THE UNIVERSITY OF

WARWICK

Original citation:

Alexander-Craig, I. D. (1991) Formal techniques in the development of Blackboard
systems. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-199

Permanent WRAP url:
http://wrap.warwick.ac.uk/60886

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60886
mailto:publications@warwick.ac.uk

Formal Techniques in the
Development of Blackboard Systems

lain D. Craig

Department of Computer Science

University of Warwick

Coventry CV4 7TAL
UK EC
JANET: idc@uk.ac.warwick.dcs

INTERNET: idc@dcs.warwick.ac.uk

TEL: +44 203 523682

FAX: +44 203 525714

January 24, 1995

Abstract

The blackboard architecture has been an essentially informal construct from its inception.
This has led to different, though essentially similar, interpretations of the original metaphor.
In a recent book, the author presented a mathematical specification of a blackboard system
shell. The exercise was successful and suggested a method for developing blackboard systems
with the aid of formal methods. Given the application of blackboard systems to real-time
and safety-critical problems, better guarantees of correct functioning than that provided by
a working prototype are required.

This paper describes a formal method for the development of blackboard systems. The
method is based, in part, on an informal one. Apart from the difference in emphasis (formal
rather than informal), the new approach rests upon a formal definition of the architecture.
The essential idea is that the mapping between the formal model of the problem domain
(which is intended to be similar to the formal models proposed by, for example, Hayes) and
the blackboard shell should be supported by formal proofs of correctness in a way identical
to formal software engineering. As part of this mapping process, formal semantics must be
given to the attributes that appear on the blackboard, as well as to the abstraction levels
themselves. These formal semantics give a guarantee that the objects represented on the
blackboard satisfy a variety of properties that are determined by the formal domain model.
The semantics also determines the range of legal transformations that may be effected by
Knowledge Sources—this is of importance when developing the final control structure. The
control structure for the resulting system is derived by considering the blackboard as being
transformed from an initial state to a set of potential final states. Each of the final states
represents one of the possible answers that the system may produce. The paths from initial
to final states can be treated either as traces or by regarding the entire control problem as
formalizable in a temporal logic.

We present an informal method for constructing blackboard systems. The informal
method forms the basis of the formal method whose initial stages are then described. We
outline the formal treatment of control and suggest the use of temporal logic as a tool for
reasoning about control. The paper ends with a review of the method.

Keywords: Blackboard Systems, Development Methodology,
Formal Specification, Temporal Logic

1 Introduction

During the last few years, there have been a number of proposals to employ black-
board systems in real-world environments. Blackboard systems, as is well known,
can be used in complex domains that require the application of different kinds of
knowledge. The characteristics of the blackboard architecture that make it partic-
ularly suited to problems of these kinds include:

1. The integration of different kinds of knowledge within a single framework;
2. The incremental generation of solutions;

3. The property that solutions merely degrade in quality or accuracy when input
data degrades;

4. The architecture’s capacity simultaneously to follow different, potentially con-
tradictory, lines of reasoning;

5. The ability of the architecture to integrate incomplete information within an
emerging solution, and

6. The ability of the architecture to interrupt one line of reasoning in favour of
another.

Although other architectures (for example, production rules) have some of these
features, the blackboard architecture has them all. This makes for a powerful archi-
tecture, ideally suited to real-time and safety-critical applications. Indeed, many of
the more famous blackboard applications have been in real-time domains: HEARSAY-
11 [11] understood continuous speech in approximately real time; HASP/SIAP [13, 31]
interpreted sonar data; the BB* patient management system described in [25] moni-
tored the respiration of intensive care patients in real time. These systems indicate
the actual (rather than theoretical) suitability of the application of blackboard sys-
tems to problems that require solutions in real time.

As with conventional software, real-time and safety-critical domains impose con-
straints over and above those which apply to software constructed for other domains.
Both kinds of domain require high-integrity systems which remain operational even
under adverse conditions. Furthermore, safety-critical problems (such as intensive-
care patient monitoring, nuclear reactor management, air traffic control, and flight
management systems) impose the constraint that system failure, when it occurs,
should not lead to catastrophic results. For Al systems, these constraints must of
course be respected. With Al systems, there are additional constraints which must
be satisfied. As was argued in [7], the additional constraints are:

1. The accuracy and relevance of domain knowledge;
2. The correctness of domain knowledge representation;

3. The correctness and appropriateness of inferences drawn from domain knowl-
edge;

4. The correctness of the mapping between domain knowledge and the system’s
representational structures, and

5. The correctness of the implementation of the system software.

As noted in [7], it is the last point that is typically addressed in the software engi-
neering literature. The other points must be addressed before an Al system can be
allowed to go live in a real environment.

The focus of this paper is on how to go about providing the guarantees of correct-
ness that should be expected of a system upon which lives may depend. Specifically,
the paper proposes a development method for blackboard systems that is formal in
nature, is a formal development of the one proposed in [8], and relies, for its success,
upon specification exercises such as those presented in [6]. The method expects
the blackboard system builders to construct a mathematical specification of the
blackboard shell and other software they intend to use, and to describe the problem
domain mathematically. The most obvious mathematical tool that can be used is
logic. The description process must be supported by proofs. Some proofs deal with
the correctness of mappings between domain theory and implementation structures;
others deal with termination and control.

Because blackboard systems are being applied in domains where high standards
of reliability are expected, their correctness is crucial. For this reason, it is essential
that the best possible guarantees of correctness must be given. As far as we know,
mathematics is the best way to guarantee correctness. The method proposed in
this paper is the first step in providing the necessary high levls of confidence in
AT systems. Of course, it will never be possible to give complete guarantees: that
would presuppose the existence of infallible experts with perfect knowledge. How-
ever, mathematical techniques can assist in the development of Al systems, not only
of the basic software, but also in assuring the quality of domain-specific informa-
tion and its mapping into the structures of the resulting system. Formal methods
have been successfully used in the development of conventional software, and in the
development of at least one AI system [9]. The previous uses of formal methods
have shown the feasibility of constructing software that is correct with respect to its
initial specification. With Al systems, mathematical methods also afford the oppor-
tunity to detect, amongst other things, inconsistencies in the information supplied
by domain experts (this is a point we will explain below).

The method we propose entails large amounts of proof. Initially, we expected
that the necessary proofs would be extremely complex. Experience (e.g., [6]) sug-
gests that the software-specific proofs are relatively straightforward. The proof-
oriented approach to commonsense reasoning proposed by Randell [33], although
entailing large amounts of proof, requires no proofs that could not reasonably be
done with pencil and paper!. Although there is a lot to do, it is not necessarily of
an excessively taxing nature, and we expect it to be mostly a matter of routine.

'D. Randell, personal communication, 1990.

In the next section, the informal method presented in [8] is briefly described.
The informal method forms the basis of the formal method whose initial stages
are described in section three. Section four contains an outline of the treatment of
control and suggests the use of temporal logic as a tool for reasoning about control.
In the final section, the method is reviewed.

2 The Informal Method

In this section, we outline the informal method for blackboard system construction
given in [8]. The present version is highly condensed, and the reader should consult
[8] for more details. The method assumes that knowledge acquisition has either
been completed, or that it continues while the system is being constructed. The
method is, therefore, one for the construction of the system, and does not contain
any prescriptions on how to elicit knowledge.

In this section, we assume a BB1-like architecture [23]. That is, we assume, in
general, that the blackboard is divided into a hierarchy of abstraction levels, and that
events convey significant information about changes to the current blackboard state.
The AGE [31] family of blackboard systems differs slightly from our assumptions, and
there are other interpretations of the blackboard model that differ more significantly
(e.g., [3]). The selection of an appropriate architecture is clearly an important aspect
of any blackboard project, but we must ignore this point at present.

Below, in the description of the formal method, we will occasionally point out
some alternatives and generalizations, and their relationships to our approach. How-
ever, for reasons of space, we are unable to explore the range of potential differences.

2.1 The blackboard

The blackboard database is the central structure in a blackboard system. The
organization of the blackboard has been described by some workers (for example,
Nii [30]) as an outline plan for organizing the system’s problem-solving activities.
Others regard the blackboard structure as a general organizing principle around
which problem solving occurs (this appears to be the view of Hayes-Roth in [22]).
The blackboard database remains the central structure in blackboard systems.

The blackboard database is organized as a partially ordered hierarchy. FEach
level in the hierarchy can be thought of as a different view of the problem or of
the structures required for the solution of the problem. Thus, in HEARSAY-1I, the
speech signal is viewed as being composed of a sequence of signal features or as
successively more abstract objects, phonemes, for example. The informal method
requires that the organization of the blackboard be determined as the first step in
building a system: once the organization has been decided upon, it should not be
altered unless there are compelling reasons for doing so.

The organization of the blackboard is fundamental because it determines the

structures which will form the basis for reasoning within the system, and because it
determines the general form of the solution process. For example, in HEARSAY-II, the
solution process is basically bottom-up: the signal is transformed into increasingly
more abstract structures until linguistic representations of the utterance as a whole
have been determined. The system actually operated a two-phase process in which
the first phase consisted of bottom-up processing until a collection of words had
been hypothesized. Thereafter, context became available for a more opportunistic
phase in which hypotheses were refined or integrated to form a better, more abstract,
model of the utterance. The organization of the HEARSAY-II blackboard implies a
fundamentally bottom-up method of operation.

The oPM planning system [21], the solution was generated in a top-down manner,
but, again, the general movement of the solution from top to bottom was mixed with
periods of opportunistic problem solving. The initial list of errands was refined in
a top-dowm fashion into more detailed sequences of actions which were integrated
in an opportunistic manner into a general, satisficing, course of action. In both
cases, the interpretation of the abstraction levels that comprise the blackboard is a
significant factor in determining how the system will eventually solve the problems
it is to solve.

Once the blackboard organization has been determined, the types or classes of
entry that reside at each level must be determined. The method in [8] interprets
each abstraction level as holding entries of one or more type (‘type’ being interpreted
in the way familiar from logic). The role of types is somewhat controversial: Nii,
for example, is wary of them?. The idea that entries belong to types is based upon
the interpretation of an entry as a set of attribute-value pairs. The values that are
held in the attributes are determined by the meaning or definition of each attribute.
The collection of attributes which are permitted to be present in an entry defines
the type of that entry. Without some kind of a notion of type (even a weak one such
as the constructive interpretation of types as sets), it is impossible to differentiate
levels.

The method requires that the objects to be represented at each level of ab-
straction be defined, their important characteristics identified and recorded. In
HEARSAY-1I, the structures on the Phoneme level represented phonemes that had
been hypothesized as appearing in the speech signal; those at the Lexical level rep-
resented words. In the abstract, phonemes and words have different properties, and
different things can be said of them. In the context of speech understanding, there
are common properties: for example, both have a start and end time in the signal,
both are temporally contiguous with the immediately previous and immediately suc-
ceeding word or phoneme (or the end of the signal). Each abstraction level entails
that its entries are composed of attributes of different types. Of course, there will
be intersections, but they should not contain members that are definitional (the
NAME or CREATION-TIME attributes can appear all over the blackboard, but they

2Personal communication, 1985.

are hardly definitional)?.

The definition of required objects at each level implies that the attributes com-
prising these objects also be defined. Attributes can be thought of as properties or
relations. They serve to define the structures of which they form a part. In other
words, the method takes entry types to be defined by the sets of attributes. When
attributes are defined, the values which can be associated with them must also be
defined. Again, this amounts to the definition of a type. For attributes, it is also
important to consider their role in the abstraction hierarchy as a whole. Thus, when
a particular attribute is defined, the rest of the blackboard must be considered in
order to determine whether the new attribute is unique to the level for which it was
first defined, or whether it is more general (and, hence, does not form part of the
definition of an entry type). The method requires that the definitions of attributes
be recorded. Apart from good documentation, this requirement is imposed so that
equivalences can be checked.

Hayes-Roth* has noted that during the development of PROTEAN, a number of
attributes, each with different names, was defined. Later, when the system was
reimplemented using the frameworks described in [24], it was found that some at-
tributes which were formerly considered to be distinct were, in fact, equivalent. The
method seeks to remove such duplications by requiring system builders to make
equivalence checks as part of the routine. Furthermore, the approach advocated
by the method entails that changes to attribute and entry definitions can be more
easily and reliably propagated through the rest of the system than would be the
case if all were unstructured.

The definition of the blackboard and the objects it contains is, of course, informed
by the knowledge acquisition process. At the time of writing [8], it was not clear
that the method had implications for knowledge acquisition. In order to determine
the structures required by the method, the knowledge acquisition team must ask
the experts for descriptions of the objects they consider important in the domain,
and they must ask how these objects are related. Clearly, without this information,
the analysis process described above is rendered more difficult. As will be seen from
the next subsection, Knowledge Source identification also depends on a particular
way of acquiring expert knowledge.

2.2 Knowledge Sources and Control

Once the blackboard and its contents have been defined, and the abstraction hierar-
chy fixed for ever, Knowledge Sources are defined. The method suggests a top-down
approach to the development of Knowledge Sources, and it also acknowledges that
Knowledge Sources and entries are often quite interdependent in the sense that a
Knowledge Source may require (or even presuppose) the existence of a particular en-

3In HEARSAY-II, a common set of attributes was used for the entire blackboard.
*B. Hayes-Roth, personal communication, 1986.

try or attribute which has not yet been determined. Here, we ignore this dependency
and consider the two phases as wholly separate.

The method considers a Knowledge Source to be a task or unit of activity. The
identification of Knowledge Sources entails the identification of the inferential tasks
the system must perform. An initial set of Knowledge Sources should be defined (say,
a set which is adequate to perform some, though not all of the inferential tasks that
will eventually form part of the behaviour of the system). These Knowledge Sources
form the basis of an initial implementation of the system’s inferential component,
and they can also form the basis of a refinement activity.

The method assumes that the very first Knowledge Sources that are identified
will be general inferential tasks. They would be developed, for instance, by asking
the expert what the basic inferential tasks of the system are to be. In speech
understanding, one important task is to hypothesise words on the basis of sequences
of phonemes; in errand planning, an important task is to decompose a complex goal
into a set of less complex ones. These initial Knowledge Sources are then refined into
their component actions or sub-tasks. This refinement leads to the identification of
other Knowledge Sources. For example, if two Knowledge Sources require a common
subtask to be performed, it might be worth defining a third Knowledge Source to
perform it. Another example is where a set of Knowledge Sources require a subtask
to be performed and where the time at which the subtask is performed is irrelevant
(they might, for example, just expect the task to have been performed by the time
they execute).

There are clearly many ways in which subtasks can be identified. Whether all
subtasks are made into Knowledge Sources, or whether they are made into proce-
dures called by the Knowledge Sources depends upon the application.

The task-based approach also interacts with the formation of the control struc-
ture for the system. Above, we noted that tasks are interdependent in a number of
ways. Part of the control problem is defined by the organization of the blackboard,
and part by the relationships between inferential tasks. The formation of the con-
trol structure proceeds by examination of these relationships. General strategies and
tactics should be formed. Strategies and tactics should be expressed in terms of the
tasks that are covered by them, but they must also be related to the blackboard—
that is, they must be related to the changes in blackboard state that result from
Knowledge Source execution. This entails that strategies should be conceived in
terms of how attributes change on the blackboard—what the significant types of
event that occur during the solution process are. This approach to control has the
advantage that it is not tied to the existence of particular Knowledge Sources, but
is dependent upon the general ways in which the blackboard state alters over time.

3 Formal Method: Motivation and Initial Stages

In this section, we introduce our proposed formal method for the construction of
blackboard systems. In broad outline, the formal method is similar to the infor-
mal one described above, but differs in detail. The new method requires that the
blackboard be defined first and that the types of entry and attribute that will ap-
pear on the various abstraction levels also be defined. The difference is that this
activity is now viewed as a formal (i.e., mathematical) exercise and can only take
place after the problem domain has received a formal description (i.e., after a formal
model of the domain has been produced). In this section, we will be concerned with
the domain and the blackboard representations. In the next section, we consider
Knowledge Sources and control.

The formal method attempts to give a mathematical guarantee that the black-
board system is correct. For this, it is necessary to have a formal specification of
the blackboard interpreter (or shell) software similar to that in [6]. Furthermore, it
is necessary to define the semantics of the representations used by the interpreter:
this is to ensure that the mapping between the formally expressed domain knowl-
edge and the structures manipulated by the interpreter is well-founded. Part of the
semantics comes from the formal model of the domain, and part comes from the
formal specification of the interpreter (the interpreter specification can be viewed as
a form of semantics since it attempts to capture the ‘meaning’ of the architecture).

3.1 Domain models

The basis of the new method is a model of the domain in which the system will
solve problems. Hayes [20] argues that formal domain models offer advantages over
informal ones: the ontology can be determined more easily, the range of possible
inferences discovered, absurdities detected, and so on. A formal theory of a domain
also brings with it the valuable property that properties of domain objects can
be established by proof. Hayes suggests that first-order logic (or some, possibly
intensional, enrichment of it) is the best representational candidate for these models
because logic has both a syntax and a semantics: that is, it has a proof and a model
theory. Formal models are used to give a precise account of a problem domain in a
way that facilitates detailed analysis and also allows the proof of properties.

The formal model should be constructed from the information provided by do-
main experts. An example of its use might be as follows. A model is constructed,
and implications are drawn (backed up by proof). The implications can be used
to ask the domain experts further questions. If something strange is inferred, it is
possible to go back to the experts and point out this anomaly. The result might
be a refinement of the domain model, or it might be that the apparently strange
consequence is, in fact, correct..

The use of a formal domain model also has implications for the knowledge elici-
tation process. In domains such as those chosen for blackboard systems, more than

one expert is usually involved in the elicitation process. It has often been a worry
that the knowledge elicited from the different experts may not mesh together, and
that inconsistencies can creep in. By use of a formal model of the domain, the
assumptions of the experts can be made explicit and the areas of overlap can be
checked. If the process of eliciting knowledge from an expert is thought of as the
process of constructing a theory, there follows the idea that the domain model is
itself a theory whose subtheories are the theories representing the knowledge elicited
from the various experts. The deductive closure of the entire domain model is then
the union of the closures of the subtheories: consistency can be shown for each sub-
theory, and for the model as a whole. This may not be a simple or speedy process,
but it is in principle possible. It should be noted that completeness is not a property
we expect of domain models, but the more modest requirement of consistency is.
Naturally enough, we cannot expect the domain model to be exactly the union of its
component theories: in practise, it will probably be the case that additional axioms
will be required to connect the subtheories (for example, translating terms of one
subtheory into terms of another), but this can be handled with relative ease, or so
it would appear.

The formal model also serves another purpose. Once constructed and checked,
the model serves as a standard against which the rest of the construction process can
be judged. This is because the remainder of the derivation of the system is based
on the domain model in ways that will become clear below. The domain model
must, of course, have the sanction of the domain experts. It is worth stressing, at
this point, that, although there is a considerable amount of proof required, it is of
a relatively straightforward nature.

Now, it should not be thought that the domain model will require the devel-
opment of new and exotic logics. This is because, as has often been pointed out,
first-order logic (or some variant of it) can be considered as a meta-language: first-
order logic is powerful enough to describe different inference procedures—the devel-
opment of domain models of the kind under consideration does not depend upon
developments in logic. The remaining arguments for the construction of a formal
domain model are similar to those in the literature (e.g., [20]).

3.2 Blackboard and entries

The domain model is the starting point for further work. The formal method, like
the informal one, requires that the abstraction hierarchy be defined first and that
the defining properties of each abstraction level be identified. In the new method,
the development of the system-specific structures parallels the steps of the informal
one, but requires formal, mathematical, statement of properties. Furthermore, the
domain model is already there to assist in the development of the blackboard. Below,
we will often refer to the domain model and to the form of its axioms.

It will probably always be the case that the abstraction hierarchy will have to be
defined by intuition rather than by formula manipulation. This is no bad thing, as

10

long as the intuitions are good enough. However, the domain model can assist in at
least checking the hierarchy. In the formal method, the hierarchy is determined by
examining the classes of object hypothesized by the domain model: this is similar
to the informal model. However, the hierarchy is generated by a abstraction relation
which can be stated explicitly: the abstraction relation is a binary relation that
totally orders its domain®. For example, the part-of relation generates abstraction
hierarchies for tasks such as construction (protein structure analysis is also a domain
in which the part-of relation generates an adequate abstraction hierarchy). The
abstraction relation has the following properties:

Vo R(z,z)
Vr,y R(z,y) A R(y,z) =2 =1y
Va,y,2 R(z,y) A R(y,2) = R(z,2)

i.e., R is a partial order.

Once the abstraction relation has been defined, the structures hypothesized in
the domain model must be organized in terms of the relation. Furthermore, if the
abstraction relation is stated formally, it becomes possible to prove that various
structures (unary relations in particular) belong to various levels in the hierarchy.
Formally, if R 4 is the abstraction relation, and if P; and P, are two unary predicates,
we need to show that:

Vo Vy Pi(a) A Py(y) A Ra(z,y) =
{(y) E (=)

where C is the partial ordering induced by R4 and (is a (Skolem) function from
objects to their abstraction levels. In words, this implication states that if two
objects (z and y) satisfy the abstraction relation, then the level to which each is
mapped (the function () satisfies the C relation. That is, if two objects satisfy
the abstraction relation, they will reside on at most two abstraction levels (note
that they may reside on the same level—this is possible because the abstraction
relation is a partial order). Note that R4 is a relation over objects and that C is a
relation over abstraction levels; also note that other views on how the blackboard
is organized can still be accommodated within this approach, provided that these
other views regard the blackboard as being a partially-ordered structure (we call
R 4 the ‘abstraction relation’ only for reasons of familiarity).

Above, we used two predicates P; and P,: these predicates appear in the domain
theory. These predicates can be considered as determining sorts or types (‘type’ is,
again, to be interpreted in the logical rather than the algebraic sense). Unary pred-
icates usually define kinds of object: above, they are used to denote objects which
satisfy some definition (of which more below). The point of the above is to show
that the abstraction relation can be used to order the sorts defined in the domain

®The extension of the abstraction relation is always finite, note.

11

theory. The aim of this is to separate the types of the domain theory into types that
represent objects at different levels of abstraction. The purpose of the separation is
to provide the beginnings of a theory for each abstraction level by partitioning the
original domain model into (one hopes non-overlapping) subtheories.

Let us consider the structure of some of the sentences that appear in the domain
theory: in particular, the unary predicates. Typically, unary predicates are defined
by sentences of the form:

Vo ®(z) < lzc Pi(z)

where the right-hand side is a conjunction of relations P; (which can be thought of
as being in conjunctive normal form—this is no limitation, for any formula can be
rewritten in this form). The definition of a unary predicate involves other predicates
and relations. We can use these definitions in the formation of blackboard objects
as follows.

Each unary predicate defines a type of object. The objects in the type can be
related to the abstraction relation as we have seen. This entails that the abstraction
relation relates types to abstraction levels. Some unary predicates can be considered
as defining types of entry. The attributes which an entry possesses are defined by the
relations that appear in the definiens of the unary predicate. In the above example,
any object which satisfies ®, also satisfies all the P;: the satisfaction of the P; may
involve the introduction of other objects (defined by unary predicates or taken as
primitive—for example, elements of R or N). Thus, if @ is defined as:

Vo ®(z) < 3y P(y) A R(z,y)

we know that entries of type ® have an attribute R and that the second argument
of R is an object of type P. Furthermore, we also know that the arity of R is two.
The translation from an n-ary relation in the formal description to an attribute is
to consider the attribute as an n-ary relation. The old first argument is the entry in
which the instance of the relation is to be found. For example, if we define a CHILD
type as:
Ve CHILD(z) <
(Jy,z MALE(y) N FATHER(y, x)A
FEMALE(z) N MOTHER(z,z)

we have the following translation into entries and attributes:
CHILD_101:

FATHER ¥

MOTHER =z
where CHILD_101 is an object of the type CHILD. Note here that y and z are taken
to be references to other entries (they could be names for people, however). The
mapping between logic and entries is taken to be very similar to the representation
of frames suggested by Hayes [19].

12

Before going on, let us be clear about what we have so far. We have a way
of relating the types (unary predicates) of the domain theory to the abstraction
relation. This relation tells us where on the blackboard the various types are to be
instantiated. In other words, it tells us where the various kinds of entry will even-
tually reside. Also, we have a way of translating the predicate calculus definitions
of unary predicates into entries (entries construed as attribute-value pairs). This
mapping tells us what the attributes of any type of entry will be: it tells us what
the attributes that comprise an entry type are.

Seemingly, all we need to do is to apply the above with rigour and we are done.
This is not correct. Care is needed in mapping down to entries. Three cases are
immediately apparent. Consider the case of two unary predicates, P; and P such
that:

Va Pi(z) « Ay(2)

and

Va Py(a) « Ag(2)

Now, let Ry be the set of relation symbols in Ay and Ry be the relation symbols in
Ay and Ry N Ry = (. This clearly suggests that P; and P, have different extensions.
Thus, they represent different types. However, in the context of the domain theory,
it is still possible that Vo Py(2) < P(z). That is, the two predicates represent the
same type. Unless the number of entry types is to expand indefinitely, this kind of
equivalence must be detected (by proof, of course) in order to keep the blackboard
manageable. It should be noted that

Equivalent unary predicates can cause problems when the abstraction relation
is applied. This is because the abstraction relation might assign P; to level [y and
P; to level [y, for example. Since they are equivalent, this cannot be and there may
be an inconsistency somewhere; of course, it is possible for the abstraction relation
to impose different views of the same object, but if the relation is part-of, there is a
problem in need of solution.

Finally, consider the case in which a relation, R say, appears in the definitions
of both predicates, and in which we know that each predicate is assigned a different
abstraction level by the abstraction relation. Here, the type of R is important. If
we were slavishly to follow the vocabulary approach suggested in [8], we would want
to try to define non-overlapping vocabularies as far as possible. However, if the
same relation appears in many definitions which represent entries that will appear
at different abstraction levels, there will be an overlap in the vocabularies.

The above discussion has concentrated on types as a way of organizing the black-
board. Individual entries are thought of as belonging to types, and the attributes
which actually appear in entries are thought of as instances of more general types.
The notion of type underpins the formal method and is an aid in proofs of correct-
ness. However, there will always be more types that must be dealt with than there
are entry or attribute types. For example, a common operation on the blackboard
is to form sets of entries (a solution island is an example of a set, it should be

13

remembered). The entries may be from different abstraction levels, and a fortiori
have different types. The set which is composed of all entries on the blackboard
containing a specified attribute whose value satisfies some predicate will also con-
tain entries of different types. In the last case, the operation to find all these entries
usually returns the set of entry identifiers, its type being (usually) defined as:

fiBX((AxV)—=B)—=FE

where B is the type of the blackboard, (A X V') — B is the type of the predicate
(A is the type of attributes, V' that of values, and B is the set of truth-values),
and FE is the set of entry identifiers. However, by the argument above, the objects
‘named’ by elements of E are entries, and they may have different types. In other
words, the f operation which finds those entries which satisfy a particular predicate
or relation has a sum type as its range. A simple analysis of the types produced by
the domain model may not reveal the existence of these other types: that is, these
more complex types may only become evident when Knowledge Sources have been
produced.

The view of the blackboard and its contents that results from a formal analysis
of the domain (particularly one of the kind given above) leads to a strongly typed
view of the blackboard database. In addition, various operations defined over the
blackboard are also typed. The use of rich type systems has not yet been explored
in the context of Al systems, and the consequences for the construction of reliable
AT systems has yet to be fully explored (although MXA [28] employs a type system
inherited from Pascal).

Returning to the method, we must consider the role of formal proof. In com-
mon with other formal methods, for example VDM [27], Z [34] or [29], the current
method requires as much formality as possible. The basis of the development of the
specification, the domain model, is expected to be relatively rich in axioms (partic-
ularly so if relations are also defined), thus allowing a potentially enormous number
of proofs. Randell [33] points out that many such models (for example, those to
be found in [26]) suffer from the problem that their consequences are not drawn
out: they seek as many axioms as possible in order to cover their chosen domain
without determining the consequences of the axiom sets. Randell therefore urges a
smaller axiom set and the increased use of proof. In the conversion of domain model
sentences to blackboard structures, the current method also urges a considerable
amount of proof—fortunately, many of the proofs are expected to be quite trivial.
Specifically, the proofs fall into two categories:

e Refinement proofs, and
e Realization proofs.

Refinement proofs are of the kind familiar from the software engineering lit-
erature: they serve to demonstrate that a less abstract structure is adequate to
represent a more abstract one. Realization proofs are those which show that it is

14

possible to construct an object which satisfies a particular set of axioms. For the
former proof category, it is necessary to show that the domain model’s represen-
tations map satisfactorily onto the representations of the blackboard. Given the
definitions of types and relations in the domain model, it is necessary to show that
their representation as entries (which might be viewed as mappings from a set of
attributes to a set of values) adequately represents the range of the unary predicate.
For the latter category, it is necessary to show, for example, that if an attribute is to
be filled by a particular type of entry, then that entry can exist on the blackboard
(a stronger version is that of showing how to construct the required entry).

4 Knowledge Sources and Control

The development of Knowledge Sources and control régimes is much closer in spirit
to specification in the more conventional sense. In order to develop these aspects
of the system, it is necessary to introduce the concepts of blackboard event and
blackboard state. A blackboard event is an alteration to an entry or the posting of
a new entry on the blackboard. The blackboard state can be thought of as being
the contents of the blackboard at any time. Knowledge Sources can be considered
to be objects that transform the blackboard. The control structure can be thought
of as a mechanism for determining which changes to make at any one time. The
point of the control structure is to bring the blackboard into such a state that one
or more goals is satisfied.

For reasons of space, and because we want to present our ideas in a form that
is as immediately relevant to blackboard systems as possible, we are unable to
address the relationships between control in blackboard systems and in Al systems
in general. Instead, we are content with outlining the basic problems and proposing
what appears to be a relatively coherent approach to the formalization of control:
this approach is intended to be suited to the transition from abstract specification to
implementation. Bachimont [1] proposes a logical framework within which to reason
about coherence and convergence: the relationships between the current proposal
and Bachimonts are worth exploring at a later date.

4.1 Knowledge sources

In the formal method, the same analytic technique is employed as in the informal
one: Knowledge Sources are viewed as inferential tasks. Blackboard events deter-
mine, in conjunction with the control structure, which Knowledge Sources (strictly,
Knowledge Source instances) to execute in order to transform the blackboard state.
Once major inferential tasks have been identified, it is necessary to determine when
to apply them: partly, this is the role of events (we return to this point below).
Major inferential tasks must, of course, be ones that are natural as far as domain
experts are concerned.

15

Knowledge Sources are treated as inferential tasks. This relates to the domain
model in the following way. If the set of possible inferences has been determined in
advance, the inferences performed by Knowledge Sources will be a subset of these.
Of course, for a large set of axioms, the set of consequences will be very large, so
a complete enumeration will be unlikely for any practical application. However, as
part of the domain model construction process, it is suggested that the principal
inferential moves be determined. Omne way of stating these is as theorems or lemmata,
with a Knowledge Source taken to stand for one (or possibly more) of these. It is
important to note which axioms will be used in a proof. By the Deduction theorem, a
theorem in logic can be thought of as an implication (biconditionals being expanded
in the usual way—this generates two lemmata), the relationship to inference is
immediate: indeed, one can think of proofs of theorems and lemmata as being
proofs of derived inference rules, possibly of a domain-specific nature—once these
rules have been proved, they can later be used. Of course, not all the theorems that
can be proved in the domain model will be suitable as bases for Knowledge Sources:
theorems concerned with properties of relations and unary predicates—theorems
about the representation—may not turn out to be very suitable for conversion into
Knowledge Sources; theorems that deal with the existence and transformation of
known objects may, though, form the basis from which Knowledge Sources are
developed.

Once theorems of the right kind have been identified, their proof can be at-
tempted. This may be regarded as a separate step in the construction of the system:
this is because it deals with its inferential properties and not with representation. A
proof of a Knowledge Source (i.e., of the theorem which initially states the transfor-
mation representated by a Knowledge Source), if sufficiently formal, will be based
on domain axioms (as well as general results from logic). This fact is of importance
for two reasons:

o It tells us which domain structures are required in order to perform the large
inference represented by the theorem;

e It tells us what the inferential steps in the solution are (it tells us about
subgoals, for example).

A consequence of these facts is the fact that the proof determines, in outline, the
construction of the Knowledge Source.

In the informal method, the decomposition of the initial Knowledge Source set
was achieved by attempting to refine them into smaller units and by looking for
common subtasks, a process which may suffer from the fact that important tasks
may be overlooked. In the formal method, although this can be done, the refinement
of large Knowledge Sources can be achieved by lemma discovery. If a number of
theorems rest on a small set of lemmata, it may make sense to view the lemmata
as independent theorems: this leads naturally to considering them as Knowledge
Sources. However, given the formal nature of the domain model, the development

16

of Knowledge Sources on the basis of theorems appears more natural. Furthermore,
the formal approach to Knowledge Source development solves a problem with the
informal method: the problem that the representation was, in some ways, separated
from Knowledge Sources and incrementally adjusted as a result of Knowledge Source
definition. In the present case, this defect does not appear because the identification
of Knowledge Sources with theorems in the domain theory closely relates the two:
Knowledge Sources are now defined as inferences over domain structures, a property
supported by proof. By defining Knowledge Sources in this way, those aspects of
the domain which are relevant or necessary to the Knowledge Source can, in effect,
be read off from the proof.

The refinement of Knowledge Sources from important theorems in the domain
model to code becomes relatively straightforward. When domain objects are rep-
resented as entries composed of attribute-value pairs, Knowledge Sources can be
represented as operations acting on these structures. The form that Knowledge
Sources take will be fairly close to the structures used in [6]. What is then neces-
sary is to prove that the structures that result from this specification exercise are
equivalent to the theorems. In other words, what is necessary is to prove that, given
a theorem of the form

Fo =1

that the corresponding Knowledge Source, when started in a state that satisfies a
refinement of ¢ will terminate yielding a state that satsifies a refinement of 4. Put
this way, the process of verifying a Knowledge Source is very similar to verifying a
procedure. If, on the other hand, the Knowledge Source is produced by refinement,
the verification is immediate (it is an immediate consequence of the refinement
proofs).

Knowledge Sources have, so far, been unrelated to blackboard events. The pro-
posal for identifying Knowledge Sources has been based entirely upon the ontology
of the domain. That is, it is closely connected to the predicates, relations and
constants that appear in the domain model. Blackboard systems, though, have an
evolving and dynamic structure. Above, we saw that a theorem in the domain model
of the form

Fo =1

can be thought of as representing a Knowledge Source which, when started in a
state that satisfies ¢ will terminate with a state 1. As the state of the blackboard
evolves, it is necessary to determine when a Knowledge Source will be activated:
this is where events become important.

The assumption about blackboard events is that the relevance of Knowledge
Sources can be partially determined by small changes to the blackboard state. Some
Knowledge Sources will always be applicable, but most others will only apply once
the state has been transformed in some way. Events are intended to signal changes of
state (thus, not all events will trigger Knowledge Sources, for the changes represented

17

by these events will be irrelevant as far as inference is concerned). The account given
so far does not take change into account.
There are two ways in which state change can be catered for:

1. It can be considered as an efficiency-improving technique and its introduc-
tion postponed until the major parts of Knowledge Sources (their state-based
preconditions and actions in a BB*-like model) have been specified, or

2. It can be considered from the start.

Our view is slightly equivocal: we view events as important sources of information
about the way the current solution is developing, while at the same time seeing
events as a way of making the system faster. Events are also related to the problem
of partial information in blackboard systems: at any stage in the development of
a solution, the information available to the Knowledge Sources of the system may
only be partial—inference is needed in order to complete the solution. In the next
subsection, we consider the formal specification of control in a blackboard system
and relate control to the focus-of-attention problem: this will allow us to integrate
events with the remainder of the specification in a natural fashion.

4.2 Control

Control, as is noted in [8] is possibly the hardest aspect of building a blackboard sys-
tem; it is also one of the most important, for, without an adequate control structure,
the system may never find acceptable solutions. The role of the control structure is
to select currently applicable Knowledge Sources for execution. This selection pro-
cess is based on the current state of the blackboard, currently applicable Knowledge
Sources and the (sub)goal to be satisfied.

In order to see how to develop a control structure, it is instructive to examine the
purpose of control. We view control as being expressed in terms of plans, strategies,
tactics and goals (see [23] for a careful and detailed exposition). The purpose of a
control structure is to satisfy a goal: it matters little whether the goal is satisfied by
forward or backward reasoning. For blackboard systems, a goal can be expressed as
a blackboard state to be achieved. The state can be expressed as a sentence in the
first-order language used to construct the domain model for the reason that a state
description amounts to a description of those entities which must be present on the
blackboard in order that the goal be satisfied.

In real systems, one would expect to express the specification of a goal as a
logical normal form. Once expanded, the goal statement says what objects must be
present on the blackboard in order satisfy the goal. As is usual, the satisfaction of
a goal may require the joint satisfaction of subgoals. The problems for blackboard
systems are: detecting when a strategy is applicable and determining when it has
succeeded (or failed, which is equally as important). A further question is that of
deciding what to do when more than one strategy or tactic is applicable.

18

By the above, the application of a strategy or tactic is dependent upon some
blackboard state obtaining. Matters are somewhat more complicated by the fact
that a state which should cause the application of a strategy may only be partially
defined at runtime. For the time being, we will ignore this case in favour of the
simpler one in which states are totally defined (we can get round the problem,
in any case, by ensuring that there are sufficient preconditions for the application
of a strategy). Furthermore, given the possibility that other strategies may be
simultaneously active, it is necessary to characterize the precondition in such a way
that there is no interference between strategies.

The prescriptions of a strategy impose a temporal ordering on blackboard changes.
In other words, when each blackboard change is viewed as an event, there is an or-
dering imposed by the strategy currently in use. For each step, it is possible to
describe the state which results from the application of a step in a strategy: that is,
we can associate pre- and post-conditions with strategies (and with tactics). These
pre- and post-conditions, we suggest, can be expressed as formulae in a temporal
logic (e.g., those in [14]). For each precondition, p and each postcondition £, we can
then assert that:

p =L (1)

where < is the ‘eventually’ operator of the temporal logic. A strategy which contains
a number of separate tactics can be expressed as something of the form:

S AOQpa A ANO--Odn (2)
N———

n times

where () is the ‘next’ operator of the logic (the temporal operator binds tightest in
this example and in the one above) and the ¢; are formulae expressing the pre- and
post-conditions of each step of the strategy (i.e., they are implications).

Within this framework, we can account for blackboard events is a reasonable
way. Events are caused by alterations to the blackboard state: with each event,
the (logical) description of the state changes. We assume that changes cannot be
reversed: i.e., we assume that all blackboard operations are monotonic, and so we
do not need to bother about nonmonotonic inference, or about individuals coming
into and going out of existence. Events are caused by Knowledge Source actions, so
we can associate a temporal formula with each action stating what the next state
of the blackboard will be. That is, with any action A, we can associate a temporal
formula of the form:

A= 09 (3)
where ¢ is a (possibly temporal) sentence that describes the next state of the black-
board.

At this point, it is worth pointing out that we have a choice as to the level at

which we describe the temporal consequences of each action. We can do this by
producing a temporal formula to accompany each theorem derived from the domain

19

model, or we can do it when we have specified the Knowledge Sources from their
theorems. If the Object Z specification language [10] is being used, temporal formu-
lae can be included in the specification rather than with domain-model theorems.
The question of the best place to include temporal formulae remains open.

The reader may have noted that we have used temporal formulae with what
amounts to two different scopes. In the specification of strategies and tactics, we
feel free to use the () operator to mean the next step in the strategy; in actions,
we are using a finer notion of what next means—in this context, it means the next
state. Furthermore, because of the possibility of concurrent execution of strategies,
the steps of one strategy may be interleaved with steps of another. This causes no
problems, for we intend there to be a hierarchy of descriptions with those of the
form (2) being the most general, and those of the form (3) to be the most specific.
In other words, a strategy defines a sequence of abstract actions that is implemented
as a sequence of events: that is that the statement of a strategy in the form of (2)
can be viewed as a general specification of that strategy (i.e., it does not refer to any
other strategy). It must also be noted that there is no real problem with the use
of the same temporal operator with different scopes: the aim is to refine strategies
to the level of events, and, as long as the difference in the view of time taken at
different levels of specification is kept in mind, there should be no confusion.

It should not be thought that the ultimate goal of this refinement process is
the determination of deterministic sequences of actions (or sequences of Knowl-
edge Source executions). For some applications, this might be suitable, but, in the
general case it is not: this is because search in blackboard systems is assisted by
opportunism. Without opportunism, it can be argued, some problems will never
be solved because of the impossibility of exhaustive search. What the aim of the
refinement process boils down to is the formal statement of conditions which must
obtain before strategies can apply and the formal statement of the classes of states
which count as satisfying their goals. The possibility of concurrent strategies makes
the development of deterministic sequences difficult in any case, for there may be
interactions which prohibit or delay the continuation of another strategy or tactic
(proofs of interaction are, note, possible).

It remains to relate the control structure to the design of the blackboard database.
Above, it was noted that the blackboard’s abstraction hierarchy defines a general
plan for the solution of problems. From the above discussion of control, the reader
may believe that the blackboard’s organization has been forgotten: this is not the
case, and careful examination of the statement of a strategy shows this. Each strat-
egy is composed of formulae which are expressed in terms of the representation used
in the system. For example, it may contain unary predicates which define entry
types. Such a connection closely relates strategies and tactics to the blackboard,
and this property can be used to define plans for the general control of the sys-
tem. In the case of HEARSAY-1I, we noted above that the general plan (movement
of solutions) was bottom-up as far as the Lexical level, and opportunistic thereafer.

20

By applying the approach advocated above, but this time in a more abstract way,
the general control plan for the system can be specified (of course, the control plan
would normally be defined first, but we have presented things in the reverse order
for the sake of clarity).

5 Conclusions

In this paper, we have proposed a formal method for the specification of blackboard
systems and have also examined some issues raised by it. The method is a develop-
ment of an informal one stated in [8]. The method is characterized by a completely
formal approach, and consists of the following steps:

1. Development of a formal domain model. This theory consists of the formal
description of the objects of the domain and the relationships which obtain
between them. The domain model also requires theorems and lemmata that
represent the major inferential steps that are needed in order to solve certain
problems in the domain. The domain model can be treated to logical analysis,
and the consequences of the definitions can be determined by proof

2. The refinement of the formal description of the domain’s objects into entries
and attribute-value pairs. This refinement begins with the definition of the
blackboard abstraction hierarchy and the abstraction relation which defines
the partial ordering over abstraction levels. The unary predicates of the do-
main theory are interpreted as types of entries, and relations are interpreted
as attributes. This refinement determines the types of entry that each ab-
straction level will hold and also determines the range of attribute types that
will appear in each entry type.

3. The refinement of the theorems of the domain theory into Knowledge Sources.
Knowledge Sources are considered to be the major inferential tasks that the
system will eventually perform. The refinements are based upon proofs of
the theorems in the domain model: these proofs are seen as providing valu-
able information about the resources Knowledge Sources will eventually need.
The refinement process retains links between the domain model’s structures
and Knowledge Sources: these connections may easily be lost using informal
techniques. Refinement from the domain model further serves to identify

4. The specification of the control aspects of the system using temporal logic. The
control structure is defined in terms of the goals the system must satisfy. The
implementation of the control structure involves the association of temporal
formulae with Knowledge Source actions. The intermediate refinement is in
terms of temporal logic. The specification of the control structure depends
upon the objects in the domain model because the non-logical vocabulary
with which this refinement process starts is the domain model.

21

Above, we have emphasized the proposition that the blackboard is to be consid-
ered as being composed of typed objects, and that the range of types is not entirely
determined by the domain model for the reason that some blackboard operations
may require the introduction of new types®. We believe that the explicit introduc-
tion of types into blackboard systems is to be welcomed (types were present in the
HEARSAY-III system [2, 12]), whether one chooses to use a type-theoretic logic such
as [4, 17, 18] or a many-sorted logic with a classical interpretation. The use of typed
objects at runtime can reduce errors, and the specification in terms of typed objects
reduces the risk of faulty reasoning.

The second point to be made concerns temporal logic. In the last section, we
merely introduced the idea of temporal logic without saying which system we prefer.
Given the range of logics and the basic choices as to temporal ontology (discrete
versus continuous time, branching versus linear time), we do not as yet have a clear
view of which is the best. The question of temporal logics that allow reasoning
about the past is also open (it seems that the ability to reason about past actions
could profitably be applied to blackboard systems). Questions about temporal logic
will only answered by more work, both on the logical systems themselves and by
their application to blackboard systems.

Also, and this is more of an aside, the formal method allows the development of
formal meta-theoretic models of the system. We have not examined this in detail
at present, but note it as an interesting possibility, particularly for expressing a
semantics.

We must next ask whether all of this is worth the effort. Clearly, it is a dif-
ficult exercise to follow the method exactly: it has already been shown that the
construction of complete domain models of the sort recommended by Hayes in [20]
is exceptionally hard, perhaps impossible. This fact should not deter one, however,
for the aims of the two projects are different. In Naive Physics, the aim is the
production of a model that captures all intuitions; for us, the problem is that of
producing a formal domain model that is sufficient to allow the development of the
system—a much more modest requirement.

At this point, it is natural to wonder whether the proposed method will be
adequate to support the development of large-scale systems. Blackboard systems are
best suited to highly complex domains that require the application of large amounts
of knowledge. We have advocated the formal specification of the problem domain
as a first step in the development of a system. In the last paragraph, we argued
that the range and depth of the domain model will be different for a blackboard
system than it would be for a Naive Physics system. The last fact entails that
we expect somewhat less from our domain models than would others: this has the
implication that domain models for blackboard systems should be easier to produce.
The development of the control component will, of course, be a complex and difficult

6We believe that the concept of dependent types affords the best analysis, but have not taken
up the idea here because the concept may be unfamiliar to the reader.

22

activity, but it is often the most complex component in a blackboard system that
is developed informally. We believe, though, that our approach to control brings
benefits: in particular, it is based upon the idea of at first being as abstract as
possible and then becoming increasingly more concrete (a method that is strongly
reminiscent of formal specification of a conventional kind).

Next, there is the problem of proving the large number of results that are required
to support the derivation of the blackboard structure and the Knowledge Sources.
Certainly, there will be many theorems to prove, but we expect that many results
will require only moderate effort. Finally, there is the problem of reasoning about
time: another complex process, requiring much proof. It may be argued that the
state of automatic theorem-proving programs is insufficient to support this amount
of proof: the reply is that one need not do it all by hand, and that machine support
is available—for example, LcF [15, 32] or HOL [16].

In support of all this effort, we offer the following remarks. The first is of prac-
tical. If the system that is to be built is intended to be safety-critical, it must be
realized that lives may depend upon its correct functioning. The best guarantees
of correct functioning that can be given must be given: the best possible guaran-
tee is that the system is mathematically correct. If the system is to be subject
to real-time constraints, a similar argument (although, perhaps, with less force)
applies. The method proposed above appears to provide the construction of black-
board systems with a method which allows the best possible guarantees of correct
functioning. Furthermore, such a method also has the advantage of providing unam-
biguous documentation to be used in later modification and in maintenance. Finally,
the approach advocated above allows the separation between the progam and the
theory which it is supposed to implement: the clear distinction between the two is
something that Al reseach currently lacks.

References

[1] Bachimont, B, A logical framework to manage coherence and convergence in
blackboard architectures: a proposal, Proc. Fifth Blackboard Systems Work-
shop, Anaheim, CA, 1991.

[2] Balzer, R., Erman, L., London, P. and Williams, C., HEARSAY-III: A Domain-
Independent Framework for Expert Systems, Proceedings of the First Annual
Conference on Artificial Intelligence, pp. 108-110, 1980.

[3] Bisiani, R., Alleva, F., Forin, A., Lerner, R., and Bauer, M., The architecture
of the AGORA environment, in Huhns, M. N. (ed.), Distributed Artificial Intel-
ligence, Research Notes in Artificial Intelligence, pp. 99-117, Pitman, London,
1987.

[4] Constable, R.L., et al., Implementing Mathematics with the Nuprl Proof Devel-
opment Systenm, Prentice Hall, New Jersey, 1986.

23

[5]

[11]

[12]

Craig, I.D., Wilson, D. and Richards, A., CONFER, Research Report No. 103,
Department of Computer Science, University of Warwick, 1987.

Craig, I.D., Formal Specification of Advanced AI Architectures, Ellis Horwood,
Chichester, England, 1991.

Craig, I.D., The Role of Formal Specification in Real-time Al, IEE Colloguium
on Rule-based Planning and Control, IEE, Savoy Place, London, October, 1991.

Craig, 1.D., Blackboard Systems, Ablex Publishing Corp., Norwood, NJ, in
press.

Craig, I.D., A Reflective Production System, Kybernetes, to appear.

Duke, R., King, P., Rose, G. and Smith, G. Object Z, Technical Report No.
91-1, Software Verification Research Centre, Department of Computer Science,
University of Queensland, Queensland, Australia, 1991.

Erman, L.D., Hayes-Roth, F., Lesser, V.R. and Reddy, D.R., The HEARSAY-II
Speech Understanding System: Integrating Knowledge to Resolve Uncertainty,
ACM Computing Surveys, Vol. 12, pp. 213-253, 1980.

Erman, L.D., London, P. and Fickas, S., The Design and an Example Use of
HEARSAY-III, Proceedings of the International Joint Conference on Artificial
Intelligence 7, Vol. 1, pp. 409-415, 1981.

Feigenbaum E.A., Nii, H.P., Anton, J.J. and Rockmore, A.J., Signal-to-signal
transformation: HASP/SIAP case study, AT Magazine, Vol. 3, pp. 23-35, 1982.

Goldblatt, R., Logics of Time and Computation, CSLI Lecture Notes No. 7,
Center for the Study of Language and Information, Stanford University, 1987.

Gordon, M, Milner, R. and Wadsworth, C., Edinburgh LCF, LNCS No. 78,
Springer-Verlag, Berlin, 1979.

Gordon, M., A Proof Generating System for Higher-order Logic, Technical Re-
port No. 103, Computer Laboratory, University of Cambridge, 1987.

Harper, R., Honsell, F. and Plotkin, G., A Framework for Defining Logics,
Report ECS-LFCS-87-23, Laboratory for Foundations of Computer Science,
Department of Computer Science, University of Edinburgh, 1987.

Harper, R., An Equational Formulation of LF, Report ECS-LFCS-88-67, Labo-
ratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, 1988.

Hayes, P.J., The Logic of Frames, in Metzing, D. (ed.), Frame Conceptions and
Text Understanding, pp. 46-61, Walter de Gruyter and Co., Berlin, 1979.

Hayes, P.J., The Second Naive Physics Manifesto, in Hobbes, J. and Moore,
R.C. (eds.), Formal Theories of the Commonsense World, pp. 1-36, Ablex Pub-
lishing Corp., Norwood, NJ, 1985.

24

[21]

[22]

[23]

[24]

Hayes-Roth, B. and Hayes-Roth, F., A Cognitive Model of Planning, Cognitive
Science, Vol. 3, pp. 275-310, 1979.

Hayes-Roth, B., The Blackboard Architecture: A General Framework for Prob-
lem Solving?, Report HPP-83-30, Heuristic Programming Project, Computer
Science Department, Stanford University, Palo Alto CA, 1983.

Hayes-Roth, B., A Blackboard Model for Control, Artificial Intelligence Jour-
nal, Vol. 26, pp. 251-322, 1985.

Hayes-Roth, B., Garvey, A., Johnson, M.V. and Hewett, M., BB*: A Layered
Environment for Reasoning About Action, Technical Report No. KSL 86-38,
Knowledge Systems Laboratory, Computer Science Department, Stanford Uni-
versity, 1986.

Hayes-Roth, B., Hewett, M., Washington, R., Hewett, R. and Seiver, R., Dis-
tributing Intelligence within an Individual, in Gasser, L. and Huhns, M. (eds.),
Distributed Artificial Intelligence Volume Two, pp. 385-412, Pitman, London,
1989.

Hobbes, J. and Moore, R.C. (eds.), Formal Theories of the Commonsense
World, Ablex Publishing Corp., Norwood, NJ, 1985.

Jones, C.B., Systematic Software Development using VDM, Prentice Hall, Eng-
land, 1986.

Lakin, W.L. and Miles, J.A.H., A Blackboard System for Multi-Sensor Fusion,
Technical Report, ASWE, Portsdown, England, 1984.

Morgan, C., Programming from Specifications, Prentice Hall, Hemel Hemp-
stead, England, 1990.

Nii, H.P., The Blackboard Model of Problem Solving, AI Magazine, Vol. 7, pp.
38-53, 1986.

Nii, H.P., Blackboard Systems Part Two: Blackboard Application Systems, AT
Magazine, Vol. 7, pp. 82-106, 1986.

Paulson, L., Logic and Computation, Cambridge University Press, 1987.

Randell, D.A., Analysing the Familiar, Ph.D. Thesis, Department of Computer
Science, University of Warwick, 1991.

Spivey, J.M., The Z Notation: A Reference Manual, Prentice Hall, Hemel
Hempstead, England, 1989.

25

