community

search.

2.2 Community search/detection on bipartite
graphs.

On bipartite graphs, several existing works [14, 22, 31, 32] extend

the k-core model on unipartite graph to the (𝛼, 𝛽)-core model. Ding

et al.[14]extend the linear k-core mining algorithm to compute

(𝛼, 𝛽)-core. He et al.[22] first consider both tie strength and vertex

engagement on bipartite graphs and propose a novel cohesive sub-

graph model. Liu et al.[31, 32] present an efficient algorithm based

on a novel index to compute (𝛼, 𝛽)-core in linear time regarding

the result size. Based on the butterfly structure, Sariyuce et al.[37],

Wang et al.[42, 43], Zou et al.[58] study the bitruss model in bi-

partite graphs which is the maximal subgraph where each edge is

contained in at least k butterflies. Zhang et al.[55] study the biclique

2
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Figure 2: Illustrating the (𝛼, 𝛽)-core
enumeration problem. zhang et al.[56] are the first to consider both

structure cohesiveness and weight of vertices on bipartite graphs

and then propose a novel cohesive subgraph model. Wang et al.[44]

present a novel index structure and study the significant community

search problem on weighted bipartite graphs, which is the first to

study community search on bipartite graphs. However, community

search on attributed bipartite graphs remains largely unexplored.

3 PROBLEM DEFINITION
Our problem is defined over an undirected attributed bipartite

graph 𝐺 = (𝑈 ,𝑉 , 𝐸), which consists of nodes divided into two

separate sets,𝑈 and 𝑉 , such that every edge connects one node in

𝑈 to another node in 𝑉 . We use 𝑈 (𝐺) and 𝑉 (𝐺) to denote the two

disjoint node sets of𝐺 and 𝐸 (𝐺) to represent the edge set of𝐺 . Each
vertex 𝑢 ∈ 𝑈 (𝐺) (𝑣 ∈ 𝑉 (𝐺)) is associated with a set of keywords

denoted by𝑊𝑈 (𝑢) (𝑊𝑉 (𝑣)). An edge 𝑒 between two vertices 𝑢 and

𝑣 in𝐺 is denoted as (𝑢, 𝑣). We denote the number of nodes in𝑈 (𝐺)
and 𝑉 (𝐺) as 𝑛𝑢 and 𝑛𝑣 , the total number of nodes as 𝑛 and the

number of edges in 𝐸 (𝐺) as𝑚. The set of neighbors of a vertex 𝑢

in 𝐺 is denoted as 𝑁 (𝑢,𝐺) = {𝑣 ∈ 𝑉 (𝐺) | (𝑢, 𝑣) ∈ 𝐸 (𝐺)}, and the

degree of 𝑢 is denoted as 𝑑𝑒𝑔(𝑢,𝐺) = |𝑁 (𝑢,𝐺) |. Table 1 lists the

symbols used in the paper.

Table 1: Symbols and meanings

Symbol Meaning
G(U,V,E) An attributed bipartite graph with vertex set U and V, and

edge set E

𝑊𝑈 (𝑢) The keyword set of vertex u in U(G)

𝑊𝑉 (𝑣) The keyword set of vertex v in V(G)

𝑑𝑒𝑔(𝑢,𝐺) The degree of vertex u in U(G)

𝑑𝑒𝑔(𝑣,𝐺) The degree of vertex v in V(G)

𝐺 [𝑆 ′𝑢 , 𝑆
′
𝑣] The largest connected subgraph of G s.t. q∈ 𝐺 [𝑆 ′𝑢 , 𝑆

′
𝑣], and

∀𝑢 ∈ 𝐺 [𝑆 ′𝑢 , 𝑆
′
𝑣], 𝑆

′
𝑢 ⊆𝑊𝑈 (𝑢), ∀𝑣 ∈ 𝐺 [𝑆

′
𝑢 , 𝑆

′
𝑣], 𝑆

′
𝑣 ⊆𝑊𝑉 (𝑣)

𝐺 (𝛼,𝛽) [𝑆
′
𝑢 , 𝑆

′
𝑣] The largest connected subgraph of G s.t. q∈ 𝐺 (𝛼,𝛽) [𝑆

′
𝑢 , 𝑆

′
𝑣],

and ∀𝑢 ∈ 𝐺 (𝛼,𝛽) [𝑆
′
𝑢 , 𝑆

′
𝑣], 𝑑𝑒𝑔(𝑢,𝐺) ≥ 𝛼, 𝑆

′
𝑢 ⊆𝑊𝑈 (𝑢), ∀𝑣 ∈

𝐺 (𝛼,𝛽) [𝑆
′
𝑢 , 𝑆

′
𝑣], 𝑑𝑒𝑔(𝑣,𝐺) ≥ 𝛽, 𝑆

′
𝑣 ⊆𝑊𝑉 (𝑣)

Definition 1 ((𝛼, 𝛽)-Core). Given a bipartite graph 𝐺 and two

positive integers 𝛼 and 𝛽 , a subgraph 𝐶𝛼,𝛽 is an (𝛼, 𝛽)-core of 𝐺
if 𝑑𝑒𝑔(𝑢,𝐶𝛼,𝛽 ) ≥ 𝛼 for each 𝑢 ∈ 𝑈 (𝐶𝛼,𝛽 ) and 𝑑𝑒𝑔(𝑣,𝐶𝛼,𝛽 ) ≥ 𝛽 for

each 𝑣 ∈ 𝑉 (𝐶𝛼,𝛽 ).

Example 3.1. In Fig.2(a), {𝐴,𝐶, 𝐷, 𝐸,𝐺, 𝐻, 𝐼 } is a (2,2)-core. The
(1,1)-core has vertices {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺, 𝐻, 𝐼, 𝐽 , 𝐾}, and is composed

of two (1,1)-core components: {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺, 𝐻, 𝐼 } and {𝐽 , 𝐾}.
Each (𝛼, 𝛽)-core in Fig.2(a) is listed in Fig.2(b).

Definition 2 ((𝛼, 𝛽)-Connected Component). Given a bipartite

graph 𝐺 and its (𝛼, 𝛽)-core, 𝐶𝛼,𝛽 , a subgraph 𝐺𝛼,𝛽 is an (𝛼, 𝛽)-
connected component if (1)𝐺𝛼,𝛽 ⊆ 𝐶𝛼,𝛽 and 𝐺𝛼,𝛽 is connected;

(2)𝐺𝛼,𝛽 is maximal.

Definition 3 ((𝛼, 𝛽)-Community). Given a vertex 𝑞, we call the

(𝛼, 𝛽)-connected component containing 𝑞 the (𝛼, 𝛽)-community,

denoted as 𝐺𝛼,𝛽 (𝑞).

Definition 4 (Attributed (𝛼, 𝛽)-Community). Given an attributed

bipartite graph 𝐺 , two positive integers 𝛼 and 𝛽 , a query vertex

𝑞 and a keyword set 𝑆 ⊆ 𝑊 (𝑞) (i.e., 𝑞 ∈ 𝑈 (𝐺)), a subgraph 𝑔 is

an attributed (𝛼, 𝛽)-community of 𝐺 if it satisfies the following

constraints:

(1) Connectivity Constraint.𝑔 is a connected subgraphwhich
contains 𝑞.

(2) StructureCohesivenessConstraint.∀𝑢 ∈ 𝑈 (𝑔),𝑑𝑒𝑔(𝑢,𝑔)
≥𝛼 and ∀𝑣 ∈ 𝑉 (𝑔), 𝑑𝑒𝑔(𝑣, 𝑔) ≥ 𝛽 .

(3) KeywordCohesivenessConstraint. The size of ( |𝐿𝑈 (𝑔) |+
|𝐿𝑉 (𝑔) |) is maximal, where 𝐿𝑈 (𝑔) = ∩𝑢∈𝑈 (𝑔) (𝑊𝑈 (𝑢) ∩ 𝑆)
represents the set of keywords shared in 𝑆 by all vertices

of𝑈 (𝑔) and 𝐿𝑉 (𝑔) = ∩𝑣∈𝑉 (𝑔) (𝑊𝑉 (𝑣)) represents the set of
keywords shared by all vertices of 𝑉 (𝑔).

(4) Maximality Constraint. There exists no other 𝑔
′ ⊃ 𝑔 satis-

fying above constraints with 𝐿𝑈 (𝑔
′) = 𝐿𝑈 (𝑔) and 𝐿𝑉 (𝑔

′) =
𝐿𝑉 (𝑔).

Figure 3: Illustrating an attributed (2, 2)-community 𝑔
Example 3.2. Considering the bipartite graph G in Fig.2(a), let

q=A,𝛼=2, 𝛽=2. If 𝑆={𝑎, 𝑏, 𝑐}, we can find an attributed (2, 2)-commu-

nity 𝑔 as Fig.3 illustrates (in red corlor), whose shared keyword set

𝐿𝑈 (𝑔) = {𝑏, 𝑐}, 𝐿𝑉 (𝑔) = {𝑥,𝑦}.

Problem Statement. Given an attributed bipartite graph 𝐺 , pa-

rameters 𝛼 and 𝛽 , a query vertex 𝑞 and a keyword set 𝑆 ⊆𝑊 (𝑞),
the 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 (𝛼, 𝛽)-𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑠𝑒𝑎𝑟𝑐ℎ problem aims to find the

attributed (𝛼, 𝛽)-communities in 𝐺 . For ease of representation, we

regard 𝑞 as a vertex in 𝑈 (𝐺) in this paper. Since the final result

must contains 𝑞, we regard 𝑆 as 𝑆𝑈 , the maximum keyword set

which is possible to be shared by all vertices in𝑈 (𝐺).

4 BASIC SOLUTION
We use 𝐺 [𝑆𝑢 , 𝑆𝑣] to denote the largest connected subgraph of 𝐺 ,

where each vertex in 𝑈 (𝐺 [𝑆𝑢 , 𝑆𝑣]) (𝑉 (𝐺 [𝑆𝑢 , 𝑆𝑣])) contains 𝑆𝑢 (𝑆𝑣)
and 𝑞 ∈ 𝐺 [𝑆𝑢 , 𝑆𝑣]. We use 𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣] to denote the largest con-

nected subgraph of𝐺 [𝑆𝑢 , 𝑆𝑣], inwhich every vertex in𝑈 (𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣])
has degree being at least 𝛼 and every vertex in𝑉 (𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣]) has
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degree being at least 𝛽 . We call {𝑆𝑢 , 𝑆𝑣} a qualified keyword set for

the query vertex 𝑞 on the graph 𝐺 , if 𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣] exists.
Given a query vertex 𝑞, a straightforward method to find the

attributed (𝛼, 𝛽)-communities in 𝐺 performs three steps. First, for

one layer of the bipartite graph which contains q, here we consider

it as 𝑈 (𝐺) and consider 𝑆 as 𝑆𝑈 , all nonempty subsets of 𝑆𝑈 , 𝑆𝑈 1,

𝑆𝑈 2, ..., 𝑆𝑈 (2𝑙−1) (𝑙 = |𝑆𝑈 |), are enumerated, and for each 𝑣 ∈ 𝑉 (𝐺),
we put all different keywords in𝑊𝑉 (𝑣) into 𝑆𝑉 and enumerate all

nonempty subsets of 𝑆𝑉 (𝑖 .𝑒 ., 𝑆𝑉 1, 𝑆𝑉 2, ..., 𝑆𝑉 (2𝑘−1) (𝑘 = |𝑆𝑉 |)).
Then for each set {𝑆𝑈𝑖 , 𝑆𝑉 𝑗 }(1 ≤ 𝑖 ≤ 2

𝑙 − 1, 1 ≤ 𝑗 ≤ 2
𝑘 − 1), we

verify the existence of 𝐺 (𝛼,𝛽) [𝑆𝑈𝑖 , 𝑆𝑉 𝑗 ] and compute it when it

exists. Finally, we output the subgraphs having the most shared

keywords among all 𝐺 (𝛼,𝛽) [𝑆𝑈𝑖 , 𝑆𝑉 𝑗 ].

Figure 4: Generation and verification of candidate keyword
sets

We can summarize the straightforward method into a two-step

framework, generation and verification of candidate keyword sets.

Considering the bipartite graph 𝐺 in Fig.2(a), let 𝑞=𝐴, 𝛼=2, 𝛽=2,

𝑆={𝑎, 𝑏, 𝑐}, Fig.4 shows how we find attributed (2, 2)-communities

through the two-step framework, and the the computational com-

plexity for the proposed framework is the same as that for the 𝐵𝑎𝑠𝑖𝑐

algorithm mentioned below.

Here we first give the procedure to verify the existence of 𝐺𝛼,𝛽

(𝑞,𝐺 ′) in a given subgraph 𝐺
′
of 𝐺 for each given candidate key-

word set.

Theorem 4.1. Given a bipartite graph𝐺 , It takes𝑂 (𝑑𝑢𝑚𝑎𝑥 · (𝑛𝑢 +
𝑛𝑣 · 𝑑𝑣𝑚𝑎𝑥 )) to compute 𝐺𝛼,𝛽 (𝑞,𝐺

′).

Proof. There are 𝑛𝑢 nodes in 𝑈 (𝐺 ′), 𝑛𝑣 nodes in 𝑉 (𝐺 ′) and
we denote the largest degree of these nodes in 𝑈 (𝐺 ′) (𝑉 (𝐺 ′)) as

Algorithm 1: Compute 𝐺𝛼,𝛽 (𝑞,𝐺
′)

for 𝑢 ∈ 𝑈 (𝐺 ′) do
if 𝑑𝑒𝑔(𝑢,𝐺 ′) < 𝛼 then

remove 𝑢 and its incident edges from 𝐺
′
;

while 𝑞 ∈ 𝐺 ′ do
𝑥 ←𝑚𝑖𝑛𝑣∈𝑉 (𝐺′)𝑑𝑒𝑔(𝑣,𝐺 ′);
if 𝑥 ≥ 𝛽 then

return 𝐺
′
;

else
for 𝑣 ∈ 𝑉 (𝐺 ′) do

if 𝑑𝑒𝑔(𝑣,𝐺 ′) < 𝛽 then
for 𝑝 ∈ 𝑁 (𝑣) do

remove (𝑝, 𝑣);
if 𝑑𝑒𝑔(𝑝,𝐺 ′) < 𝛼 then

remove 𝑝 and its incident edges

from 𝐺
′
;

remove 𝑣 ;

return 𝐺𝛼,𝛽 (𝑞,𝐺
′);

𝑑𝑢𝑚𝑎𝑥 (𝑑𝑣𝑚𝑎𝑥 ). Removing all𝑢 ∈ 𝑈 (𝐺) with degree less than 𝛼 cost

𝑂 (𝑛𝑢 · 𝑑𝑢𝑚𝑎𝑥 ), and the while loop in line 4-15 cost 𝑂 (𝑛𝑣 · 𝑑𝑣𝑚𝑎𝑥 ·
𝑑𝑢𝑚𝑎𝑥 ). □

Algorithm 2: Basic

Initialize𝜓 using 𝑆 , 𝜑 using 𝑉 (𝐺);
while true do

𝑚𝑎𝑥 ← 0,𝑚 ← 0, 𝜙𝑚 ← ∅;
for𝜓

′ ∈ 𝜓 do
for 𝜑

′ ∈ 𝜑 do
find 𝐺 [𝜓 ′, 𝜑 ′] from 𝐺 ;

Compute 𝐺 (𝛼,𝛽) [𝜓
′
, 𝜑
′] from 𝐺 [𝜓 ′, 𝜑 ′];

if 𝐺 (𝛼,𝛽) [𝜓
′
, 𝜑
′] exists then

𝑚 ← (|𝜓 ′ | + |𝜑 ′ |);
if 𝑚𝑎𝑥 ≤ 𝑚 then

𝑚𝑎𝑥 ←𝑚;

𝜙𝑚 .𝑎𝑑𝑑 (𝜓
′ + 𝜑 ′);

if 𝜙𝑚 ≠ ∅ then
output the communities of keyword sets in 𝜙𝑚 ;

Based on the straightforward method, we present Algorithm2,

a baseline query algorithm called 𝐵𝑎𝑠𝑖𝑐 . The input of 𝑏𝑎𝑠𝑖𝑐 is a

bipartite graph𝐺 , a query vertex q, two positive integers 𝛼 and 𝛽 ,

and a set 𝑆 . It first initializes a set,𝜓 , of candidate keyword sets with

each being a nonempty subset of 𝑆 (𝑖 .𝑒 ., 𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑈 (2𝑙−1) (𝑙 =
|𝑆 |)) (line 1). After that, for each vertex in 𝑉 (𝐺), we enumerate all

nonempty subsets of𝑊𝑉 (𝑣), put them into 𝜑 and ensure that each

element in 𝜑 appears only once. In the while loop (lines 2–12), it
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first set𝑚 = 0,indicating the size of current keyword sets,𝑚𝑎𝑥 = 0,

indicating the maximal size of all keyword sets and an empty set

𝜙𝑚 (line 3) for collecting all the qualified keyword sets. Then for

each 𝜓
′ ∈ 𝜓 and for each 𝜑

′ ∈ 𝜑 , it finds 𝐺𝛼,𝛽 [𝜓
′
, 𝜑
′] from 𝐺𝛼,𝛽

by considering the keyword and degree constraints (line 4-7). If

𝐺𝛼,𝛽 [𝜓
′
, 𝜑
′] exists, the sum of numbers of elements in𝜓

′
and 𝜑

′
is

recorded by𝑚. Then we compare𝑚 with𝑚𝑎𝑥 . If𝑚𝑎𝑥 ≤ 𝑚, it then

assign𝑚 to𝑚𝑎𝑥 and put the set of current keywords in𝜓
′
and 𝜑

′

into 𝜙𝑚 (line 10-12). After checking all the candidate keyword sets

in𝜓 and 𝜑 , if there are at least one qualified keyword sets in 𝜙𝑚 , it

output the communities of keyword sets in 𝜙𝑚 (line 13-14).

Theorem 4.2. Given a bipartite graph G, 𝐵𝑎𝑠𝑖𝑐 computes𝐺𝛼,𝛽 [𝑆𝑢 ,
𝑆𝑣] in𝑂 (𝑛𝑣 ·2 |𝑆𝑣 |𝑚𝑎𝑥

log(𝑛𝑣 ·2 |𝑆𝑣 |𝑚𝑎𝑥 ) +2 |𝑆 | ·2 |𝑆𝑣 |𝑚𝑎𝑥 ·𝑂 (𝑐𝑜𝑚𝑝𝑢𝑡𝑒
𝐺𝛼,𝛽 (𝑞,𝐺

′))).

Proof. We use |𝑆𝑣 |𝑚𝑎𝑥 to represent the𝑊𝑉 (𝑣) of largest size
among all 𝑣 ∈ 𝑉 (𝐺), Initializing 𝜓 and 𝜑 can be completed in

𝑂 (2 |𝑆 | + 𝑛𝑣 · 2 |𝑆𝑣 |𝑚𝑎𝑥
log(𝑛𝑣 · 2 |𝑆𝑣 |𝑚𝑎𝑥 )) and the while loop in line

2-12 costs 𝑂 (2 |𝑆 | · 2 |𝑆𝑣 |𝑚𝑎𝑥 ·𝑂 (𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐺𝛼,𝛽 (𝑞,𝐺
′))). □

One major drawback of the straightforward method is that we

need to compute (2𝑙 − 1) × (2𝑘 − 1) subsets of attributes and verify

the existence of corresponding subgraphs (i.e.,𝐺 (𝛼,𝛽) [𝑆𝑈𝑖 , 𝑆𝑉 𝑗 ]).
For large values of 𝑙 and 𝑘 , the computation overhead makes this

method impractical. To alleviate this problem, we study methods

to simplify the generation and verification of candidate keyword

sets, and propose two improved algorithms.

5 IMPROVED ATTRIBUTED
(𝛼, 𝛽)-COMMUNITY SEARCH ALGORITHM

In this section, we shrink the range of possible candidate keyword

sets and develop two more efficient algorithms: the incremental

algorithm (𝐼𝑛𝑐) verify the candidate sets from smaller to larger ones

while the decremental algorithm (𝐷𝑒𝑐) examine larger candidate

sets to smaller ones.

5.1 The Incremental Algorithm
Attributed bipartite graphs have the anti-monotonicity property

regarding the attributed (𝛼, 𝛽)-community search, which is shown

in the following lemma:

Lemma 5.1. Given a graph 𝐺 , a vertex 𝑞 ∈ 𝐺 , set 𝑆𝑢 and 𝑆𝑣 of
keywords, if there exists a subgraph 𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣] , then there exists a
subgraph 𝐺𝛼,𝛽 [𝑆

′
𝑢 , 𝑆

′
𝑣] ⊇ 𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣] for any subset 𝑆

′
𝑢 ⊆ 𝑆𝑢 , 𝑆

′
𝑣 ⊆

𝑆𝑣 .

Proof. Based on the definition of 𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣], each vertex in

𝑈 (𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣]) contains 𝑆𝑢 and each vertex in 𝑉 (𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣])
contains 𝑆𝑣 . Consider two new keyword sets 𝑆

′
𝑢 ⊆ 𝑆𝑢 , 𝑆

′
𝑣 ⊆ 𝑆𝑣 , we

can easily conclude that each vertex in 𝑈 (𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣]) contains
𝑆
′
𝑢 and each vertex in 𝑉 (𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣]) contains 𝑆

′
𝑣 as well. Also,

note that 𝑞 ∈ 𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣]. These two properties imply that there

exists one subgraph of 𝐺 , namely 𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣], with each vertex

in 𝑈 (𝐺) has degree being at least 𝛼 and each vertex in 𝑉 (𝐺) has
degree being at least 𝛽 , such that it contains 𝑞 and every vertex in

its upper(lower) layer contains 𝑆
′
𝑢 (𝑆

′
𝑢 ). It follows that there exists

such a subgraph with maximal size (i.e.,𝐺𝛼,𝛽 [𝑆
′
𝑢 , 𝑆

′
𝑣]). □

Lemma 5.2. Given two groups of keyword sets {𝑆𝑢1, 𝑆𝑣1} and
{𝑆𝑢2, 𝑆𝑣2}, if 𝐺𝛼,𝛽 [𝑆𝑢1, 𝑆𝑣1] and 𝐺𝛼,𝛽 [𝑆𝑢2, 𝑆𝑣2] exist, we have 𝐺𝛼,𝛽

[𝑆𝑢1∪𝑢2, 𝑆𝑣1∪𝑣2] ⊆ 𝐺𝛼,𝛽 [𝑆𝑢1, 𝑆𝑣1] ∩𝐺𝛼,𝛽 [𝑆𝑢2, 𝑆𝑣2].

Proof. Based on Lemma 1, since {𝑆𝑢1, 𝑆𝑣1} ⊆ {𝑆𝑢1∪𝑢2, 𝑆𝑣1∪𝑣2}
and𝐺𝛼,𝛽 [𝑆𝑢1, 𝑆𝑣1] exsits, we have𝐺𝛼,𝛽 [𝑆𝑢1∪𝑢2, 𝑆𝑣1∪𝑣2] ⊆ 𝐺𝛼,𝛽 [𝑆𝑢1,
𝑆𝑣1]. For the same reason, we have𝐺𝛼,𝛽 [𝑆𝑢1∪𝑢2, 𝑆𝑣1∪𝑣2] ⊆ 𝐺𝛼,𝛽 [𝑆𝑢2,
𝑆𝑣2]. It directly follows the lemma. □

This lemma implies, if {𝑆 ′𝑢 , 𝑆
′
𝑣} is generated from {𝑆𝑢1, 𝑆𝑣1} and

{𝑆𝑢2, 𝑆𝑣2}, we can find𝐺𝛼,𝛽 [𝑆
′
𝑢 , 𝑆

′
𝑣] from𝐺𝛼,𝛽 [𝑆𝑢1, 𝑆𝑣1]∩𝐺𝛼,𝛽 [𝑆𝑢2,

𝑆𝑣2] directly. Since every vertex in 𝐺𝛼,𝛽 [𝑆𝑢1, 𝑆𝑣1] ∩𝐺𝛼,𝛽 [𝑆𝑢2, 𝑆𝑣2]
contains both {𝑆𝑢1, 𝑆𝑣1} and {𝑆𝑢2, 𝑆𝑣2}, we do not need to consider

the keyword constraint again when finding 𝐺𝛼,𝛽 [𝑆
′
𝑢 , 𝑆

′
𝑣].

In addition, considering the degree constraint of 𝐺𝛼,𝛽 [𝑆
′
𝑢 , 𝑆

′
𝑣],

there is a key observation that, if 𝑆
′
𝑢 , 𝑆

′
𝑣 is a qualified keyword set,

then there are at least 𝛽 vextices in 𝑈 (𝐺𝛼,𝛽 [𝑆
′
𝑢 , 𝑆

′
𝑣]) containing

set 𝑆
′
𝑢 and 𝛼 vertices in 𝑁 (𝑞) containing set 𝑆

′
𝑣 . This observation

implies, we can generate all the candidate keyword sets directly by

using the query vertex 𝑞 and 𝑞
′
neighbors, without touching other

vertices.

Based on above lemmas and observation, we introduce the al-

gorithm 𝐼𝑛𝑐 . Compared with 𝐵𝑎𝑠𝑖𝑐 , it shrinks the initial candidate

keyword sets and can always verify the existence of 𝐺 (𝛼,𝛽) [𝜓
′
, 𝜑
′]

within a subgraph of G instead of the entire graph 𝐺 , and thus

the subgraph for such verification shrinks when the candidate set

𝜓
′
, 𝜑
′
expands. Therefore, a large sum of redundant computation is

reduced during the verification process.

Algorithm 3 presents 𝐼𝑛𝑐 . First it initializes a set,𝜓 {𝜓1,𝜓2, ...,𝜓𝑖 },
of candidate keyword sets with each being a keyword of 𝑆 . Then

for each 𝑣 ∈ 𝑁 (𝑞), it puts each keyword in𝑊𝑉 (𝑣) into 𝑆𝑉 and

initializes a set, 𝜑{𝜑1, 𝜑2, ..., 𝜑 𝑗 }, of candidate keyword sets with

each being a keyword of 𝑆𝑉 (line 1). For each candidate keyword

set𝜓𝑖 (𝜑 𝑗 ) in𝜓 (𝜑), it traverse𝐺 and put nodes containing𝜓𝑖 (𝜑 𝑗 )
into 𝑃𝑖 (𝑄 𝑗 ) (line 2). Considering the key observation that, if𝜓𝑖 (𝜑 𝑗 )
is a qualified keyword set, then there are at least 𝛽 nodes in𝑈 (𝐺)
containing𝜓𝑖 and 𝛼 nodes in 𝑉 (𝐺) containing 𝜑 𝑗 , so it removes 𝑃𝑖
and𝜓𝑖 if |𝑃𝑖 | < 𝛽 , and removes 𝑄 𝑗 and 𝜑 𝑗 if |𝑄 𝑗 | < 𝛼 as well (line

3). Then, we set 𝑙 = 0, indicating the sizes of current keyword sets,

and initialize a set 𝜙 of < 𝑐,𝐺𝛼,𝛽 [𝑐] > pairs. In a < 𝑐,𝐺𝛼,𝛽 [𝑐] >
pair, 𝑐 contains a set,𝜓

′
, of keywords from𝜓 and a set, 𝜑

′
, of key-

words from 𝜑 , and𝐺𝛼,𝛽 [𝑐] is an (𝛼, 𝛽)-community of𝐺 where each

vertex in 𝑈 (𝐺𝛼,𝛽 [𝑐]) contains 𝜓
′
and each vertex in 𝑉 (𝐺𝛼,𝛽 [𝑐])

contains 𝜑
′
(line 4). ∀𝜓 ′ ∈ 𝜓 and ∀𝜑 ′ ∈ 𝜑 , we verify the existence of

𝐺 (𝛼,𝛽) [𝜓
′
, 𝜑
′] and put the qualified < 𝑐,𝐺𝛼,𝛽 [𝑐] > pairs into𝜙𝑙 (line

5-10). In the while loop (lines 11–18), for every two < 𝑐,𝐺𝛼,𝛽 [𝑐] >
pairs, denoted as < 𝑐1,𝐺𝛼,𝛽 [𝑐2] > and < 𝑐2,𝐺𝛼,𝛽 [𝑐2] > in 𝜙𝑙 , we

find𝐺 (𝛼,𝛽) [𝑐1∪𝑐2] from𝐺 [𝑐1∪𝑐2], the shared subgraph of𝐺𝛼,𝛽 [𝑐2]
and 𝐺𝛼,𝛽 [𝑐2] (line 12-15). If 𝐺 (𝛼,𝛽) [𝑐1 ∪ 𝑐2] exists, we put the pair
of 𝑐1∪𝑐2 and𝐺 (𝛼,𝛽) [𝑐1∪𝑐2] into the set 𝜙𝑙+1 (line 16-17). When 𝜙𝑙
is empty, we stop the loop. Next, we look for the qualified keyword

sets 𝑐 , which contain the most keywords, from 𝜙0 to 𝜙𝑙−1. Finally,
we output the communities of keyword sets 𝑐 .
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Algorithm 3: Inc

Initialize𝜓 using 𝑆 , 𝜑 using 𝑁 (𝑞);
generate 𝑃{𝑃1, 𝑃2, ..., 𝑃𝑖 } and 𝑄{𝑄1, 𝑄2, ..., 𝑄 𝑗 } by𝜓 and 𝜑 ;

update𝜓,𝜑, 𝑃,𝑄 ;

𝑐 ← ∅, 𝜙𝑙 ← ∅, 𝑙 ← 0;

for𝜓𝑖 ∈ 𝜓 do
for 𝜑 𝑗 ∈ 𝜑 do

Compute 𝐺 (𝛼,𝛽) [𝜓𝑖 , 𝜑 𝑗 ] from the subgraph induced

on 𝑃𝑖 and 𝑄 𝑗 ;

if 𝐺 (𝛼,𝛽) [𝜓𝑖 , 𝜑 𝑗 ] exists then
𝑐 ← {𝜓𝑖 , 𝜑 𝑗 };
𝜙𝑙 .𝑎𝑑𝑑 (< 𝑐,𝐺𝛼,𝛽 [𝑐] >);

while 𝜙𝑙 ≠ ∅ do
for < 𝑐1,𝐺𝛼,𝛽 [𝑐1] >∈ 𝜙𝑙 do

for < 𝑐2,𝐺𝛼,𝛽 [𝑐2] >∈ 𝜙𝑙 do
𝐺 [𝑐1 ∪ 𝑐2] ← 𝐺𝛼,𝛽 [𝑐1] ∩𝐺𝛼,𝛽 [𝑐2];
Compute 𝐺 (𝛼,𝛽) [𝑐1 ∪ 𝑐2] from 𝐺 [𝑐1 ∪ 𝑐2];
if 𝐺𝛼,𝛽 [𝑐1 ∪ 𝑐2] exists then

𝜙𝑙+1 .𝑎𝑑𝑑 (< 𝑐1 ∪ 𝑐2,𝐺𝛼,𝛽 [𝑐1 ∪ 𝑐2] >);
𝑙 ← 𝑙 + 1;

find 𝑐 when |𝑐 | is maximum from 𝜙0 to 𝜙𝑙−1;
output 𝐺𝛼,𝛽 [𝑐];

Theorem 5.3. Given a bipartite graph G, 𝐼𝑛𝑐 computes𝐺𝛼,𝛽 [𝑐] in
𝑂 (( |𝑆 | + |𝑆𝑉 | − 1) · |𝑆 | · |𝑆𝑉 | ( |𝑆 | · |𝑆𝑉 | +𝑂 (𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐺𝛼,𝛽 (𝑞,𝐺)))).

Proof. In Algorithm 3, we use 𝑑 to denote the degree of 𝑞 and

|𝑆𝑣 |𝑚𝑎𝑥 to represent the𝑊𝑉 (𝑣) of largest size among all 𝑣 ∈ 𝑁 (𝑞),
lines 1 can be completed in𝑂 ( |𝑆 | +𝑑 · |𝑆𝑣 |𝑚𝑎𝑥 log(𝑑 · |𝑆𝑣 |𝑚𝑎𝑥 )) time.

Line 2-3 can be completed in 𝑂 (𝑛𝑢 · |𝑆 | + 𝑛𝑣 · 𝑑 · |𝑆𝑣 |𝑚𝑎𝑥 log(𝑑 ·
2
|𝑆𝑣 |𝑚𝑎𝑥 )) time. Line 5-10 can be completed in𝑂 ( |𝑆 |·|𝑆𝑉 |·𝑂 (𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝐺𝛼,𝛽 (𝑞,𝐺))) time. In while loop, each time it takes𝑂 ( |𝑆 | · |𝑆𝑉 | ( |𝑆 | ·
|𝑆𝑉 | + 𝑂 (𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐺𝛼,𝛽 (𝑞,𝐺)))) time to find qualified communi-

ties and put them into a new set 𝜙𝑙+1, in the worst case, it runs

( |𝑆 | + |𝑆𝑉 | − 1) times. □

Example 5.4. Considering 𝐺 in Fig.2(a), let 𝑞=𝐴, 𝛼=2, 𝛽=2 and

𝑆={𝑎, 𝑏, 𝑐}, Fig.5(a) shows a (2,2)-core of𝐺 . By Algorithm 3, we first

find set of keyword sets𝜓 {{𝑎}, {𝑏}, {𝑐}}, 𝜑{{𝑤}, {𝑥}, {𝑦}, {𝑧}} and
then verify that 𝐺2,2 [{𝑏}, {𝑥}], 𝐺2,2 [{𝑏}, {𝑦}], 𝐺2,2 [{𝑐}, {𝑥}] and
𝐺2,2 [{𝑐}, {𝑦}] exists as Fig.5(b) and Fig.5(c) show. In the first while

loop, we choose 2 qualified keyword sets from {{𝑏, 𝑥}, {𝑏,𝑦}, {𝑐, 𝑥},
{𝑐,𝑦}} and get their union set (e.t.{𝑏𝑐, 𝑥𝑦} 𝑓 𝑟𝑜𝑚 {𝑏, 𝑥} 𝑎𝑛𝑑 {𝑐,𝑦}).
By Lemma 2, we only need to verify the new candidate keyword

set under nodes in𝐺2,2 [{𝑏}, {𝑥}] and𝐺2,2 [{𝑐}, {𝑦}]. Fig.5(d) shows
the final attributed community 𝐺2,2 [{𝑏, 𝑐}, {𝑥,𝑦}].

Figure 5: An example of finding (2, 2)-community by 𝐼𝑛𝑐

method

5.2 The Decremental Algorithm
The decremental algorithm, denoted by 𝐷𝑒𝑐 , differs from the in-

cremental algorithm on both the generation and verification of

candidate keyword sets.

5.2.1 Generation of candidate keyword sets.

Lemma 5.5. Given a vertex set V of 𝑞
′
s neighbors, a qualified

keyword set 𝑆𝑢 and a set 𝑆𝑉 containing all nonempty subsets of
𝑊𝑉 (𝑣). For each 𝑆𝑣 ∈ 𝑆𝑉 , if less than 𝛼 vertices in V containing 𝑆𝑣 ,
we have 𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣] does’t exist.

Proof. Assume that {𝑆𝑢 , 𝑆𝑣} is a qualified keyword set, then

there are at least 𝛽 vertices in 𝑈 (𝐺𝛼,𝛽 [𝑆𝑢 , 𝑆𝑣]) containing 𝑆𝑢 and

𝛼 vertices of 𝑞
′
𝑠 neighbors containing 𝑆𝑣 . This contradicts the con-

dition that less than 𝛼 vertices in 𝑉 contains 𝑆𝑣 , so lemma 3 is

proved. □

We generate the candidate keyword sets,𝜓 , of𝑈 (𝐺) by enumer-

ating all nonempty subsets of 𝑆𝑈 . For each vertex 𝑣 ∈ 𝑁 (𝑞), we
enumerate all nonempty subsets of𝑊𝑉 (𝑣) and put them into a new

set 𝜑 , the elements of which are different from each other. Then we

update the candidate keyword sets by removing those contained

by less than 𝛼 of 𝑞
′
neighbors.

Example 5.6. Consider a query vertex Q(𝛼 = 3)with 5 neighbors

in Fig.6(a), where the selected keywords of each vertex are listed in

the curly braces. For each neighbor of Q, all nonempty subsets of

its keyword sets are generated, as shown in Fig.6(b). We can easily

filter out the subset which occurs equal to or more than three times

and form the set 𝜑{{𝑥}, {𝑦}, {𝑧}, {𝑥,𝑦}}.

Figure 6: An example of candidate generation in𝐷𝑒𝑐method6



5.2.2 Verification of candidate keyword sets. As candidates can be

obtained using 𝑆 and 𝑞
′
neighbors directly, we can verify them

in a decremental manner (larger candidate keyword sets first and

smaller candidate keyword sets later). During the verification pro-

cess, once finding the attribute (𝛼, 𝛽)-communities for candidate

keyword sets of the same size, 𝐷𝑒𝑐 does not need to verify smaller

candidate keyword sets. Therefore, compared with the incremental

algorithm, 𝐷𝑒𝑐 can save the cost of verifying smaller candidate

keywords, thus it may be faster practically.

Algorithm 4: Dec

Initialize𝜓 using 𝑆 , 𝜑 using 𝑁 (𝑞);
create 𝑃1, 𝑃2, ..., 𝑃𝑖 and 𝑄1, 𝑄2, ..., 𝑄 𝑗 by𝜓 and 𝜑 ;

update𝜓,𝜑, 𝑃,𝑄 ;

𝑐 ← ∅, 𝑆 ← ∅, 𝑎𝑛𝑠 ← ∅,𝑚𝑎𝑥 ← 0;

for𝜓𝑖 ∈ 𝜓 do
for 𝜑 𝑗 ∈ 𝜑 do

𝑐 ← {𝜓𝑖 , 𝜑 𝑗 };
𝑆.𝑎𝑑𝑑 (𝑐);

sort 𝑆{𝑆1, 𝑆2, ..., 𝑆𝑖×𝑗 } in descending order;

for 𝑆𝑘 ∈ 𝑆 do
if |𝑆𝑘 | < 𝑚𝑎𝑥 then

break;

else
compute 𝐺 (𝛼,𝛽) [𝑆𝑘 ] from the subgraph induced on

𝑃𝑖 and 𝑄 𝑗 ;

if 𝐺 (𝛼,𝛽) [𝑆𝑘 ] exists then
𝑎𝑛𝑠.𝑎𝑑𝑑 (𝐺 (𝛼,𝛽) [𝑆𝑘 ]);
𝑚𝑎𝑥 ← (|𝑆𝑘 |);

return ans

Based on the above discussions, we design 𝐷𝑒𝑐 as shown in

Algorithm 4. We first generate candidate keyword sets 𝜓 and 𝜑

respectively using 𝑆 and 𝑞
′
neighbors, 𝑃𝑖 denote the set of nodes

containing𝜓𝑖 and𝑄 𝑗 denote the set of nodes containing𝜑 𝑗 (line 1-2).

Next, we update𝜓,𝜑, 𝑃,𝑄 through removing the vertex sets and the

corresponding keyword sets that dissatisfy structure cohesiveness

constraint (line 3). Then, we set𝑚𝑎𝑥 = 0, indicating the maximal

size of all candidate keyword sets, and initialize set 𝑆 and 𝑐 , where 𝑆

contains 𝑐 and 𝑐 denotes a set consisting of a keyword set,𝜓
′
,from

𝜓 and a keyword set, 𝜑
′
, from 𝜑 (line 4). ∀𝜓 ′ ∈ 𝜑 and ∀𝜑 ′ ∈ 𝜑 , we

generate (|𝜓 | × |𝜑 |) 𝑐 and put them into 𝑆 (line 5-8). For each subset

of 𝑆 , we sort it in descending order according to the number of

elements in it (line 9). After that, while 𝑆𝑘 ∈ 𝑆 and |𝑆𝑘 | > 𝑚𝑎𝑥 , we
verify the existence of 𝐺 (𝛼,𝛽) [𝑆𝑘 ] in order. If 𝐺 (𝛼,𝛽) [𝑆𝑘 ] exists, we
put it into the set 𝑎𝑛𝑠 and replace𝑚𝑎𝑥 by |𝑆𝑘 |.For the rest set in
𝑆 , when we find a set with less than 𝑚𝑎𝑥 elements, we stop the

verification and output the desired (𝛼, 𝛽)−communities in 𝑎𝑛𝑠 .

Theorem 5.7. Given a bipartite graph G, 𝐷𝑒𝑐 computes𝐺𝛼,𝛽 [𝑆𝑘 ]
in𝑂 ((2 |𝑆 | ·𝑑 ·2 |𝑆𝑣 |𝑚𝑎𝑥 )·𝑂 (𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐺𝛼,𝛽 (𝑞,𝐺))+𝑛𝑣 ·𝑑 ·2 |𝑆𝑣 |𝑚𝑎𝑥

log(𝑑 ·
2
|𝑆𝑣 |𝑚𝑎𝑥 )).

Proof. In Algorithm 4, we use 𝑑 to represent the degree of 𝑞,

|𝑆𝑣 |𝑚𝑎𝑥 to represent the𝑊𝑉 (𝑣) of largest size among all 𝑣 ∈ 𝑁 (𝑞) ,
we can initialize𝜓 and 𝜑 in 𝑂 (2 |𝑆 | + 𝑑 · 2 |𝑆𝑣 |𝑚𝑎𝑥

log(𝑑 · 2 |𝑆𝑣 |𝑚𝑎𝑥 ))
time. Line 2-3 can be completed in𝑂 (𝑛𝑢 ·2 |𝑆 |+𝑛𝑣 ·𝑑 ·2 |𝑆𝑣 |𝑚𝑎𝑥

log(𝑑 ·
2
|𝑆𝑣 |𝑚𝑎𝑥 )) time. In line 5-8, set 𝑐 can be generated in 𝑂 (2 |𝑆 | ·
𝑑 · 2 |𝑆𝑣 |𝑚𝑎𝑥 )) time. Then it takes 𝑂 (2 |𝑆 | · 𝑑 · 2 |𝑆𝑣 |𝑚𝑎𝑥

log(2 |𝑆 | ·
𝑑 · 2 |𝑆𝑣 |𝑚𝑎𝑥 )) sorting 𝑆 in descending order of the number of el-

ements in 𝑆 . In the worst case, it costs 𝑂 ((2 |𝑆 | · 𝑑 · 2 |𝑆𝑣 |𝑚𝑎𝑥 ) ·
𝑂 (𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐺𝛼,𝛽 (𝑞,𝐺))) to find all qualified 𝐺 (𝛼,𝛽) [𝑆𝑘 ] in line 10-

18. However, it will be much faster in practice. □

6 EXPERIMENTS
This section presents our experimental results. We evaluate the effi-

ciency of the techniques for retrieving attributed (𝛼, 𝛽)-communities.

6.1 Experiments setting
Algorithms. We implement and compare following algorithms: 1)

a baseline algorithm 𝐵𝑎𝑠𝑖𝑐 we propose in Section 4, 2) an improved

algorithm 𝐵𝑎𝑠𝑖𝑐+ based on Basic,3) the improved attributed (𝛼, 𝛽)-
community search algorithm 𝐼𝑛𝑐 , 4) the improved attributed (𝛼, 𝛽)-
community search algorithm 𝐷𝑒𝑐 in Section 5.

Datasets.We evaluate the algorithms on eight real graphs which

are 𝐸𝑛𝑤𝑖𝑘𝑖𝑏𝑜𝑜𝑘𝑠 , 𝑀𝑜𝑣𝑖𝑒 , 𝐼𝑀𝐷𝐵, 𝐴𝑐𝑡𝑜𝑟 , 𝐷𝑖𝑠𝑐𝑜𝑔𝑠 , 𝐼𝑑𝑤𝑖𝑘𝑖 , 𝑃𝑙𝑤𝑖𝑘𝑖

and 𝑁𝑙𝑤𝑖𝑘𝑖 . All the datasets we use can be found in KONECT

(http://konect.cc/networks). Note that, for the datasets without

attributes, we respectively generate two different kinds of keyword

sets for the vertices in the different layer of the bipartite graphs. In

each experiment we randomly select 8-13 keywords (average 10)

for each vertex. The summary of datasets is shown in Table 1. 𝑈

and 𝑉 are vertex layers, |𝐸 | is the number of edges, and 𝑑 is the

average degree of vertices.

Table 2: Datasets used in our experiments

ID Dataset |𝑈 | |𝑉 | |𝐸 | 𝑑

D0 Enwikibooks(Wikibooks edits) 79,268 249,725 766,272 4.66

D1 Movie(Actor movies) 127,823 383,640 1,470,404 5.75

D2 IMDB(komarix-imdb) 685,568 186,414 2,715,604 6.23

D3 Actor(actor2) 303,617 896,302 3,782,463 6.30

D4 Discogs(Discogs) 1,754,823 270,771 5,302,276 5.24

D5 Idwiki(edit-idwiki) 125,481 2,183,494 6,126,592 5.31

D6 Plwiki(edit-plwiki) 207,781 2,664,432 21,219,204 14.78

D7 Nlwiki(edit-nlwiki) 220,847 3,800,349 22,142,951 11.01

The algorithms are implemented in C++ and the experiments

are run on a machine having two tetradeca-core Intel Xeon E5-

2680 v4 processor, and 251GB of memory, with Ubuntu installed.

We set the maximum running time for each test to be 3 days.

If a test does not stop in the time limit, we denote the corre-

sponding processing time as INF. The code is open-sourced in

https://github.com/892681347/AttributeBigraph.

6.2 Evaluation of retrieving attributed
(𝛼, 𝛽)-community

Here we evaluate the performance of the algorithms (𝐵𝑎𝑠𝑖𝑐 , 𝐵𝑎𝑠𝑖𝑐+,
𝐼𝑛𝑐 and 𝐷𝑒𝑐) for querying attributed (𝛼, 𝛽)-communities. We set
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the default values of 𝛼 and 𝛽 to 3, and the input keyword set S is

set to be the full set of keywords contained in the query vertex.

For each dataset, we randomly select 300 query vertices with core

numbers greater than or equal to the core number we set. The

value of each data is the average result of those 300 queries. For

each dataset, we also randomly select 20%, 40%, 60% and 80% of its

vertices and obtain four subgraphs induced by these vertex sets,

20%, 40%, 60% and 80% of its keywords and obtain four keyword

sets.

The running time of 𝐵𝑎𝑠𝑖𝑐 is more than 3 days for all experi-

ments, while the 𝐵𝑎𝑠𝑖𝑐+ is unpredictable for large graphs (Idwiki,
Plwiki and Nlwiki), so we record them as INF, and the effect of

𝐵𝑎𝑠𝑖𝑐 and 𝐵𝑎𝑠𝑖𝑐+ algorithm will not be described separately in the

corresponding experiments.

Evaluating the effect of query parameters 𝛼 and 𝛽 .We vary 𝛼

and 𝛽 to assess the performance of these algorithms. In Fig.7(a)-7(h),

𝛽 is fixed and the experimental parameter 𝛼 gradually increases

from 2 to 6. We can observe that as 𝛼 keeps increasing, the running

time of 𝐵𝑎𝑠𝑖𝑐+, 𝐼𝑛𝑐 and 𝐷𝑒𝑐 algorithms decreases. This is because

only a few number of vertices and edges are removed from the

original graph when the query parameter 𝛼 is small. When 𝛼 is

large, the resulting (𝛼, 𝛽)-communities are much smaller than the

original graph. Thus the size of subgraph directly impacts on the

running time of 𝐵𝑎𝑠𝑖𝑐+, 𝐼𝑛𝑐 and 𝐷𝑒𝑐 algorithms. Obviously, 𝐷𝑒𝑐

algorithm takes less time than 𝐵𝑎𝑠𝑖𝑐+ and 𝐼𝑛𝑐 algorithms in any

case. In Fig.8(a)-8(h), we fix 𝛼 and vary 𝛽 to compare the query effi-

ciency. In the experiment, we gradually increase the experimental

parameter 𝛽 from 2 to 6 and the experimental results are similar to

those when 𝛼 increases. With the increase of 𝛽 , the running time

of 𝐵𝑎𝑠𝑖𝑐+, 𝐼𝑛𝑐 and 𝐷𝑒𝑐 algorithms decreases. This is also because

higher 𝛽 returns a subgraph with less vertices from the original

graph, while 𝐵𝑎𝑠𝑖𝑐+ and 𝐼𝑛𝑐 algorithms are easier to be affected by

the number of vertices.

Figure 7: Effect of 𝛼

Evaluating the scalability w.r.t. keyword. In this experiment,

we evaluate scalability over the fraction of keywords for each vertex.

We vary the number of keywords by randomly sampling them from

20% to 100%. As shown in Fig.9(a)-9(h), when varying the number

of keywords, the running time of 𝐵𝑎𝑠𝑖𝑐+, 𝐼𝑛𝑐 and 𝐷𝑒𝑐 algorithms

stably increases. This is because when the number of keywords

increase, the number of subgraphs derived from the keywords and

the vertices and edges in each subgraph will increase accordingly.

The running time of 𝐵𝑎𝑠𝑖𝑐+ and 𝐼𝑛𝑐 algorithms increase faster than

Figure 8: Effect of 𝛽

Figure 9: Scalability w.r.t. keyword

Figure 10: Scalability w.r.t. vertex

Figure 11: Effect of set S

that of 𝐷𝑒𝑐 algorithm as more keywords are involved, which in-

dicates that 𝐷𝑒𝑐 performs the better and has a good scalability in

practice.
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Evaluating the scalability w.r.t. vertex. In this experiment, we

evaluate the scalability over different fraction of vertices. To test the

scalability, we vary the number of vertices and edges by randomly

sampling them respectively from 20% to 100% and keeping the

induced subgraphs as the input graphs. All the keywords of vertices

are considered. Fig.10(a)-10(h) show that, as the number of vertices

increasing from 20% to 100%, the running time for 𝐵𝑎𝑠𝑖𝑐+, 𝐼𝑛𝑐 and
𝐷𝑒𝑐 algorithms stably increases, and the running time of 𝐵𝑎𝑠𝑖𝑐+ and
𝐼𝑛𝑐 increases faster than that of 𝐷𝑒𝑐 . For example, on Imdb, When

the number of nodes increases from 20% to 100%, the running time

of 𝐷𝑒𝑐 increase from 0.30s to 0.75s, while that of 𝐵𝑎𝑠𝑖𝑐+ increase
from 3.38s to 29.93s and that of 𝐼𝑛𝑐 increase from 0.28s to 3.32s.

We see that 𝐷𝑒𝑐 has better performance than 𝐼𝑛𝑐 for most cases,

but the opposite may occur in some cases with few vertices. This

is because 𝐼𝑛𝑐 algorithm is easier to be affected by the number of

vertices than 𝐷𝑒𝑐 .

Evaluating the effect of 𝑆 . In this experiment, we evaluate the

effect of the experimental parameter 𝑆 on the efficiency of the

algorithms. For each query vertex, we randomly sampling 20%, 40%,

60%, 80% and 100% keywords of it to form the query keyword set

𝑆 . As shown in Fig.11(a)-11(h), We can see that with the increase

of |𝑆 |, the running time of 𝐵𝑎𝑠𝑖𝑐+ and 𝐼𝑛𝑐 increase rapidly, while
that of 𝐷𝑒𝑐 algorithm increases slowly or almost unchanges. For

example, on Actor, the running time of 𝐷𝑒𝑐 increase form 1.08s to

1.13s, while that of 𝐵𝑎𝑠𝑖𝑐+ increase form 2.32s to 14.68s and that of

𝐼𝑛𝑐 increase form 1.65s to 4.70s. The result shows that𝐷𝑒𝑐 performs

better than 𝐵𝑎𝑠𝑖𝑐 and 𝐼𝑛𝑐 .

Case study. We conduct queries on the real dateset Southern

women (small) from the KONECT (http://konect.cc/networks/),

where each vertex in 𝑈 represents a woman, each vertex in 𝑉

represents a social activity and each edge indicates the woman

participates in the social activity.

Figure 12: A real person-activity network

We use 𝐴 as a query vertex, 𝛼 and 𝛽 are both set to 2, and 𝑆

contains the keyword “environmental”, the query result is shown

in the circled part containing women {𝐴, 𝐵} and activities {𝑤, 𝑥} as
Fig.11 shows. From the result, we can see the returned people𝐴 and

𝐵 are active participants in environmental activities, and the social

activities 𝑤 and 𝑥 are all environmental activities with multiple

participants from U. In this case, if there is an environmental social

activity that needs to recruit team members, then 𝐴 and 𝐵 can be

given priority because they not only have a preference for envi-

ronmental social activities but also have experience of cooperation

among team members. If we search an (2,2)-community without

considering keywords, the result will return the whole women and

activities in Fig.12, which includes those who do not often partici-

pate in environmental activities. Obviously, the returned candidates

cannot be valid team members expected by an environmental ac-

tivity. This is because we only consider the structure cohesiveness

constraint but ignore the keyword cohesiveness constraint.

7 CONCLUSION
In this paper, we study the attributed (𝛼, 𝛽)-community search

problem. To solve this problem efficiently, we follow a two-step

framework which first generates candidate keyword sets, and then

verifies the existence of attributed (𝛼, 𝛽)-community according to

each candidate keyword set. Then we develop a basic and two im-

proved query algorithms to retrieve the (𝛼, 𝛽)-community through

verifying the candidate keyword sets in a different order.We con-

duct extensive experiments on real-world graphs, and the results

demonstrate the effectiveness of the attributed (𝛼, 𝛽)-community

model and the proposed techniques.
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