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Formal Techniques in theDevelopment of Blackboard SystemsIain D. CraigDepartment of Computer ScienceUniversity of WarwickCoventry CV4 7ALUK ECjanet: idc@uk.ac.warwick.dcsinternet: idc@dcs.warwick.ac.uktel: +44 203 523682fax: +44 203 525714January 24, 1995AbstractThe blackboard architecture has been an essentially informal construct from its inception.This has led to di�erent, though essentially similar, interpretations of the original metaphor.In a recent book, the author presented a mathematical speci�cation of a blackboard systemshell. The exercise was successful and suggested a method for developing blackboard systemswith the aid of formal methods. Given the application of blackboard systems to real-timeand safety-critical problems, better guarantees of correct functioning than that provided bya working prototype are required.This paper describes a formal method for the development of blackboard systems. Themethod is based, in part, on an informal one. Apart from the di�erence in emphasis (formalrather than informal), the new approach rests upon a formal de�nition of the architecture.The essential idea is that the mapping between the formal model of the problem domain(which is intended to be similar to the formal models proposed by, for example, Hayes) andthe blackboard shell should be supported by formal proofs of correctness in a way identicalto formal software engineering. As part of this mapping process, formal semantics must begiven to the attributes that appear on the blackboard, as well as to the abstraction levelsthemselves. These formal semantics give a guarantee that the objects represented on theblackboard satisfy a variety of properties that are determined by the formal domain model.The semantics also determines the range of legal transformations that may be e�ected byKnowledge Sources|this is of importance when developing the �nal control structure. Thecontrol structure for the resulting system is derived by considering the blackboard as beingtransformed from an initial state to a set of potential �nal states. Each of the �nal statesrepresents one of the possible answers that the system may produce. The paths from initialto �nal states can be treated either as traces or by regarding the entire control problem asformalizable in a temporal logic. 1



We present an informal method for constructing blackboard systems. The informalmethod forms the basis of the formal method whose initial stages are then described. Weoutline the formal treatment of control and suggest the use of temporal logic as a tool forreasoning about control. The paper ends with a review of the method.Keywords: Blackboard Systems, Development Methodology,Formal Speci�cation, Temporal Logic
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1 IntroductionDuring the last few years, there have been a number of proposals to employ black-board systems in real-world environments. Blackboard systems, as is well known,can be used in complex domains that require the application of di�erent kinds ofknowledge. The characteristics of the blackboard architecture that make it partic-ularly suited to problems of these kinds include:1. The integration of di�erent kinds of knowledge within a single framework;2. The incremental generation of solutions;3. The property that solutions merely degrade in quality or accuracy when inputdata degrades;4. The architecture's capacity simultaneously to follow di�erent, potentially con-tradictory, lines of reasoning;5. The ability of the architecture to integrate incomplete information within anemerging solution, and6. The ability of the architecture to interrupt one line of reasoning in favour ofanother.Although other architectures (for example, production rules) have some of thesefeatures, the blackboard architecture has them all. This makes for a powerful archi-tecture, ideally suited to real-time and safety-critical applications. Indeed, many ofthe more famous blackboard applications have been in real-time domains: hearsay-ii [11] understood continuous speech in approximately real time; hasp/siap [13, 31]interpreted sonar data; the bb� patient management system described in [25] moni-tored the respiration of intensive care patients in real time. These systems indicatethe actual (rather than theoretical) suitability of the application of blackboard sys-tems to problems that require solutions in real time.As with conventional software, real-time and safety-critical domains impose con-straints over and above those which apply to software constructed for other domains.Both kinds of domain require high-integrity systems which remain operational evenunder adverse conditions. Furthermore, safety-critical problems (such as intensive-care patient monitoring, nuclear reactor management, air tra�c control, and 
ightmanagement systems) impose the constraint that system failure, when it occurs,should not lead to catastrophic results. For AI systems, these constraints must ofcourse be respected. With AI systems, there are additional constraints which mustbe satis�ed. As was argued in [7], the additional constraints are:1. The accuracy and relevance of domain knowledge;2. The correctness of domain knowledge representation;3. The correctness and appropriateness of inferences drawn from domain knowl-edge; 3



4. The correctness of the mapping between domain knowledge and the system'srepresentational structures, and5. The correctness of the implementation of the system software.As noted in [7], it is the last point that is typically addressed in the software engi-neering literature. The other points must be addressed before an AI system can beallowed to go live in a real environment.The focus of this paper is on how to go about providing the guarantees of correct-ness that should be expected of a system upon which lives may depend. Speci�cally,the paper proposes a development method for blackboard systems that is formal innature, is a formal development of the one proposed in [8], and relies, for its success,upon speci�cation exercises such as those presented in [6]. The method expectsthe blackboard system builders to construct a mathematical speci�cation of theblackboard shell and other software they intend to use, and to describe the problemdomain mathematically. The most obvious mathematical tool that can be used islogic. The description process must be supported by proofs. Some proofs deal withthe correctness of mappings between domain theory and implementation structures;others deal with termination and control.Because blackboard systems are being applied in domains where high standardsof reliability are expected, their correctness is crucial. For this reason, it is essentialthat the best possible guarantees of correctness must be given. As far as we know,mathematics is the best way to guarantee correctness. The method proposed inthis paper is the �rst step in providing the necessary high levls of con�dence inAI systems. Of course, it will never be possible to give complete guarantees: thatwould presuppose the existence of infallible experts with perfect knowledge. How-ever, mathematical techniques can assist in the development of AI systems, not onlyof the basic software, but also in assuring the quality of domain-speci�c informa-tion and its mapping into the structures of the resulting system. Formal methodshave been successfully used in the development of conventional software, and in thedevelopment of at least one AI system [9]. The previous uses of formal methodshave shown the feasibility of constructing software that is correct with respect to itsinitial speci�cation. With AI systems, mathematical methods also a�ord the oppor-tunity to detect, amongst other things, inconsistencies in the information suppliedby domain experts (this is a point we will explain below).The method we propose entails large amounts of proof. Initially, we expectedthat the necessary proofs would be extremely complex. Experience (e.g., [6]) sug-gests that the software-speci�c proofs are relatively straightforward. The proof-oriented approach to commonsense reasoning proposed by Randell [33], althoughentailing large amounts of proof, requires no proofs that could not reasonably bedone with pencil and paper1. Although there is a lot to do, it is not necessarily ofan excessively taxing nature, and we expect it to be mostly a matter of routine.1D. Randell, personal communication, 1990. 4



In the next section, the informal method presented in [8] is brie
y described.The informal method forms the basis of the formal method whose initial stagesare described in section three. Section four contains an outline of the treatment ofcontrol and suggests the use of temporal logic as a tool for reasoning about control.In the �nal section, the method is reviewed.2 The Informal MethodIn this section, we outline the informal method for blackboard system constructiongiven in [8]. The present version is highly condensed, and the reader should consult[8] for more details. The method assumes that knowledge acquisition has eitherbeen completed, or that it continues while the system is being constructed. Themethod is, therefore, one for the construction of the system, and does not containany prescriptions on how to elicit knowledge.In this section, we assume a bb1-like architecture [23]. That is, we assume, ingeneral, that the blackboard is divided into a hierarchy of abstraction levels, and thatevents convey signi�cant information about changes to the current blackboard state.The age [31] family of blackboard systems di�ers slightly from our assumptions, andthere are other interpretations of the blackboard model that di�er more signi�cantly(e.g., [3]). The selection of an appropriate architecture is clearly an important aspectof any blackboard project, but we must ignore this point at present.Below, in the description of the formal method, we will occasionally point outsome alternatives and generalizations, and their relationships to our approach. How-ever, for reasons of space, we are unable to explore the range of potential di�erences.2.1 The blackboardThe blackboard database is the central structure in a blackboard system. Theorganization of the blackboard has been described by some workers (for example,Nii [30]) as an outline plan for organizing the system's problem-solving activities.Others regard the blackboard structure as a general organizing principle aroundwhich problem solving occurs (this appears to be the view of Hayes-Roth in [22]).The blackboard database remains the central structure in blackboard systems.The blackboard database is organized as a partially ordered hierarchy. Eachlevel in the hierarchy can be thought of as a di�erent view of the problem or ofthe structures required for the solution of the problem. Thus, in hearsay-ii, thespeech signal is viewed as being composed of a sequence of signal features or assuccessively more abstract objects, phonemes, for example. The informal methodrequires that the organization of the blackboard be determined as the �rst step inbuilding a system: once the organization has been decided upon, it should not bealtered unless there are compelling reasons for doing so.The organization of the blackboard is fundamental because it determines the5



structures which will form the basis for reasoning within the system, and because itdetermines the general form of the solution process. For example, in hearsay-ii, thesolution process is basically bottom-up: the signal is transformed into increasinglymore abstract structures until linguistic representations of the utterance as a wholehave been determined. The system actually operated a two-phase process in whichthe �rst phase consisted of bottom-up processing until a collection of words hadbeen hypothesized. Thereafter, context became available for a more opportunisticphase in which hypotheses were re�ned or integrated to form a better, more abstract,model of the utterance. The organization of the hearsay-ii blackboard implies afundamentally bottom-up method of operation.The opm planning system [21], the solution was generated in a top-down manner,but, again, the general movement of the solution from top to bottom was mixed withperiods of opportunistic problem solving. The initial list of errands was re�ned ina top-dowm fashion into more detailed sequences of actions which were integratedin an opportunistic manner into a general, satis�cing, course of action. In bothcases, the interpretation of the abstraction levels that comprise the blackboard is asigni�cant factor in determining how the system will eventually solve the problemsit is to solve.Once the blackboard organization has been determined, the types or classes ofentry that reside at each level must be determined. The method in [8] interpretseach abstraction level as holding entries of one or more type (`type' being interpretedin the way familiar from logic). The role of types is somewhat controversial: Nii,for example, is wary of them2. The idea that entries belong to types is based uponthe interpretation of an entry as a set of attribute-value pairs. The values that areheld in the attributes are determined by the meaning or de�nition of each attribute.The collection of attributes which are permitted to be present in an entry de�nesthe type of that entry. Without some kind of a notion of type (even a weak one suchas the constructive interpretation of types as sets), it is impossible to di�erentiatelevels.The method requires that the objects to be represented at each level of ab-straction be de�ned, their important characteristics identi�ed and recorded. Inhearsay-ii, the structures on the Phoneme level represented phonemes that hadbeen hypothesized as appearing in the speech signal; those at the Lexical level rep-resented words. In the abstract, phonemes and words have di�erent properties, anddi�erent things can be said of them. In the context of speech understanding, thereare common properties: for example, both have a start and end time in the signal,both are temporally contiguous with the immediately previous and immediately suc-ceeding word or phoneme (or the end of the signal). Each abstraction level entailsthat its entries are composed of attributes of di�erent types. Of course, there willbe intersections, but they should not contain members that are de�nitional (thename or creation-time attributes can appear all over the blackboard, but they2Personal communication, 1985. 6



are hardly de�nitional)3 .The de�nition of required objects at each level implies that the attributes com-prising these objects also be de�ned. Attributes can be thought of as properties orrelations. They serve to de�ne the structures of which they form a part. In otherwords, the method takes entry types to be de�ned by the sets of attributes. Whenattributes are de�ned, the values which can be associated with them must also bede�ned. Again, this amounts to the de�nition of a type. For attributes, it is alsoimportant to consider their role in the abstraction hierarchy as a whole. Thus, whena particular attribute is de�ned, the rest of the blackboard must be considered inorder to determine whether the new attribute is unique to the level for which it was�rst de�ned, or whether it is more general (and, hence, does not form part of thede�nition of an entry type). The method requires that the de�nitions of attributesbe recorded. Apart from good documentation, this requirement is imposed so thatequivalences can be checked.Hayes-Roth4 has noted that during the development of protean, a number ofattributes, each with di�erent names, was de�ned. Later, when the system wasreimplemented using the frameworks described in [24], it was found that some at-tributes which were formerly considered to be distinct were, in fact, equivalent. Themethod seeks to remove such duplications by requiring system builders to makeequivalence checks as part of the routine. Furthermore, the approach advocatedby the method entails that changes to attribute and entry de�nitions can be moreeasily and reliably propagated through the rest of the system than would be thecase if all were unstructured.The de�nition of the blackboard and the objects it contains is, of course, informedby the knowledge acquisition process. At the time of writing [8], it was not clearthat the method had implications for knowledge acquisition. In order to determinethe structures required by the method, the knowledge acquisition team must askthe experts for descriptions of the objects they consider important in the domain,and they must ask how these objects are related. Clearly, without this information,the analysis process described above is rendered more di�cult. As will be seen fromthe next subsection, Knowledge Source identi�cation also depends on a particularway of acquiring expert knowledge.2.2 Knowledge Sources and ControlOnce the blackboard and its contents have been de�ned, and the abstraction hierar-chy �xed for ever, Knowledge Sources are de�ned. The method suggests a top-downapproach to the development of Knowledge Sources, and it also acknowledges thatKnowledge Sources and entries are often quite interdependent in the sense that aKnowledge Source may require (or even presuppose) the existence of a particular en-3In HEARSAY-II, a common set of attributes was used for the entire blackboard.4B. Hayes-Roth, personal communication, 1986.7



try or attribute which has not yet been determined. Here, we ignore this dependencyand consider the two phases as wholly separate.The method considers a Knowledge Source to be a task or unit of activity. Theidenti�cation of Knowledge Sources entails the identi�cation of the inferential tasksthe systemmust perform. An initial set of Knowledge Sources should be de�ned (say,a set which is adequate to perform some, though not all of the inferential tasks thatwill eventually form part of the behaviour of the system). These Knowledge Sourcesform the basis of an initial implementation of the system's inferential component,and they can also form the basis of a re�nement activity.The method assumes that the very �rst Knowledge Sources that are identi�edwill be general inferential tasks. They would be developed, for instance, by askingthe expert what the basic inferential tasks of the system are to be. In speechunderstanding, one important task is to hypothesise words on the basis of sequencesof phonemes; in errand planning, an important task is to decompose a complex goalinto a set of less complex ones. These initial Knowledge Sources are then re�ned intotheir component actions or sub-tasks. This re�nement leads to the identi�cation ofother Knowledge Sources. For example, if two Knowledge Sources require a commonsubtask to be performed, it might be worth de�ning a third Knowledge Source toperform it. Another example is where a set of Knowledge Sources require a subtaskto be performed and where the time at which the subtask is performed is irrelevant(they might, for example, just expect the task to have been performed by the timethey execute).There are clearly many ways in which subtasks can be identi�ed. Whether allsubtasks are made into Knowledge Sources, or whether they are made into proce-dures called by the Knowledge Sources depends upon the application.The task-based approach also interacts with the formation of the control struc-ture for the system. Above, we noted that tasks are interdependent in a number ofways. Part of the control problem is de�ned by the organization of the blackboard,and part by the relationships between inferential tasks. The formation of the con-trol structure proceeds by examination of these relationships. General strategies andtactics should be formed. Strategies and tactics should be expressed in terms of thetasks that are covered by them, but they must also be related to the blackboard|that is, they must be related to the changes in blackboard state that result fromKnowledge Source execution. This entails that strategies should be conceived interms of how attributes change on the blackboard|what the signi�cant types ofevent that occur during the solution process are. This approach to control has theadvantage that it is not tied to the existence of particular Knowledge Sources, butis dependent upon the general ways in which the blackboard state alters over time.8



3 Formal Method: Motivation and Initial StagesIn this section, we introduce our proposed formal method for the construction ofblackboard systems. In broad outline, the formal method is similar to the infor-mal one described above, but di�ers in detail. The new method requires that theblackboard be de�ned �rst and that the types of entry and attribute that will ap-pear on the various abstraction levels also be de�ned. The di�erence is that thisactivity is now viewed as a formal (i.e., mathematical) exercise and can only takeplace after the problem domain has received a formal description (i.e., after a formalmodel of the domain has been produced). In this section, we will be concerned withthe domain and the blackboard representations. In the next section, we considerKnowledge Sources and control.The formal method attempts to give a mathematical guarantee that the black-board system is correct. For this, it is necessary to have a formal speci�cation ofthe blackboard interpreter (or shell) software similar to that in [6]. Furthermore, itis necessary to de�ne the semantics of the representations used by the interpreter:this is to ensure that the mapping between the formally expressed domain knowl-edge and the structures manipulated by the interpreter is well-founded. Part of thesemantics comes from the formal model of the domain, and part comes from theformal speci�cation of the interpreter (the interpreter speci�cation can be viewed asa form of semantics since it attempts to capture the `meaning' of the architecture).3.1 Domain modelsThe basis of the new method is a model of the domain in which the system willsolve problems. Hayes [20] argues that formal domain models o�er advantages overinformal ones: the ontology can be determined more easily, the range of possibleinferences discovered, absurdities detected, and so on. A formal theory of a domainalso brings with it the valuable property that properties of domain objects canbe established by proof. Hayes suggests that �rst-order logic (or some, possiblyintensional, enrichment of it) is the best representational candidate for these modelsbecause logic has both a syntax and a semantics: that is, it has a proof and a modeltheory. Formal models are used to give a precise account of a problem domain in away that facilitates detailed analysis and also allows the proof of properties.The formal model should be constructed from the information provided by do-main experts. An example of its use might be as follows. A model is constructed,and implications are drawn (backed up by proof). The implications can be usedto ask the domain experts further questions. If something strange is inferred, it ispossible to go back to the experts and point out this anomaly. The result mightbe a re�nement of the domain model, or it might be that the apparently strangeconsequence is, in fact, correct..The use of a formal domain model also has implications for the knowledge elici-tation process. In domains such as those chosen for blackboard systems, more than9



one expert is usually involved in the elicitation process. It has often been a worrythat the knowledge elicited from the di�erent experts may not mesh together, andthat inconsistencies can creep in. By use of a formal model of the domain, theassumptions of the experts can be made explicit and the areas of overlap can bechecked. If the process of eliciting knowledge from an expert is thought of as theprocess of constructing a theory, there follows the idea that the domain model isitself a theory whose subtheories are the theories representing the knowledge elicitedfrom the various experts. The deductive closure of the entire domain model is thenthe union of the closures of the subtheories: consistency can be shown for each sub-theory, and for the model as a whole. This may not be a simple or speedy process,but it is in principle possible. It should be noted that completeness is not a propertywe expect of domain models, but the more modest requirement of consistency is.Naturally enough, we cannot expect the domain model to be exactly the union of itscomponent theories: in practise, it will probably be the case that additional axiomswill be required to connect the subtheories (for example, translating terms of onesubtheory into terms of another), but this can be handled with relative ease, or soit would appear.The formal model also serves another purpose. Once constructed and checked,the model serves as a standard against which the rest of the construction process canbe judged. This is because the remainder of the derivation of the system is basedon the domain model in ways that will become clear below. The domain modelmust, of course, have the sanction of the domain experts. It is worth stressing, atthis point, that, although there is a considerable amount of proof required, it is ofa relatively straightforward nature.Now, it should not be thought that the domain model will require the devel-opment of new and exotic logics. This is because, as has often been pointed out,�rst-order logic (or some variant of it) can be considered as a meta-language: �rst-order logic is powerful enough to describe di�erent inference procedures|the devel-opment of domain models of the kind under consideration does not depend upondevelopments in logic. The remaining arguments for the construction of a formaldomain model are similar to those in the literature (e.g., [20]).3.2 Blackboard and entriesThe domain model is the starting point for further work. The formal method, likethe informal one, requires that the abstraction hierarchy be de�ned �rst and thatthe de�ning properties of each abstraction level be identi�ed. In the new method,the development of the system-speci�c structures parallels the steps of the informalone, but requires formal, mathematical, statement of properties. Furthermore, thedomain model is already there to assist in the development of the blackboard. Below,we will often refer to the domain model and to the form of its axioms.It will probably always be the case that the abstraction hierarchy will have to bede�ned by intuition rather than by formula manipulation. This is no bad thing, as10



long as the intuitions are good enough. However, the domain model can assist in atleast checking the hierarchy. In the formal method, the hierarchy is determined byexamining the classes of object hypothesized by the domain model: this is similarto the informal model. However, the hierarchy is generated by a abstraction relationwhich can be stated explicitly: the abstraction relation is a binary relation thattotally orders its domain5. For example, the part-of relation generates abstractionhierarchies for tasks such as construction (protein structure analysis is also a domainin which the part-of relation generates an adequate abstraction hierarchy). Theabstraction relation has the following properties:8x R(x; x)8x; y R(x; y)^R(y; x)) x = y8x; y; z R(x; y)^ R(y; z)) R(x; z)i.e., R is a partial order.Once the abstraction relation has been de�ned, the structures hypothesized inthe domain model must be organized in terms of the relation. Furthermore, if theabstraction relation is stated formally, it becomes possible to prove that variousstructures (unary relations in particular) belong to various levels in the hierarchy.Formally, if RA is the abstraction relation, and if P1 and P2 are two unary predicates,we need to show that: 8x 8y P1(x) ^ P2(y) ^RA(x; y))`(y) v `(x)where v is the partial ordering induced by RA and ` is a (Skolem) function fromobjects to their abstraction levels. In words, this implication states that if twoobjects (x and y) satisfy the abstraction relation, then the level to which each ismapped (the function `) satis�es the v relation. That is, if two objects satisfythe abstraction relation, they will reside on at most two abstraction levels (notethat they may reside on the same level|this is possible because the abstractionrelation is a partial order). Note that RA is a relation over objects and that v is arelation over abstraction levels; also note that other views on how the blackboardis organized can still be accommodated within this approach, provided that theseother views regard the blackboard as being a partially-ordered structure (we callRA the `abstraction relation' only for reasons of familiarity).Above, we used two predicates P1 and P2: these predicates appear in the domaintheory. These predicates can be considered as determining sorts or types (`type' is,again, to be interpreted in the logical rather than the algebraic sense). Unary pred-icates usually de�ne kinds of object: above, they are used to denote objects whichsatisfy some de�nition (of which more below). The point of the above is to showthat the abstraction relation can be used to order the sorts de�ned in the domain5The extension of the abstraction relation is always �nite, note.11



theory. The aim of this is to separate the types of the domain theory into types thatrepresent objects at di�erent levels of abstraction. The purpose of the separation isto provide the beginnings of a theory for each abstraction level by partitioning theoriginal domain model into (one hopes non-overlapping) subtheories.Let us consider the structure of some of the sentences that appear in the domaintheory: in particular, the unary predicates. Typically, unary predicates are de�nedby sentences of the form: 8x �(x)$ i=n̂i=1 Pi(x)where the right-hand side is a conjunction of relations Pi (which can be thought ofas being in conjunctive normal form|this is no limitation, for any formula can berewritten in this form). The de�nition of a unary predicate involves other predicatesand relations. We can use these de�nitions in the formation of blackboard objectsas follows.Each unary predicate de�nes a type of object. The objects in the type can berelated to the abstraction relation as we have seen. This entails that the abstractionrelation relates types to abstraction levels. Some unary predicates can be consideredas de�ning types of entry. The attributes which an entry possesses are de�ned by therelations that appear in the de�niens of the unary predicate. In the above example,any object which satis�es �, also satis�es all the Pi: the satisfaction of the Pi mayinvolve the introduction of other objects (de�ned by unary predicates or taken asprimitive|for example, elements of R or N). Thus, if � is de�ned as:8x �(x)$ 9y P (y) ^R(x; y)we know that entries of type � have an attribute R and that the second argumentof R is an object of type P . Furthermore, we also know that the arity of R is two.The translation from an n-ary relation in the formal description to an attribute isto consider the attribute as an n-ary relation. The old �rst argument is the entry inwhich the instance of the relation is to be found. For example, if we de�ne a CHILDtype as: 8x CHILD(x),(9y; z MALE(y) ^ FATHER(y; x)^FEMALE(z) ^MOTHER(z; x)we have the following translation into entries and attributes:CHILD 101: FATHER yMOTHER zwhere CHILD 101 is an object of the type CHILD. Note here that y and z are takento be references to other entries (they could be names for people, however). Themapping between logic and entries is taken to be very similar to the representationof frames suggested by Hayes [19]. 12



Before going on, let us be clear about what we have so far. We have a wayof relating the types (unary predicates) of the domain theory to the abstractionrelation. This relation tells us where on the blackboard the various types are to beinstantiated. In other words, it tells us where the various kinds of entry will even-tually reside. Also, we have a way of translating the predicate calculus de�nitionsof unary predicates into entries (entries construed as attribute-value pairs). Thismapping tells us what the attributes of any type of entry will be: it tells us whatthe attributes that comprise an entry type are.Seemingly, all we need to do is to apply the above with rigour and we are done.This is not correct. Care is needed in mapping down to entries. Three cases areimmediately apparent. Consider the case of two unary predicates, P1 and P2 suchthat: 8x P1(x)$ �1(x)and 8x P2(x)$ �2(x)Now, let R1 be the set of relation symbols in �1 and R2 be the relation symbols in�2 and R1\R2 = ;. This clearly suggests that P1 and P2 have di�erent extensions.Thus, they represent di�erent types. However, in the context of the domain theory,it is still possible that 8x P1(x)$ P2(x). That is, the two predicates represent thesame type. Unless the number of entry types is to expand inde�nitely, this kind ofequivalence must be detected (by proof, of course) in order to keep the blackboardmanageable. It should be noted thatEquivalent unary predicates can cause problems when the abstraction relationis applied. This is because the abstraction relation might assign P1 to level l1 andP2 to level l10, for example. Since they are equivalent, this cannot be and there maybe an inconsistency somewhere; of course, it is possible for the abstraction relationto impose di�erent views of the same object, but if the relation is part-of, there is aproblem in need of solution.Finally, consider the case in which a relation, R say, appears in the de�nitionsof both predicates, and in which we know that each predicate is assigned a di�erentabstraction level by the abstraction relation. Here, the type of R is important. Ifwe were slavishly to follow the vocabulary approach suggested in [8], we would wantto try to de�ne non-overlapping vocabularies as far as possible. However, if thesame relation appears in many de�nitions which represent entries that will appearat di�erent abstraction levels, there will be an overlap in the vocabularies.The above discussion has concentrated on types as a way of organizing the black-board. Individual entries are thought of as belonging to types, and the attributeswhich actually appear in entries are thought of as instances of more general types.The notion of type underpins the formal method and is an aid in proofs of correct-ness. However, there will always be more types that must be dealt with than thereare entry or attribute types. For example, a common operation on the blackboardis to form sets of entries (a solution island is an example of a set, it should be13



remembered). The entries may be from di�erent abstraction levels, and a fortiorihave di�erent types. The set which is composed of all entries on the blackboardcontaining a speci�ed attribute whose value satis�es some predicate will also con-tain entries of di�erent types. In the last case, the operation to �nd all these entriesusually returns the set of entry identi�ers, its type being (usually) de�ned as:f :B � ((A� V )! B)! Ewhere B is the type of the blackboard, (A � V ) ! B is the type of the predicate(A is the type of attributes, V that of values, and B is the set of truth-values),and E is the set of entry identi�ers. However, by the argument above, the objects`named' by elements of E are entries, and they may have di�erent types. In otherwords, the f operation which �nds those entries which satisfy a particular predicateor relation has a sum type as its range. A simple analysis of the types produced bythe domain model may not reveal the existence of these other types: that is, thesemore complex types may only become evident when Knowledge Sources have beenproduced.The view of the blackboard and its contents that results from a formal analysisof the domain (particularly one of the kind given above) leads to a strongly typedview of the blackboard database. In addition, various operations de�ned over theblackboard are also typed. The use of rich type systems has not yet been exploredin the context of AI systems, and the consequences for the construction of reliableAI systems has yet to be fully explored (although mxa [28] employs a type systeminherited from Pascal).Returning to the method, we must consider the role of formal proof. In com-mon with other formal methods, for example VDM [27], Z [34] or [29], the currentmethod requires as much formality as possible. The basis of the development of thespeci�cation, the domain model, is expected to be relatively rich in axioms (partic-ularly so if relations are also de�ned), thus allowing a potentially enormous numberof proofs. Randell [33] points out that many such models (for example, those tobe found in [26]) su�er from the problem that their consequences are not drawnout: they seek as many axioms as possible in order to cover their chosen domainwithout determining the consequences of the axiom sets. Randell therefore urges asmaller axiom set and the increased use of proof. In the conversion of domain modelsentences to blackboard structures, the current method also urges a considerableamount of proof|fortunately, many of the proofs are expected to be quite trivial.Speci�cally, the proofs fall into two categories:� Re�nement proofs, and� Realization proofs.Re�nement proofs are of the kind familiar from the software engineering lit-erature: they serve to demonstrate that a less abstract structure is adequate torepresent a more abstract one. Realization proofs are those which show that it is14



possible to construct an object which satis�es a particular set of axioms. For theformer proof category, it is necessary to show that the domain model's represen-tations map satisfactorily onto the representations of the blackboard. Given thede�nitions of types and relations in the domain model, it is necessary to show thattheir representation as entries (which might be viewed as mappings from a set ofattributes to a set of values) adequately represents the range of the unary predicate.For the latter category, it is necessary to show, for example, that if an attribute is tobe �lled by a particular type of entry, then that entry can exist on the blackboard(a stronger version is that of showing how to construct the required entry).4 Knowledge Sources and ControlThe development of Knowledge Sources and control r�egimes is much closer in spiritto speci�cation in the more conventional sense. In order to develop these aspectsof the system, it is necessary to introduce the concepts of blackboard event andblackboard state. A blackboard event is an alteration to an entry or the posting ofa new entry on the blackboard. The blackboard state can be thought of as beingthe contents of the blackboard at any time. Knowledge Sources can be consideredto be objects that transform the blackboard. The control structure can be thoughtof as a mechanism for determining which changes to make at any one time. Thepoint of the control structure is to bring the blackboard into such a state that oneor more goals is satis�ed.For reasons of space, and because we want to present our ideas in a form thatis as immediately relevant to blackboard systems as possible, we are unable toaddress the relationships between control in blackboard systems and in AI systemsin general. Instead, we are content with outlining the basic problems and proposingwhat appears to be a relatively coherent approach to the formalization of control:this approach is intended to be suited to the transition from abstract speci�cation toimplementation. Bachimont [1] proposes a logical framework within which to reasonabout coherence and convergence: the relationships between the current proposaland Bachimonts are worth exploring at a later date.4.1 Knowledge sourcesIn the formal method, the same analytic technique is employed as in the informalone: Knowledge Sources are viewed as inferential tasks. Blackboard events deter-mine, in conjunction with the control structure, which Knowledge Sources (strictly,Knowledge Source instances) to execute in order to transform the blackboard state.Once major inferential tasks have been identi�ed, it is necessary to determine whento apply them: partly, this is the role of events (we return to this point below).Major inferential tasks must, of course, be ones that are natural as far as domainexperts are concerned. 15



Knowledge Sources are treated as inferential tasks. This relates to the domainmodel in the following way. If the set of possible inferences has been determined inadvance, the inferences performed by Knowledge Sources will be a subset of these.Of course, for a large set of axioms, the set of consequences will be very large, soa complete enumeration will be unlikely for any practical application. However, aspart of the domain model construction process, it is suggested that the principalinferential moves be determined. One way of stating these is as theorems or lemmata,with a Knowledge Source taken to stand for one (or possibly more) of these. It isimportant to note which axioms will be used in a proof. By the Deduction theorem, atheorem in logic can be thought of as an implication (biconditionals being expandedin the usual way|this generates two lemmata), the relationship to inference isimmediate: indeed, one can think of proofs of theorems and lemmata as beingproofs of derived inference rules, possibly of a domain-speci�c nature|once theserules have been proved, they can later be used. Of course, not all the theorems thatcan be proved in the domain model will be suitable as bases for Knowledge Sources:theorems concerned with properties of relations and unary predicates|theoremsabout the representation|may not turn out to be very suitable for conversion intoKnowledge Sources; theorems that deal with the existence and transformation ofknown objects may, though, form the basis from which Knowledge Sources aredeveloped.Once theorems of the right kind have been identi�ed, their proof can be at-tempted. This may be regarded as a separate step in the construction of the system:this is because it deals with its inferential properties and not with representation. Aproof of a Knowledge Source (i.e., of the theorem which initially states the transfor-mation representated by a Knowledge Source), if su�ciently formal, will be basedon domain axioms (as well as general results from logic). This fact is of importancefor two reasons:� It tells us which domain structures are required in order to perform the largeinference represented by the theorem;� It tells us what the inferential steps in the solution are (it tells us aboutsubgoals, for example).A consequence of these facts is the fact that the proof determines, in outline, theconstruction of the Knowledge Source.In the informal method, the decomposition of the initial Knowledge Source setwas achieved by attempting to re�ne them into smaller units and by looking forcommon subtasks, a process which may su�er from the fact that important tasksmay be overlooked. In the formal method, although this can be done, the re�nementof large Knowledge Sources can be achieved by lemma discovery. If a number oftheorems rest on a small set of lemmata, it may make sense to view the lemmataas independent theorems: this leads naturally to considering them as KnowledgeSources. However, given the formal nature of the domain model, the development16



of Knowledge Sources on the basis of theorems appears more natural. Furthermore,the formal approach to Knowledge Source development solves a problem with theinformal method: the problem that the representation was, in some ways, separatedfrom Knowledge Sources and incrementally adjusted as a result of Knowledge Sourcede�nition. In the present case, this defect does not appear because the identi�cationof Knowledge Sources with theorems in the domain theory closely relates the two:Knowledge Sources are now de�ned as inferences over domain structures, a propertysupported by proof. By de�ning Knowledge Sources in this way, those aspects ofthe domain which are relevant or necessary to the Knowledge Source can, in e�ect,be read o� from the proof.The re�nement of Knowledge Sources from important theorems in the domainmodel to code becomes relatively straightforward. When domain objects are rep-resented as entries composed of attribute-value pairs, Knowledge Sources can berepresented as operations acting on these structures. The form that KnowledgeSources take will be fairly close to the structures used in [6]. What is then neces-sary is to prove that the structures that result from this speci�cation exercise areequivalent to the theorems. In other words, what is necessary is to prove that, givena theorem of the form ` �)  that the corresponding Knowledge Source, when started in a state that satis�es are�nement of � will terminate yielding a state that satsi�es a re�nement of  . Putthis way, the process of verifying a Knowledge Source is very similar to verifying aprocedure. If, on the other hand, the Knowledge Source is produced by re�nement,the veri�cation is immediate (it is an immediate consequence of the re�nementproofs).Knowledge Sources have, so far, been unrelated to blackboard events. The pro-posal for identifying Knowledge Sources has been based entirely upon the ontologyof the domain. That is, it is closely connected to the predicates, relations andconstants that appear in the domain model. Blackboard systems, though, have anevolving and dynamic structure. Above, we saw that a theorem in the domain modelof the form ` �)  can be thought of as representing a Knowledge Source which, when started in astate that satis�es � will terminate with a state  . As the state of the blackboardevolves, it is necessary to determine when a Knowledge Source will be activated:this is where events become important.The assumption about blackboard events is that the relevance of KnowledgeSources can be partially determined by small changes to the blackboard state. SomeKnowledge Sources will always be applicable, but most others will only apply oncethe state has been transformed in some way. Events are intended to signal changes ofstate (thus, not all events will trigger Knowledge Sources, for the changes represented17



by these events will be irrelevant as far as inference is concerned). The account givenso far does not take change into account.There are two ways in which state change can be catered for:1. It can be considered as an e�ciency-improving technique and its introduc-tion postponed until the major parts of Knowledge Sources (their state-basedpreconditions and actions in a bb�-like model) have been speci�ed, or2. It can be considered from the start.Our view is slightly equivocal: we view events as important sources of informationabout the way the current solution is developing, while at the same time seeingevents as a way of making the system faster. Events are also related to the problemof partial information in blackboard systems: at any stage in the development ofa solution, the information available to the Knowledge Sources of the system mayonly be partial|inference is needed in order to complete the solution. In the nextsubsection, we consider the formal speci�cation of control in a blackboard systemand relate control to the focus-of-attention problem: this will allow us to integrateevents with the remainder of the speci�cation in a natural fashion.4.2 ControlControl, as is noted in [8] is possibly the hardest aspect of building a blackboard sys-tem; it is also one of the most important, for, without an adequate control structure,the system may never �nd acceptable solutions. The role of the control structure isto select currently applicable Knowledge Sources for execution. This selection pro-cess is based on the current state of the blackboard, currently applicable KnowledgeSources and the (sub)goal to be satis�ed.In order to see how to develop a control structure, it is instructive to examine thepurpose of control. We view control as being expressed in terms of plans, strategies,tactics and goals (see [23] for a careful and detailed exposition). The purpose of acontrol structure is to satisfy a goal: it matters little whether the goal is satis�ed byforward or backward reasoning. For blackboard systems, a goal can be expressed asa blackboard state to be achieved. The state can be expressed as a sentence in the�rst-order language used to construct the domain model for the reason that a statedescription amounts to a description of those entities which must be present on theblackboard in order that the goal be satis�ed.In real systems, one would expect to express the speci�cation of a goal as alogical normal form. Once expanded, the goal statement says what objects must bepresent on the blackboard in order satisfy the goal. As is usual, the satisfaction ofa goal may require the joint satisfaction of subgoals. The problems for blackboardsystems are: detecting when a strategy is applicable and determining when it hassucceeded (or failed, which is equally as important). A further question is that ofdeciding what to do when more than one strategy or tactic is applicable.18



By the above, the application of a strategy or tactic is dependent upon someblackboard state obtaining. Matters are somewhat more complicated by the factthat a state which should cause the application of a strategy may only be partiallyde�ned at runtime. For the time being, we will ignore this case in favour of thesimpler one in which states are totally de�ned (we can get round the problem,in any case, by ensuring that there are su�cient preconditions for the applicationof a strategy). Furthermore, given the possibility that other strategies may besimultaneously active, it is necessary to characterize the precondition in such a waythat there is no interference between strategies.The prescriptions of a strategy impose a temporal ordering on blackboard changes.In other words, when each blackboard change is viewed as an event, there is an or-dering imposed by the strategy currently in use. For each step, it is possible todescribe the state which results from the application of a step in a strategy: that is,we can associate pre- and post-conditions with strategies (and with tactics). Thesepre- and post-conditions, we suggest, can be expressed as formulae in a temporallogic (e.g., those in [14]). For each precondition, � and each postcondition �, we canthen assert that: �) 3� (1)where 3 is the `eventually' operator of the temporal logic. A strategy which containsa number of separate tactics can be expressed as something of the form:�1 ^
�2 ^ � � � ^ 
 � � �
| {z }n times �n (2)where 
 is the `next' operator of the logic (the temporal operator binds tightest inthis example and in the one above) and the �i are formulae expressing the pre- andpost-conditions of each step of the strategy (i.e., they are implications).Within this framework, we can account for blackboard events is a reasonableway. Events are caused by alterations to the blackboard state: with each event,the (logical) description of the state changes. We assume that changes cannot bereversed: i.e., we assume that all blackboard operations are monotonic, and so wedo not need to bother about nonmonotonic inference, or about individuals cominginto and going out of existence. Events are caused by Knowledge Source actions, sowe can associate a temporal formula with each action stating what the next stateof the blackboard will be. That is, with any action A, we can associate a temporalformula of the form: A)
� (3)where � is a (possibly temporal) sentence that describes the next state of the black-board.At this point, it is worth pointing out that we have a choice as to the level atwhich we describe the temporal consequences of each action. We can do this byproducing a temporal formula to accompany each theorem derived from the domain19



model, or we can do it when we have speci�ed the Knowledge Sources from theirtheorems. If the Object Z speci�cation language [10] is being used, temporal formu-lae can be included in the speci�cation rather than with domain-model theorems.The question of the best place to include temporal formulae remains open.The reader may have noted that we have used temporal formulae with whatamounts to two di�erent scopes. In the speci�cation of strategies and tactics, wefeel free to use the 
 operator to mean the next step in the strategy; in actions,we are using a �ner notion of what next means|in this context, it means the nextstate. Furthermore, because of the possibility of concurrent execution of strategies,the steps of one strategy may be interleaved with steps of another. This causes noproblems, for we intend there to be a hierarchy of descriptions with those of theform (2) being the most general, and those of the form (3) to be the most speci�c.In other words, a strategy de�nes a sequence of abstract actions that is implementedas a sequence of events: that is that the statement of a strategy in the form of (2)can be viewed as a general speci�cation of that strategy (i.e., it does not refer to anyother strategy). It must also be noted that there is no real problem with the useof the same temporal operator with di�erent scopes: the aim is to re�ne strategiesto the level of events, and, as long as the di�erence in the view of time taken atdi�erent levels of speci�cation is kept in mind, there should be no confusion.It should not be thought that the ultimate goal of this re�nement process isthe determination of deterministic sequences of actions (or sequences of Knowl-edge Source executions). For some applications, this might be suitable, but, in thegeneral case it is not: this is because search in blackboard systems is assisted byopportunism. Without opportunism, it can be argued, some problems will neverbe solved because of the impossibility of exhaustive search. What the aim of there�nement process boils down to is the formal statement of conditions which mustobtain before strategies can apply and the formal statement of the classes of stateswhich count as satisfying their goals. The possibility of concurrent strategies makesthe development of deterministic sequences di�cult in any case, for there may beinteractions which prohibit or delay the continuation of another strategy or tactic(proofs of interaction are, note, possible).It remains to relate the control structure to the design of the blackboard database.Above, it was noted that the blackboard's abstraction hierarchy de�nes a generalplan for the solution of problems. From the above discussion of control, the readermay believe that the blackboard's organization has been forgotten: this is not thecase, and careful examination of the statement of a strategy shows this. Each strat-egy is composed of formulae which are expressed in terms of the representation usedin the system. For example, it may contain unary predicates which de�ne entrytypes. Such a connection closely relates strategies and tactics to the blackboard,and this property can be used to de�ne plans for the general control of the sys-tem. In the case of hearsay-ii, we noted above that the general plan (movementof solutions) was bottom-up as far as the Lexical level, and opportunistic thereafer.20



By applying the approach advocated above, but this time in a more abstract way,the general control plan for the system can be speci�ed (of course, the control planwould normally be de�ned �rst, but we have presented things in the reverse orderfor the sake of clarity).5 ConclusionsIn this paper, we have proposed a formal method for the speci�cation of blackboardsystems and have also examined some issues raised by it. The method is a develop-ment of an informal one stated in [8]. The method is characterized by a completelyformal approach, and consists of the following steps:1. Development of a formal domain model. This theory consists of the formaldescription of the objects of the domain and the relationships which obtainbetween them. The domain model also requires theorems and lemmata thatrepresent the major inferential steps that are needed in order to solve certainproblems in the domain. The domain model can be treated to logical analysis,and the consequences of the de�nitions can be determined by proof2. The re�nement of the formal description of the domain's objects into entriesand attribute-value pairs. This re�nement begins with the de�nition of theblackboard abstraction hierarchy and the abstraction relation which de�nesthe partial ordering over abstraction levels. The unary predicates of the do-main theory are interpreted as types of entries, and relations are interpretedas attributes. This re�nement determines the types of entry that each ab-straction level will hold and also determines the range of attribute types thatwill appear in each entry type.3. The re�nement of the theorems of the domain theory into Knowledge Sources.Knowledge Sources are considered to be the major inferential tasks that thesystem will eventually perform. The re�nements are based upon proofs ofthe theorems in the domain model: these proofs are seen as providing valu-able information about the resources Knowledge Sources will eventually need.The re�nement process retains links between the domain model's structuresand Knowledge Sources: these connections may easily be lost using informaltechniques. Re�nement from the domain model further serves to identify4. The speci�cation of the control aspects of the system using temporal logic. Thecontrol structure is de�ned in terms of the goals the system must satisfy. Theimplementation of the control structure involves the association of temporalformulae with Knowledge Source actions. The intermediate re�nement is interms of temporal logic. The speci�cation of the control structure dependsupon the objects in the domain model because the non-logical vocabularywith which this re�nement process starts is the domain model.21



Above, we have emphasized the proposition that the blackboard is to be consid-ered as being composed of typed objects, and that the range of types is not entirelydetermined by the domain model for the reason that some blackboard operationsmay require the introduction of new types6. We believe that the explicit introduc-tion of types into blackboard systems is to be welcomed (types were present in thehearsay-iii system [2, 12]), whether one chooses to use a type-theoretic logic suchas [4, 17, 18] or a many-sorted logic with a classical interpretation. The use of typedobjects at runtime can reduce errors, and the speci�cation in terms of typed objectsreduces the risk of faulty reasoning.The second point to be made concerns temporal logic. In the last section, wemerely introduced the idea of temporal logic without saying which system we prefer.Given the range of logics and the basic choices as to temporal ontology (discreteversus continuous time, branching versus linear time), we do not as yet have a clearview of which is the best. The question of temporal logics that allow reasoningabout the past is also open (it seems that the ability to reason about past actionscould pro�tably be applied to blackboard systems). Questions about temporal logicwill only answered by more work, both on the logical systems themselves and bytheir application to blackboard systems.Also, and this is more of an aside, the formal method allows the development offormal meta-theoretic models of the system. We have not examined this in detailat present, but note it as an interesting possibility, particularly for expressing asemantics.We must next ask whether all of this is worth the e�ort. Clearly, it is a dif-�cult exercise to follow the method exactly: it has already been shown that theconstruction of complete domain models of the sort recommended by Hayes in [20]is exceptionally hard, perhaps impossible. This fact should not deter one, however,for the aims of the two projects are di�erent. In Naive Physics, the aim is theproduction of a model that captures all intuitions; for us, the problem is that ofproducing a formal domain model that is su�cient to allow the development of thesystem|a much more modest requirement.At this point, it is natural to wonder whether the proposed method will beadequate to support the development of large-scale systems. Blackboard systems arebest suited to highly complex domains that require the application of large amountsof knowledge. We have advocated the formal speci�cation of the problem domainas a �rst step in the development of a system. In the last paragraph, we arguedthat the range and depth of the domain model will be di�erent for a blackboardsystem than it would be for a Naive Physics system. The last fact entails thatwe expect somewhat less from our domain models than would others: this has theimplication that domain models for blackboard systems should be easier to produce.The development of the control component will, of course, be a complex and di�cult6We believe that the concept of dependent types a�ords the best analysis, but have not takenup the idea here because the concept may be unfamiliar to the reader.22



activity, but it is often the most complex component in a blackboard system thatis developed informally. We believe, though, that our approach to control bringsbene�ts: in particular, it is based upon the idea of at �rst being as abstract aspossible and then becoming increasingly more concrete (a method that is stronglyreminiscent of formal speci�cation of a conventional kind).Next, there is the problem of proving the large number of results that are requiredto support the derivation of the blackboard structure and the Knowledge Sources.Certainly, there will be many theorems to prove, but we expect that many resultswill require only moderate e�ort. Finally, there is the problem of reasoning abouttime: another complex process, requiring much proof. It may be argued that thestate of automatic theorem-proving programs is insu�cient to support this amountof proof: the reply is that one need not do it all by hand, and that machine supportis available|for example, lcf [15, 32] or hol [16].In support of all this e�ort, we o�er the following remarks. The �rst is of prac-tical. If the system that is to be built is intended to be safety-critical, it must berealized that lives may depend upon its correct functioning. The best guaranteesof correct functioning that can be given must be given: the best possible guaran-tee is that the system is mathematically correct. If the system is to be subjectto real-time constraints, a similar argument (although, perhaps, with less force)applies. The method proposed above appears to provide the construction of black-board systems with a method which allows the best possible guarantees of correctfunctioning. Furthermore, such a method also has the advantage of providing unam-biguous documentation to be used in later modi�cation and in maintenance. Finally,the approach advocated above allows the separation between the progam and thetheory which it is supposed to implement: the clear distinction between the two issomething that AI reseach currently lacks.References[1] Bachimont, B, A logical framework to manage coherence and convergence inblackboard architectures: a proposal, Proc. Fifth Blackboard Systems Work-shop, Anaheim, CA, 1991.[2] Balzer, R., Erman, L., London, P. and Williams, C., HEARSAY-III: A Domain-Independent Framework for Expert Systems, Proceedings of the First AnnualConference on Arti�cial Intelligence, pp. 108-110, 1980.[3] Bisiani, R., Alleva, F., Forin, A., Lerner, R., and Bauer, M., The architectureof the AGORA environment, in Huhns, M. N. (ed.), Distributed Arti�cial Intel-ligence, Research Notes in Arti�cial Intelligence, pp. 99-117, Pitman, London,1987.[4] Constable, R.L., et al., Implementing Mathematics with the Nuprl Proof Devel-opment Systenm, Prentice Hall, New Jersey, 1986.23
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