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Abstract
Designing effective AI models becomes a challenge when dealing with imbalanced/skewed class
distributions in datasets. Addressing this, re-sampling techniques often come into play as potential
solutions. In this investigation, we delve into the male fertility dataset, exploring �fteen re-sampling
approaches to understand their impact on enhancing predictive model performance. The research
employs conventional AI learners to gauge male fertility potential. Notably, �ve ensemble AI learners are
studied, their performances compared, and their results are evaluated using four measurement indices.
Through comprehensive comparative analysis, we identify substantial enhancement in model
effectiveness. Our �ndings showcase that the LightGBM model with SMOTE-ENN re-sampling stands out,
achieving an e�cacy of 96.66% and an F1-score of 95.60% through 5-fold cross-validation. Interestingly,
the CatBoost model, without re-sampling, exhibits strong performance, achieving an e�cacy of 86.99%
and an F1-score of 93.02%. Furthermore, we benchmark our approach against state-of-the-art methods in
male fertility prediction, particularly highlighting the use of re-sampling techniques like SMOTE and
ESLSMOTE. Consequently, our proposed model emerges as a robust and e�cient computational
framework, promising accurate male fertility prediction.

1. Introduction
In the era of arti�cial intelligence, data is an essential component. It can assist in extracting useful
information from enormous, heterogeneous, and hierarchical data. Regarding classi�cation, several
methods, including support vector machines, random forests, decision trees, extreme gradient boosting,
and K-nearest neighbors, among others, have demonstrated superior predictive performance [1, 2]. A
classi�er can achieve high classi�cation accuracy and not correctly predict a single minority class in the
event of an imbalanced dataset because these cutting-edge models place a greater emphasis on
classi�cation accuracy than on the imbalanced nature of the input data. For instance, in a dataset having
0.2% negative cases, a primary classi�er that predicts all information focuses on being positive will score
a classi�cation accuracy of 99.8%. However, none of the negative issues have been discovered in this
instance. As a result, classi�cation will continue to be biased towards the majority class, and the decision
boundary line will be biased toward samples from the minority class when the input data distribution is
uneven [3, 4]. In classi�cation, the minority observations are frequently dismissed as noise. Now and
again, most test information tests are arranged into the majority group. Consequently, minority class
classi�cation accuracy is signi�cantly lower than that of the majority class. In this situation, most ML
models will likely produce unsatisfactory results, which may not be suitable for real-world domain
applications. In the present day, most of the datasets have unequal distribution, especially in the medical
sector. To overcome this issue, sampling is a probable solution to handle an imbalanced class dataset. A
better learning model can be developed using the sampling process to differentiate between majority and
minority classes effectively.

There are three possible ways to handle the skewness distribution of data complexity: data level,
algorithm level, and cost-sensitive technique. The data level scheme is most considerable and is
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implemented in the pre-processing stage. In literature, over-sampling and under-sampling procedures are
mainly used. The prime focus is reducing or increasing the dataset size [5] to balance the sample ratios.
The purpose of oversampling schemes is to create extra synthetic minority observations by interpolating
a few instances that nearly lie together in the feature space [6]. In contrast, the under-sampling approach
eliminates the majority class samples by randomly selecting a �xed number of classes equal to those
minority classes. However, both applications have merits and demerits; for this reason, some hybrid
approaches (under-and over-sampling methods in parallel) are utilized to alleviate these problems [7].
Many researchers have considered all the sampling schemes mentioned above for disease diagnosis.
Hence, class imbalance is a vital research issue in ML and AI.

On the other side, many public health issues are a signi�cant concern for society due to environmental
causes, changing lifestyles, and the increasing in�uence of media and advertising. For example, curing
diseases like heart disease, obesity, type 2 diabetes, lung cancer, asthma, and infertility after progressing
to a critical stage is challenging. According to the World Health Organization (WHO), a large population
has suffered worldwide. In the last two decades, the number of people diagnosed with cancer has nearly
doubled, whereas obesity and diabetes have become common problems for the younger generation.
Additionally, asthma affects 262 million people and is the most common chronic disease in children
today [8]. Apart from all these diseases, the rate of infertility is increasing, and its impact is widespread.
As per global estimation, 186 million individuals are infertile, and about 48.5 million couples experience
infertility [9]. As a result, several emotional stressors have developed in men and women, bringing many
di�culties in marital life and identity problems. In general population, major depression is twice as
common among all. Additionally, it is underrecognized and underrepresented as a disease. Still, no one
can opt for a preventive strategy initially, especially in case of males [10]. Conversely, women's infertility
has been an important research topic for the last 40 years, whereas half of the patients involve male
factors. Worldwide, sperm counts have decreased by half, and 1 in 20 men have frighteningly poor sperm
quality. Moreover, the rising rate of male infertility necessitates the development of new prevention,
diagnosis, and treatment strategies.

A diagnostic procedure in the health sector is both time-consuming and costly. In addition, during the
testing and therapy process, many emotional affective reactions came into the picture (anxiety, distress,
fear, worry, loneliness, and depression) [11]. Prevention is better than cure, and it can be possible with AI.
ML is extremely helpful in detecting disease faster and more accurately. The presented research is one of
the solutions for choosing a model and a class balancing strategy to expand the model presentation on
the binary class male fertility dataset. The proposed research outcome would serve as a tool to predict
male infertility status in the early stage, which can provide an effective solution to decrease the global
male infertility scenario. The following are the contributions of this research article:

1. Five ensemble AI learners are implemented on an imbalanced dataset to predict male fertility;
2. To tackle the male fertility imbalanced dataset, four oversampling approaches are deployed;
3. A state-of-the-art comparative analysis of seven under-sampling schemes; and
4. Deployment of hybrid re-sampling strategies for optimal model performance.
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The document's layout remains as follows: Section 2 explains the background work and a few signi�cant
published works in this domain. Section 3 provides brief integrated information related to research topics
(data balancing, skewed dataset, male fertility, and AI learners). Section 4 explains the computational
experiments, and Section 5 de�nes the results and discussion. Finally, section 6 concludes and offers
suggestions for future research.

2. Literature review
The effect of re-sampling techniques on disease diagnosis many experts and researchers have
conducted extensive research on this topic. Most experts have put their interest in individual sampling
processes, mainly oversampling. On the other hand, some have applied an under-sampling or
combinational approach. Hence, the process of generating new data is very much typical in healthcare
applications. Albert et al. [12] recently used smote and adasyn approach to detect heart disease using ML
algorithms. The result has shown that oversampling improved model performance by 11% compared to
the original dataset. Nishat et al. [13] performed a comprehensive investigation using six different ML
algorithms via smote-enn technique. The result portrayed that the application of SMOTE-ENN increased
model performance, and 90% accuracy was achieved by RFC. Yang et al. [14] used a hybrid sampling
method to identify missed abortion diagnoses via ensemble AI learners. The result was compared with 11
sampling algorithms, and �nally, maximum e�cacy was reported via RFC. Naz et al. [15] used SMOTE
technique to detect people with diabetes two by the deployment of the SMO classi�er. They noted that the
proposed model achieved an accuracy of 99.07%. Kumar et al. [16] applied several data balancing
approaches: random oversampling, random under-sampling, smote, adasyn, svm-smote, borderline
smote, smotenc, smoteen, and smote-tomek to diagnose the acute disease to prevent covid 19 on the
original dataset. A total of 6 classi�ers are used, and performance has been compared. They reported DT
with smoteen based model performed best. Gupta and Gupta [17] conducted a comprehensive data-level
investigation of cancer diagnosis using ensemble AI learners. Eight data-handling methods were
employed and designed 14 classi�cation models. They reported smote-enn achieved the best accuracy
via ensemble stacking. GhoshRoy et al. [18] used smote oversampling technique to increase dataset size,
and XGB classi�er was used to predict male fertility. The accuracy improvement is noticed after the
application of oversampling. GhoshRoy et al. [19] used industry-standard ML algorithms to predict male
fertility where smote technique is deployed on the original dataset. Each model's accuracy was compared,
and model performance was enhanced due to sampling. Yibre et al. [20] used smote technique along with
the adaboost classi�er to predict male fertility. They reported that the model achieved high performance
with a data-balancing approach. Lin et al. [21] performed an experimental study to check the effect of
sampling techniques using 44 datasets. They reported that the hybrid sampling application becomes
more impactful than over and under-sampling individually. Islam et al. [22] studied imbalanced image
datasets using different samplers. They reported KNNOR oversampling approach performed better as
compared to 9 samplers. Ma et al. [23] used an evolutionary safe level synthetic minority oversampling
approach with BPNN to predict the seminal quality. They reported model achieved the highest AUC of
97.2% after data balancing. Feng et al. [24] used 15 datasets with the C4.5 classi�er and applied a hybrid
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sampling approach (CUS and SMOTE). They found that hybrid methods performed well and provided
higher classi�cation accuracy. Fujiwara et al. [25] conducted a study based on a hybrid sampling
approach using a CART classi�er via eight datasets. Xu et al. [26] used a hybrid sampling strategy with
ten datasets and an RF classi�er chosen. Table 1 lists recent related works focusing on the different
sampling approaches to diagnose disease serially. Remarkably, the order to combine other samplers,
datasets used, and constructed classi�ers are compared. Moreover, the developed model performs better
after applying these sampling methods to a dataset.

Moreover, data balancing approaches are a considerable framework before building an effective model.
Re-sampling approaches help researchers to manage a class imbalance problem in a simple, easy, and
understandable way. In this article, we follow and investigate the effect of data-balancing approaches
which are widely used in various disease diagnoses. In other words, it is unknown which data balancing
approaches perform better in the male fertility dataset; it is the critical question of this research work. We
are mainly focusing on binary classi�cation and multivariate data.

Table 1
sampling approach related work

Authors
[Ref]

Samplers Classi�er Disease

Albert et
al. [12]

SMOTE, and ADASYN DT Heart
disease

Nishat et
al. [13]

SMOTE-ENN RFC Heart
failure

Yang et
al. [14]

SMOTE-ENN RFC Missed
abortion

Naz et al.
[15]

SMOTE SMO  

Kumar et
al. [16]

ROS, RUS, SMOTE, ADASYN, SVM -SMOTE, Borderline
SMOTE, SMOTENC, SMOTEEN, and SMOTE-Tomek

LDA, SVM,
GNB, ANN, k-
NN, DT

Covid-
19

Gupta
and
Gupta
[17]

SMOTE, ADAYSN, TL, RUS, Borderline SMOTE, SMOTE-
SVM

Stacked
Ensemble

Cancer

3. Integrated Information of Research

3.1 Sampling Schemes
Different types of data balancing schemes are already proposed in the literature. These methods greatly
uplift the data size and improve the classi�er's performance. The data-balancing strategies and classi�er-
level approach are two different aspects of dealing with class imbalance. Therefore, the classi�er
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approach mainly focuses on changing present learning methods to favor the minority group. The data
balancing schemes seek to rebalance class dispersion by re-sampling data space, which entails
oversampling instances of minority classes and under-sampling instances of majority classes. We have
implemented three strategies for this work: over, under, and hybrid sampling. Figure 1. exhibits the
sampling task (oversampling vs. under-sampling).

3.1.1 Oversampling Schemes
In this work, four well-known methods are employed: random oversampling (ROS), adaptive synthetic
(ADASYN), synthetic minority oversampling (SMOTE), and borderline synthetic minority oversampling
(Borderline-SMOTE).

ROS: In this method, observations from minority classes are randomly selected and added to the
training dataset. It indicates that the minority classes in the training dataset are duplicated, which
leads to over�tting in ML algorithms. [27].

ADASYN: It is a generic framework, and more observations from minority observations are produced
along the borderline in ADASYN. The ratio of majority samples in the k-nearest neighbours of a
minority sample  is . It establishes the probability of being near the border. It is then
normalized to calculate  and , the number of samples to synthesize from ( .

Borderline-SMOTE: It begins to function by classifying the minority class observations. The instances
close to the borderline are more important for classi�cation than those far from it. All K neighbours
of a borderline sample belong to the majority class. This borderline method, using SMOTE, pre-
samples the minority class [29].

SMOTE: By interpolating a collinear point, it produces synthetic samples from the minority class
based on the KNN method. This observation or point creates a gap between a minority class's
observation and that of its closest neighbour. [30].

3.1.2 Under sampling schemes
Eight schemes such as random under-sampling (RUS), Near miss, cluster-based under-sampling (CUS),
condensed nearest neighbour rule (CNN), tomek-links (TL), one-sided selection (OSS), and edited nearest
neighbour (ENN) are deployed.

RUS: It is one of the most basic approaches where samples are chosen randomly, and the training
dataset is removed. This technique's fundamental concept of achieving class balance is eliminating
enormous samples, with or without replacement [31].

Near-miss: It works based on the distance of majority class examples to minority class examples. In
this technique, we prevent the problem of information loss and �nd n closest instances in the
majority class; three variations, version 1, version 2, and version 3, can be applied [32]. This study
uses version 1.

(ti) h [i]

h [i] F (i) ti )[ 28]
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CUS: This technique's motivation is to prevent a loss of information that may use a downsizing
dataset. This approach �rst clusters all the training samples into the K cluster and then chooses
appropriate training samples from derived clusters. The main idea is that different clusters seem to
have distinct characteristics depending on the number of majority and minority samples present in
the cluster [33].

CNN: It operates on the NNR principle, and motivation is derived from statistical concerns related to
NNR. Before that, be familiar with the meaning of a consistent subset of a sample set. A consistent
subset is a subset that classi�es all the remaining points in the sample set, or the dataset is used as
a stored reference set for NNR and classi�es all remaining dataset samples correctly; then, this
subset is known as the consistent subset of a sample set. CNN aims to �nd a compatible subset
[34].

TL: The fundamental goal is to locate pair (a,b) such that either belongs to the minority class and the
others belong to the majority class. Further, a and b need to be the nearest neighbour, and such
instances are known as TL, in which majority class instances are eliminated. This technique clari�es
the boundary between two classes, leading to more distinct minority regions [35].

OSS: This method is the outcome of the implementation of TL followed by the use of US-CNN. TL is
utilized to remove noisy and borderline majority class observation, whereas CNN aims to eliminate
observations from the majority class distant from the decision border [36].

ENN: It is a workable strategy, and the nearest neighbour rule states that the closest samples of each
majority sample are determined based on the distance between two samples and that the majority
samples can be identi�ed as noise samples by assessing whether or not their labels are consistent.
Eliminating observations whose class differs from that of its k-nearest neighbours is the cornerstone
of ENN. This technique's primary goal is to eliminate most noise observations. [37].

3.1.3 Hybrid Sampling Schemes
Three hybrid sampling schemes, namely smote-tomek, somte-rus, and smote-enn are used
simultaneously for upsizing and downsizing the dataset.

SMOTE-Tomek: In this method, two sampling approaches are deployed. Smote is an oversampling
scheme in which minority class observations are oversampled. In other words, Tomek is an under-
sampling approach that removes observations from the majority class with overlapping values.
Hence, the ratio of observations becomes 1:1 [38].

SMOTE-RUS: This hybrid scheme is based on smote, which synthesizes samples of the minority
class based on their nearest neighbor and, in the next rus, randomly reduces the majority samples to
match the size of the minority class [39].

SMOTE-ENN: In this scheme, smote is developed by enn to search noisy observations. Instead of
disregarding observations from one class, ENN removes observations from both categories. To
eliminate the misclassi�ed observations, it uses its three nearby neighbors [40].

3.2 Skewed Dataset
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Medical data are often not symmetric enough to be adequately modeled through usual normal
distributions, mostly skewed patterns. The maximum samples are either positive or negative in a two-
class target label. The demonstration of skewness is represented by a bell curve when the right and left
side data points are distributed equally; it is said to be a normal or symmetric distribution. In the ML
model, a skewed dataset degrades overall model performance, and a sampling-based pre-processing
approach is used to overcome this problem. After sampling approaches are implemented, uneven data
distribution issues are reduced [41]. As a result, precise model performance is vital in the medical sector.

3.3 Male Fertility
Male fertility is associated with poor sperm quality. Still, we cannot de�ne the precise etiology of infertility
due to a lack of proper diagnosis and treatment. Many clinical factors (hormonal, immunological,
genetic/chromosomal, behavioral, and environmental) are relevant causes, but somehow it isn't easy to
quantify or relate to male fertility. Hence, much effort is placed into comprehending the association
between semen traits and male fertility [42]. The possible bottom line merely affects male reproductive
ability; fortunately, the improvement is within our grasp. The signi�cant role of lifestyle and
environmental factors is an alarming disruptor that can impact the reproductive system.

3.4 Ensemble AI learners
An incisive overview of the AI learners of each classi�cation technique has been discussed here to
present vital insight into �ve ensemble learners.

1) RF: RF employs bootstrapping, averaging, and bagging to train several decision trees. By utilizing
various combinations of the given attributes, numerous distinct decision trees can be constructed
concurrently on various subsets of the training data. Bootstrapping guarantees that each decision tree
within the RF is distinct, which lowers the variance of the RF. The RF classi�er's ability to combine the
outcomes of various tress judgments into a single conclusion allows for good generalization. The RF
classi�er seeks to continuously surpass nearly all existing classi�er algorithms in terms of precision
without the issues of unbalanced datasets and over�tting. [43]. The mean square error for RF can be
de�ned as Eq. (1)

1
where N represents the number of distinct data points, and  replicates the outcome returned by the
model  and the precise value of the point value is .
2) CatBoost: It is a novel variant of gradient boosting trees that deals with categorical and ordered
features. The permutation method solves the categorical attributes, providing a gradient-boosting
framework. As a result, the modi�ed target-based statistics offer a more e�cient implementation with
reduced computational complexity, and model over�tting was overcome via Bayesian optimization.
Catboost employs greedy search to generate a robust competitive system by the combination of many

MSE =
n

∑
k=0

(
n

k
) (Fi − yi) b

21

N

Fi

yi i
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weak systems sequentially. With the help of ordered boosting, decision trees are �tted one after the other
to minimize errors. CatBoost, in contrast to gradient boosting models, uses the oblivious tree approach,
which produces a straightforward �tting scheme and excellent computational e�ciency and uses loss
function change to rank the feature importance of the built model. [44].

3) LightGBM: LightGBM distinguishes itself by gradient-based one-sided sampling (GOSS), mutually
exclusive feature bundling (EFB), and differential acceleration via a histogram technique. The basic idea
behind GOSS is to reserve large gradient samples and randomly select tiny gradient samples in
proportion to their sizes. Similarly, EFB combines two non-exclusive features. This binding minimizes the
number of features and the temporal complexity, boosting the model's computational e�cacy. Finally, the
fundamental of a histogram is to continuously construct a histogram with width K by discretizing
successive �oating-point eigenvalues into k integers. After traversing the data, the accumulated statistics
in the histogram are selected as an index based on these values. Finally, the computational segmentation
score is determined [45]. This classi�er performed well in classi�cation challenges, with improved
performance due to faster training, decreased memory use, and parallel processing.
4) ADA: It is a supervised algorithm for binary classi�cation problems. ADA combines several weak
classi�ers into a single classi�er known as a robust classi�er. The most common ADA algorithm is
decision trees with only one level or a single split. These trees are often referred to as decision stumps.
This approach produces a system by giving all data points equal weights. It then assigns a higher weight
to improperly classi�ed points. In the following model, all higher-weight points are given more weight. It
keeps training systems until a lower error is obtained. To begin the ADA, the weight of the training set is
used [46].
5) XGB: XGB is a tree integration model that uses the cumulative sum of anticipated values of a sample
in each tree as the sample prediction in the XGB system. It is an extensible and cutting-edge use of
gradient-boosting machines that have been shown to push the limits of computational power for boosted
tree algorithms. Adding fresh models to an ensemble technique known as boosting allows for correcting
faults generated by older models. Models are introduced repeatedly until no discernible improvements
can be found. The primary elements for its design are model e�ciency and computing speed [47].

4. Experimental Design
In this segment, we have reported on the experimental setting that aims to appraise the performance of
binary classi�cation models with distinct sampling schemes as accurately as possible. The pictorial
representation of data re-sampling schemes is given in Figure 2. 

4.1 Dataset 

This research is conducted on a male fertility dataset, and the description is given below:

The dataset was divided into two classes [49], consisting of 100 samples with ten attributes each. Six of
the ten attributes have categorical values, while the others have numerical values. There are 12
occurrences of infertile. Fertile, with 88 examples, makes up the second class. The challenge in the
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research is �guring out if a male is considered fertile or not. This study converts all variables into the
normalized range with different rules. For example, age, year of analysis, the number of exposures, or the
average number of cigarettes per day are normalized onto the interval (0,1). Similarly, the variable with
only two independent variables is assigned binary values. We have six variables in which we used this
representation. The variable with three independent attributes, we represent it in ternary values (-1,0,1).
Finally, for the variables with four independent attributes, we used four equal and different values (-1,
-0.33, 0.33,1). 

4.2 Performance evaluation criteria

There are several supervised models for classi�cation. However, side-by-side comparisons can quickly
determine a problem's most in�uential and reliable model. Here are the most popular classi�er
performance evaluation metrics: (1) accuracy, (2) precision, (3) recall, and (4) f1-score.

1) Accuracy (ACC) is de�ned by  . It calculates the classi�er's capacity to identify only accurate
observations for each class.

2) Precision (PREC) measures a classi�er's capacity to locate genuine cases inside a class.

3) Recall (REC) is de�ned by  as a classi�er's ability to �nd all truthful cases in a class.

4) F1-score   replicates the perfect balance due to PREC and REC are inversely related. PREC and REC are
both vital; a high F1 score is bene�cial. 

In this research, we have used four evaluation protocols to assess model performance. 

5. Results and Discussion
In this research, we have investigated and compared the applicability of �ve ensemble AI-learners and
fourteen signi�cant sampling schemes (1. ROS, 2. ADASYN, 3. Borderline SMOTE, 4. SMOTE, 5. RUS, 6.
Near-miss, 7. CNN, 8. TL, 9. ENN, 10. OSS, 11. CUS, 12. SMOTE-Tomek, 13. SMOTE-RUS, 14. SMOTE-ENN)
to predict male fertility based on lifestyle and environmental factors. The performance of �ve different
classi�ers is assessed using the ACC, PREC, REC, and F1-score metrics for both the original and re-
sampled datasets. The data used to create the model is split into 30% for testing and 70% for training
observations. Moreover, the K-fold cross-validation protocol enhances model performance and
robustness. K is a number that represents the number of iterations used to train and validate a model,
with each iteration using a new fold of data for validation. Besides, the K-5 fold is often utilized for
learning. We also considered the s.d.(  value during performance analysis to understand the robustness
of the model.

5.1 Performance comparison of different AI learners with
the original dataset

σ)
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In this paragraph, we have represented the experiments performed over the original dataset results.
Table 2, Among all classi�ers, Catboost performed best. The catboost achieved a mean e�cacy of
93.02% with s.d. 0.13. The classi�er's performance without balancing schemes in decreasing order came
as Catboost > LightGBM > XGB > RF > ADA.

Table 2
Male fertility prediction using the original dataset

Models Test Set Performance (in %)

ACC± PREC± REC± F1-Score±

RF 83.99 88.28 ± .038 94.37 ± .080 91.03 ± .051

CatBoost 86.99 ± .024 87.89 ± .023 98.88 ± .022 93.02 ± .013

LightGBM 86.00 ± .058 95.49 ± .064 89.31 ± .006 92.22 ± .034

ADA 80.00 ± .083 87.31 ± .038 90.25 ± .095 88.50 ± .053

XGB 85.71 ± 0.0 89.41 ± .030 95.12 ± .039 92.05 ± .003

5.2 Performance comparison of different AI learners with
an over-sampling variant dataset
This experiment demonstrates the performance of different classi�ers with an oversampled dataset. The
classi�cation performance of �ve classi�ers using the ROS, ADASYN, borderline SMOTE, and SMOTE
methods are displayed in Table 3. After analysis, we found that every classi�er worked well with different
combinations of re-sampling techniques. For the CatBoost classi�er, borderline SMOTE provides the
highest accuracy and F1-score of 89.30% and 88.0%, respectively. Similarly, other classi�ers like RF-ROS
obtained an accuracy of 95.06% with an s.d. of 0.40. LightGBM-SMOTE provides a maximum accuracy
of 90.19% and s.d. of 0.05. Finally, ADA-ROS shows better performance among all combinations and the
obtained accuracy of 92.56% with s.d. 0.04. XGB classi�er performed best with ROS sampler and the
reported accuracy of 95.05% where the s.d. value is 0.01. In this table, we found some classi�er provides
the same level of classi�cation accuracy; in that case, we have compared their f1-score value to reach the
�nal decision. We also found each classi�er's contributions ranking from the seven under-sampling
techniques, from best to worst: 1. Catboost: Borderline SMOTE > ROS > ADASYN > SMOTE, 2. RF-ROS > 
ADASYN > Borderline SMOTE > SMOTE, 3. Light GBM: SMOTE > ROS > Borderline SMOTE > ADASYN, 4.
ADA- ROS > Borderline SMOTE > SMOTE > ADASYN, 5. XGB- ROS > ADASYN > SMOTE > Borderline SMOTE.

σ σ σ σ

±.086
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Table 3
Over-sampling on dataset

Models Samplers Test Set Performance (in %)

ACC± PREC± REC± F1-Score±

CatBoost ROS 89.3 ± .050 1.0 ± .00 78.5 ± .101 87.6 ± .069

ADASYN 86.9 ± .03 96.0 ± .07 78.4 ± .087 85.6 ± .034

Borderline
SMOTE

89.3 ± 0.02 97.0 ± .05 81.0 ± .064 88.0 ± .023

SMOTE 86.06 ± .042 96.00 ± .079 76.79 ± .112 84.34 ± .056

RF ROS 95.06 ± .040 1.0 ± 0.0 90.1 ± .081 94.0 ± .047

ADASYN 93.5 ± .089 93.6 ± .126 96.6 ± .040 94.5 ± .069

Borderline
SMOTE

93.4 ± .074 95.0 ± .099 94.4 ± .062 93.8 ± .064

SMOTE 91.89 ± 
0.104

93.33 ± 
0.133

93.46 ± 0.062 92.79 ± 0.08

Light
GBM

ROS 90.9 ± .067 1.0 ± 0.0 81.9 ± 0.133 81.6 ± .081

ADASYN 89.3 ± 0.06 94.4 ± 0.11 86.6 ± 0.113 89.2 ± 0.063

Borderline
SMOTE

90.0 ± 0.66 95.2 ± 0.09 86.6 ± 0.135 89.6 ± 0.072

SMOTE 90.19 ± 
0.059

95.0 ± 0.099 86.79 ± 0.067 90.13 ± 0.052

ADA ROS 92.56 ± 
0.049

1.0 ± 0.0 85.12 ± 0.098 91.64 ± 0.061

ADASYN 87.73 ± 
0.068

92.77 ± 
0.098

83.46 ± 0.092 87.28 ± 0.069

Borderline
SMOTE

88.56 ± 
0.079

92.77 ± 
0.098

85.12 ± 0.111 88.15 ± .080

SMOTE 87.76 ± 0.88 93.68 ± 
0.126

85.00 ± 0.152 87.35 ± 0.090

XGB ROS 95.06 ± 
0.017

1.0 ± 0.0 90.12 ± 0.034 94.77 ± 0.019

ADASYN 92.69 ± 
0.068

95.00 ± 
0.099

91.79 ± 0.052 92.99 ± 0.0587

Borderline
SMOTE

91.06 ± .085 94.11 ± 
0.117

90.12 ± 0.081 91.40 ± 0.073

SMOTE 92.66 ±  95.29 ±  91.66 ±  92.90 ± 0.036

σ σ σ σ



Page 13/29

0.046 0.094 0.0527

5.3 Performance comparison of different AI learners with
under-sampling variant dataset
In this section, we evaluated the classi�er performance and different under samplers. All results are well
documented in Table 4. Firstly, for catboost classi�er OSS sampler performance is outstanding, with
accuracy and F1score of 95.63% and 97.77%, respectively. In both cases, the reported s.d. is 0.00.
Conversely, RF also provides superior performance with the combination of the OSS scheme and the
achieved accuracy, and F1-score is precisely the same as catboost. In case of LightGBM classi�er, the
highest accuracy was obtained by OSS. The reported accuracy is 96.12% with s.d. 0.01. The ADA and
XGB classi�cation models perform best with OSS; the reported accuracies are 95.63% and 96.12%.
Furthermore, when we compared the contributions of each of the seven under-sampling techniques, we
discovered the following ranking from best to worst: OSS > Tomek-Links > ENN > CUS > RUS > CNN > Near
Miss.
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Table 4
Under-sampling on dataset

Models Samplers Test Set Performance (in %)

ACC± PREC± REC± F1-Score±

CatBoost RUS 80.00 ± .2915 80.00 ± 0.4 70.00 ± 0.4 73.33 ± 0.388

Near Miss 48.33 ± 0.2198 33.33 ± 0.298 50.00 ± 0.44 40.0 ± 0.357

CNN 62.00 ± 0.0979 68.30 ± 0.033 73.33 ± 0.133 70.40 ± 0.076

Tomek Links 86.59 ± 0.0289 86.59 ± 0.0289 100.00 ± 0.0 92.78 ± 0.016

ENN 86.36 ± 0.077 86.14 ± 0.076 100 ± 0.0 92.37 ± 0.042

OSS 95.63 ± 0.0096 95.63 ± 0.0096 100 ± 0.0 97.77 ± 0.005

CUS 80.00 ± 0.244 74.32 ± 0.39 70.00 ± 0.44 70.00 ± 0.49

RF RUS 80.00 ± 0.1870 83.33 ± 0.2108 80.00 ± 0.244 79.33 ± 0.193

Near Miss 65.0 ± 0.22 43.33 ± 0.388 50.00 ± 0.44 45.99 ± 0.407

CNN 57.00 ± 0.2181 62.00 ± 0.1122 73.33 ± 0.326 65.28 ± 0.210

Tomek Links 86.59 ± 0.028 86.59 ± 0.028 100.00 ± 0.0 92.78 ± 0.016

ENN 86.54 ± 0.0936 87.55 ± 0.0783 97.77 ± 0.044 92.26 ± 0.053

OSS 95.63 ± 0.0096 95.63 ± 0.0096 100.00 ± 0.0 97.77 ± 0.005

CUS 63.33 ± 0.194 60.00 ± 0.374 50.00 ± 0.31 53.33 ± 0.32

Light GBM RUS 43.33 ± 0.081 36.66 ± .1943 80.00 ± 0.4 50.00 ± 0.258

Near Miss 43.33 ± 0.0816 36.66 ± 0.19 80.00 ± 0.4 50.00 ± .2581

CNN 63.00 ± 0.060 63.00 ± 0.060 100.00 ± 0.0 77.14 ± 0.042

Tomek Links 85.16 ± 0.043 86.37 ± 0.0299 98.33 ± 0.033 91.92 ± 0.025

ENN 82.36 ± 0.0388 82.36 ± 0.0388 100.00 ± 0.0 92.03 ± 0.022

OSS 96.12 ± 0.0117 96.57 ± 0.0113 99.48 ± 0.0102 97.99 ± 0.006

CUS 43.33 ± 0.0816 36.66 ± 0.194 80.00 ± 0.4 50.00 ± 0.258

ADA RUS 63.33 ± 0.2505 50.00 ± 0.33 60.00 ± 0.4 54.0 ± 0.344

Near Miss 58.33 ± 0.2818 36.66 ± .3055 50.00 ± .4472 42.00 ± .4079

CNN 58.00 ± 0.039 70.66 ± 0.149 73.33 ± 0.2494 66.66 ± 0.091

Tomek Links 74.83 ± 0.118 85.67 ± 0.0497 84.39 ± 0.1011 84.93 ± 0.075

σ σ σ σ
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ENN 78.54 ± 0.0696 85.33 ± 0.0826 90.83 ± 0.0840 87.41 ± 0.040

OSS 95.63 ± 0.018 96.57 ± 0.019 98.98 ± 0.012 97.77 ± 0.009

CUS 65.00 ± 0.374 70.00 ± 0.4 60.00 ± 0.37 63.33 ± 0.371

XGB RUS 56.66 ± .2758 50.00 ± 0.333 60.00 ± 0.3741 54.00 ± 0.344

Near Miss 71.60 ± 0.16 50.00 ± 0.447 63.33 ± 0.3711 59.33 ± 0.338

CNN 53.00 ± 0.289 52.00 ± 0.3357 60.00 ± 0.3887 55.00 ± 0.348

Tomek Links 85.27 ± 0.0615 88.82 ± 0.0346 94.84 ± 0.0421 91.71 ± 0.035

ENN 86.54 ± 0.0936 89.05 ± 0.0639 95.27 ± 0.0580 91.98 ± 0.055

OSS 96.12 ± 0.0117 96.57 ± 0.0113 99.48 ± 0.010 97.99 ± 0.006

CUS 90.00 ± 0.200 87.30 ± 0.24 91.20 ± 0.230 90.01 ± 0.200

5.4 Performance comparison of different AI-learners with
hybrid sampling variant dataset
In identifying male fertility, we used four hybrid samplers on the dataset and compared the classi�er's
performance individually. In Table 5, experimental results are presented. The Catboost with SMOTE-ENN
is the best among the three samplers. This model can predict male fertility with a classi�cation accuracy
of 94.37%, and the s.d. is 0.03. RF classi�er worked best with the SMOTE-Tomek sampler and reported an
accuracy of 94.96% with an s.d. of 0.06. For LightGBM, SMOTE-ENN performed best, with an accuracy of
96.66% with an s.d. of 0.044. ADA performs better with SMOTE-Tomek, with the highest F1 score of
90.73% and reported accuracy of 90.72%. XGB with SMOTE-ENN attained a maximum accuracy of
96.66% and the highest F1 score of 95.38%. When we analyzed how well each classi�er predicted male
fertility, we obtained the following ranking from best to worst: SMOTE-ENN > SMOTE-Tomek > SMOTE-
RUS.
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Table 5
Effect of Hybrid Sampling

Models Samplers Test Set Performance (in %)

ACC± PREC± REC± F1-Score±

Cat Boost SMOTE-Tomek 91.52 ± .0264 98.33 ± .033 84.69 ± .063 90.78 ± .0318

SMOTE-RUS 81.28 ± .1127 87.11 ± .1268 88.88 ± 1.11 87.50 ± .067

SMOTE-ENN 94.37 ± .0351 100 ± 0.0 85.71 ± .090 92.05 ± .052

RF SMOTE-Tomek 94.96 ± .0611 95.00 ± .099 96.51 ± .0427 95.32 ± .0521

SMOTE-RUS 84.35 ± .1175 87.69 ± .125 93.33 ± .0544 89.83 ± .070

SMOTE-ENN 93.33 ± .0544 94.00 ± .120 91.42 ± .0699 91.85 ± .056

Light GBM SMOTE-Tomek 90.65 ± .049 95.71 ± .085 86.36 ± .0684 90.32 ± .047

SMOTE-RUS 73.20 ± .0736 76.95 ± .080 91.11 ± .044 83.06 ± .041

SMOTE-ENN 96.66 ± .044 97.14 ± .057 94.28 ± .0699 95.60 ± .0577

ADA SMOTE-Tomek 90.72 ± .0722 91.80 ± .107 91.21 ± .099 90.73 ± .069

SMOTE-RUS 71.53 ± .109 81.50 ± .1152 82.22 ± .1805 79.88 ± .0904

SMOTE-ENN 91.04 ± .066 92.72 ± .145 88.57 ± .057 89.40 ± .0581

XGB SMOTE-Tomek 92.39 ± .0484 95.00 ± .099 91.51 ± .052 92.63 ± .0389

SMOTE-RUS 81.15 ± .0758 87.32 ± .1173 88.88 ± .0702 87.24 ± .0457

SMOTE-ENN 96.66 ± .0272 100.00 ± 0.0 91.42 ± .0699 95.38 ± .0376

5.5 Performance comparison of all best classi�ers with
over-sampling schemes
Previously, we have conducted a comparison study on different classi�ers with 15 data-balancing
approaches employed to identify male fertility. After analysis, we found �ve classi�ers where three over-
samplers provided the best performance regarding ACC, PREC, REC, and F1-score. The results are
documented in Table 6. Catboost with borderline-SMOTE provides the least accuracy compared to other
models, whereas XGB outperformed with an accuracy of 95.06% and s.d. is 0.01. Moreover, Table 6
shows that the XGB-ROS scheme is the best-performing model for male fertility detection.

σ σ σ σ



Page 17/29

Table 6
Performance comparison of the best classi�er with over-sampler

Classi�er Samplers |SM|/|SN| Ratio Test Set Performance (in %)

ACC± PREC± REC± F1-
Score±

CatBoost Borderline -
SMOTE

88/64 1.38 89.3 ± 
0.02

97.0 ± 
0.05

81.0 ± 
0.06

88.0 ± 
0.02

RF ROS     95.06 
± .04

1.0 ± 0.0 90.1 ± 
0.08

94.0 ± 
0.04

LightGBM SMOTE     90.19 ± 
0.05

95.0 ± 
0.09

86.79 ± 
0.06

90.13 ± 
0.05

ADA ROS     92.56 ± 
0.04

1.0 ± 0.0 85.12 ± 
0.09

91.64 ± 
0.06

XGB ROS     95.06 ± 
0.01

1.0 ± 0.0 90.12 ± 
0.03

94.77 ± 
0.01

5.6 Performance comparison of all best classi�ers with
under-sampling schemes
A similar strategy is applied for the comparison of under-sampling schemes. We used �ve different
classi�ers followed by eight under-sampling procedures. Table 7 displays the model evaluation report. In
this way, we found that maximum accuracy is obtained by two classi�ers such as LightGBM and XGB.
The application of OSS delivered excellent performance. Moreover, we can say OSS is a suitable under-
sampler, among others.

σ σ σ
σ
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Table 7
Performance comparison of the best classi�er with under sampler

Classi�er Samplers |SM|/|SN| Ratio Test Set Performance (in %)

ACC± PREC± REC± F1-Score±

CatBoost OSS 227/12 18.91 95.63 ± 
0.009

95.63 ± 
0.0096

100 ± 0.0 97.77 ± 
0.005

RF     95.63 ± 
0.009

95.63 ± 
0.0096

100.00 ± 
0.0

97.77 ± 
0.005

LightGBM     96.12 ± 
0.011

96.57 ± 
0.011

99.48 ± 
0.010

97.99 ± 
0.006

ADA     95.63 ± 
0.018

96.57 ± 
0.019

98.98 ± 
0.012

97.77 ± 
0.009

XGB     96.12 ± 
0.011

96.57 ± 
0.0113

99.48 ± 
0.010

97.99 ± 
0.006

5.7 Performance comparison of all best classi�ers with
hybrid-sampling schemes
In case of hybrid samplers, we have listed all the best classi�er's performances in Table 8. We compared
all classi�er performances and found that �ve individual classi�ers performed well with different
sampling methods. For example, LightGBM provides maximum e�cacy and F1-score of 96.66% and
95.60%, respectively. However, we also observed that XGB delivers the same accuracy, but the value of the
F1-score is lesser than LightGBM.

σ σ σ
σ
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Table 8
Performance comparison of the best classi�er with a hybrid sampler

Classi�er Samplers |SM|/|SN| Ratio Test Set Performance (in %)

ACC± PREC± REC± F1-Score±

CatBoost SMOTE-
ENN

81/38 2.12 94.37 ± 
0.0351

100 ± 0.0 85.71 ± 
0.0903

92.05 ± 
0.052

RF SMOTE-
Tomek

87/63 1.38 94.96 ± 
0.0611

95.00 ± 
0.099

96.51 ± 
0.0427

95.32 ± 
0.052

LightGBM SMOTE-
ENN

81/38 2.12 96.66 ± 
0.044

97.14 ± 
0.057

94.28 ± 
0.0699

95.60 ± 
0.057

ADA SMOTE-
Tomek

87/63 1.38 90.72 ± 
0.0722

91.80 ± 
0.107

91.21 ± 
0.099

90.73 ± 
0.069

XGB SMOTE-
ENN

81/38 2.12 96.66 ± 
0.0272

100.00 ± 
0.0

91.42 ± 
0.0699

95.38 ± 
0.037

5.8 Performance comparison of best classi�ers with all
samplers
Although, we have performed rigorous analysis to determine the best classi�cation model for predicting
male fertility (from Table 2 to Table 8). To reach the research goal, again, we investigate the �nal
observations from the best classi�ers. In this way, we discovered the top classi�er (LightGBM), which
provides promising results for predicting male fertility. The reported model (LightGBM-SMOTE-ENN)
accuracy is 96.66%, the best among all ensemble AI -learners.

Table 9
Performance comparison of the best classi�er with all samplers

Classi�er Samplers Test Set Performance (in %)

ACC± PREC± REC± F1-Score±

XGB ROS 95.06 ± 0.01 1.0 ± 0.0 90.12 ± 0.03 94.77 ± 0.01

XGB OSS 96.12 ± 0.011 96.57 ± 0.0113 99.48 ± 0.010 97.99 ± 0.00

LightGBM OSS 96.12 ± 0.011 96.57 ± 0.011 99.48 ± 0.010 97.99 ± 0.00

LightGBM SMOTE-ENN 96.66 ± 0.044 97.14 ± 0.057 94.28 ± 0.0699 95.60 ± 0.057

5.9 Performance comparison between sampling vs. no
sampling model

σ σ σ
σ

σ σ σ σ
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Understanding how sampling schemes improved the model performance compared to the non-sampled
dataset, a quick view and detailed analysis are presented in Table 10. The total result is documented in
Tables 2 to 9. In Table 2, we have observed that the Catboost classi�er provides the highest accuracy with
the imbalanced dataset. Similarly, LightGBM is our proposed model, which offers outstanding
performance with an accuracy of 96.66%. Therefore, it is visible that sampling helps to enhance the
model accuracy, and a 10% accuracy upliftment is reported. The depicted framework in Fig. 3 utilizes the
SMOTE-ENN algorithm to detect male fertility.

Table 10
Performance comparison between no sample vs. sample dataset

Classi�er Samplers Test Set Performance (in %)

ACC± PREC± REC± F1-Score±

LightGBM SMOTE-ENN 96.66 ± 0.044 97.14 ± 0.057 94.28 ± 0.0699 95.60 ± 0.057

CatBoost None 86.99 ± .0244 87.89 ± .023 98.88 ± .022 93.02 ± .013

5.10 Performance comparison between proposed model
vs. existing model
In addition to the abovementioned analysis, we have focused on a comparative study between the
proposed and existing models. Few researchers have used sampling methods in the area of male
prediction. In this context, it was necessary because less observation is presented in the dataset. More
data is required to build model intelligence; here, the need for samplers arises (over, under, or hybrid). In
Table 11, we have compared our best model performance with existing model performance where
samplers are used. Four articles are documented where scientists mainly worked on oversampling
methods and mostly used SMOTE.

Table 11
Performance comparison between proposed vs. existing models

Authors [Ref] Classi�ers Samplers Test Set Performance (in %)

ACC PREC REC F1-score

GhoshRoy et.al.
[19]

RF SMOTE 90.47 - - 91.99

GhoshRoy et.al.
[18]

XGB SMOTE 93.22 - - -

Yibre et al. [20] FFNN SMOTE 97.5 - - 96.66

MA et al. [23] ADA ELSMOTE 95.1 95.5 97.2 -

Our study LightGBM SMOTE-
ENN

96.66 ± 
0.044

97.14 ± 
0.057

94.28 ± 
0.0699

95.60 ± 
0.057

σ σ σ σ
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The uniqueness of our study is not only designing an AI model but also exploring and investigating the
effect of data re-sample on the prediction of male fertility. In literature, oversampling is the most opted
scheme, whereas, in this study, we deployed �fteen re-sampling procedures with an advanced AI
framework. In the �nal stage of this experiment, we discovered which combination of data balancing and
classi�cation approach performs well with a small sample size (100 samples). SMOTE-ENN paired with
the LightGBM model ranked best regarding sampling strategy performance on male fertility prediction. In
addition, we have provided a visual representation of all classi�er performance across 15 sampling
strategies (see Figs. 4–8). It helps to comprehend how sampling in�uences overall model performance.

6. Conclusion and Future Works
This study delves into three prominent data balancing strategies: over-sampling, under-sampling, and
hybrid sampling. These techniques are widely recognized for their ability to mitigate the imbalanced class
distribution often encountered in datasets. The focus of this research is not limited to the conventional
SMOTE variant oversampling methods commonly found in the literature. Instead, the study explores
�fteen distinct re-sampling approaches to assess their impact on the performance of AI models. Five
ensemble AI learners, speci�cally Catboost, XGB, ADA, RF, and Lightgbm, are employed in conjunction
with both the original and re-sampled datasets. After analyzing the distribution of the original sample,
Catboost emerges as the optimal performer in terms of accuracy. Notably, a substantial enhancement in
the overall model performance is observed upon applying re-sampling techniques. This study introduces
a novel intelligent model for detecting male fertility, utilizing Lightgbm learners alongside the SMOTE-
ENN re-sampling approach. The suggested model's performance is then benchmarked against various
state-of-the-art resampling techniques. This recommended approach holds the potential to support
computer-aided decision-making and contribute to preventing male infertility. The research �ndings of
this paper contribute to a deeper understanding of the impact of re-sampling techniques on predictive
performance. Furthermore, they highlight that combining under-sampling and over-sampling strategies
yields superior results. It's important to note that this paper solely focuses on male fertility, using two-
class target labels, a limited set of features, and constrained data. Numerous unexplored research
avenues remain in this domain. Besides the ensemble classi�ers studied here, considering other
conventional classi�ers for performance comparison could further optimize model parameters.
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Figures

Figure 1

The role of samplers in data balancing
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Figure 2

The framework of data re-sampling using ensemble learners

Figure 3

Predictive model for male fertility using SMOTE-ENN
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Figure 4

CatBoost Classi�er Performance Evaluation

Figure 5

XGB Classi�er Performance Evaluation
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Figure 6

ADA Classi�er Performance Evaluation

Figure 7

RF Classi�er Performance Evaluation
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Figure 8

LightGBMClassi�er Performance Evaluation


