
Obtaining the correspondence between Bayesian and
Neural Networks

A. Stassopoulou & M. Petrou
Department of Electronic and Electrical Engineering

University of Surrey
Guildford, Surrey GU2 5XH, U.K.

Running head: Correspondence between Bayesian and Neural Networks.

Abstract

We present in this paper a novel method for eliciting the conditional prob-

ability matrices needed for a Bayesian network with the help of a neural net-

work. We demonstrate how we can obtain a correspondence between the two

networks by deriving a closed-form solution so that the outputs of the two

networks are similar in the least square error sense, not only when determin-

ing the discriminant function, but for the full range of their outputs. For this

purpose we take into consideration the probability density functions of the

independent variables of the problem when we compute the least square error

approximation. Our methodology is demonstrated with the help of some real

data concerning the problem of risk of desertification assessment for some

burned forests in Attica, Greece where the parameters of the Bayesian net-

work constructed for this task are successfully estimated given a neural net-

work trained with a set of data.

Keywords: Bayesian networks, Neural networks, conditional probability matrices, least

square approximation, risk assessment.

1 Introduction

Bayesian and neural networks (in particular multi-layer perceptrons) are often used in

many applications. Bayesian networks have many advantages6;7:

� They are bidirectional, allowing the flow of information from causes to effects and

from effects to causes.

� They allow input data to be inserted at any one of their nodes.

� They can cope with incomplete and uncertain data.

� They can cope with uncertain rules of reasoning.

� They assign degrees of confidence in the resultant classifications.

To achieve all these, the networks make use of probability theory and prior knowledge

expressed in the form of conditional probabilities between causes and effects. The eli-

citation of these conditional probabilities is the weakest point of these networks. In this

paper we are solving this problem by making use of the major advantage neural networks

have, namely their ability to be trained, often with the help of a small number of data (e.g

Duin4).

In particular, we find a mathematical function which relates the parameters used by a

neural network with the parameters of the output function of a Bayesian network. Effect-

ively a closed-form solution is obtained for determining the free parameters of a neural

network which optimally approximates (in the least square error sense) a given Bayesian

network. The advantage of our method is that no training is required in order to obtain

the weights of the neural network and moreover we theoretically prove that there exists a

correspondence between the two networks.

Another important contribution of the mathematical function obtained is that we can in-

versely determine the conditional probability matrix elements of the Bayesian network

given the weights obtained by training the neural network with sufficient training pat-

terns.

The basic idea of this work was presented in brief in Stassopoulou et al9. Here, however,

we expand upon it by solving the correspondence equations between the two networks

taking into consideration the density of the training patterns.

Our methodology is demonstrated in conjunction with the problem of assessing the risk

of desertification of burned forests in Attica, Greece.

2 Motivation

The output of a Pearl-Bayes network consists of a linear superposition of the confid-

ences in the values of the conditioning variables and multiplicative products of them, all

weighted with the appropriate combinations of the elements of the conditional probabil-

ity matrix. One can linearize this function in terms of all the variables by creating extra

input nodes in the network, one for each non-linear combination of the confidences of the

conditioning variables that appear in the output function. Thus, a function of the form

f(x; y) = a1x + a2y + a3xy can be thought of as linear in terms ofx, y andz where

z � xy. The output of a perceptron on the other hand is given by the linear superpos-

ition of all the input variables to the output node, fed into a decision function, usually

a sigmoid. The use of a sigmoid, however, is not necessary. One can use instead, the

identity function as a decision function. Then there is a direct correspondence between

the linearized Pearl-Bayes network and the perceptron architecture, and one can easily

work out the relationship between the weights of the neural network and the elements of

the conditional probability matrix of the Pearl-Bayes network.

Once we have established such a correspondence, it is easy to consider that we can use a

set of training data to train the perceptron with the identity decision function and from the

correspondence between the two networks infer the elements of the conditional probabil-

ity matrix of the Bayesian network.

This idea however, although simple in its conception, does not work in practice when the

problem we are tackling is that of an expert inference system. In a Bayesian network we

handle uncertainty in the inference rules through the probabilities given in the conditional

probability matrix. The inference rules are usually supplied by an expert and have the

form “IF..AND..THEN..”. The experts very seldomly put confidences in the verdict of

a rule and if they do, this is not quantitative. The only way to judge the validity of a

rule is to make a historical study of input data and output results to compare the resultant

classification with what actually happened in reality. Such an example is a rule about

erosion, which is an issue addressed in the application section of this paper: “IF slope is

steep AND rocks are permeable AND the soil depth is zero THEN the risk of erosion is

high”. To check how good this rule is, we must do statistics on a set of regions which, for

example, some years earlier were classified by an expert as running high risk of erosion,

and compare this prediction with the state of those regions today. This cannot be easily

done and thus we have to handle the situation in a different way.

It is clear that the classification an expert does, with the help of a set of rules he/she uses,

is really a hard classification. Thus, it is best represented by a sigmoid function which is a

function that allows a softened up hard classification. Motivated, therefore, by the need to

handle the expert rules in our particular application, we had to use as an output function of

the neural network implemented, a sigmoid rather than the identity function. This means

that is is not easy to find the correspondence between the conditional probability matrix

of the Bayesian network and the weights of the perceptron.

What follows is a detailed description of how we obtained this correspondence. For sim-

plicity but without loss of generality, we demonstrate first the approach using simple

network structures.

3 Problem Formulation

In this section we present the two network models in order to establish our notation. We

describe first a small Bayesian network consisting of three two valued variables and then

present the neural network constructed to represent this Bayesian network.

3.1 Bayesian Network

Assume that we have a Bayesian network with 3 two-valued variables labeledX, Y and

Z shown in figure 1. Let us call the two possible values of each variablelow andhigh.

X Y

Z

Figure 1: A Bayesian network with two-valued variables

Assume that the conditional probability matrixM , which relatesZ toX andY , is given

by:

M =

0
BBB@
m1 1�m1

m2 1�m2

m3 1�m3

m4 1�m4

1
CCCA

The elements of this matrix are the values ofP (ZjX; Y) that correspond to the following

cases:

M =

0
BBB@

P (Z = lowjX = low; Y = low) P (Z = highjX = low; Y = low)
P (Z = lowjX = low; Y = high) P (Z = highjX = low; Y = high)
P (Z = lowjX = high; Y = low) P (Z = highjX = high; Y = low)
P (Z = lowjX = high; Y = high) P (Z = highjX = high; Y = high)

1
CCCA

Then the beliefs in the first and second state ofZ are equal to:

BEL(Z = low) = m1AC +m2AD +m3BC +m4BD (1)

and

BEL(Z = high) = (1�m1)AC + (1�m2)AD + (1�m3)BC + (1�m4)BD

where we denote byA andB the elements of the belief vector ofX (i.e. BEL(X =

low) = A andBEL(X = high) = B) and byC andD the elements of the belief vector

of Y .

Consider the belief in the first state of nodeZ only, i.e. BEL(Z = low). By setting

B = 1� A andD = 1� C, equation (1) becomes:

BEL(Z = low) = (m1 �m2�m3 +m4)AC + (m2 �m4)A+ (m3 �m4)C +m4 (2)

A andC range from 0 to 1 since they represent probabilities. It can be proven that in this

range of input variables, the Bayesian output is bounded (see Appendix A).

Furthermore it can be shown that the function achieves its minimum and maximum values

(min andmax respectively) at two of the four corners of the square defined by theA and

C coordinates (see Appendix A). The values at these four corners do in fact represent the

four independent entries of the conditional probability matrix i.e.m1, m2, m3 andm4.

We can therefore find the bounds of the Bayesian output function by obtaining simply the

min andmax values of the matrix elements:m1, m2, m3 andm4. The significance of

being able to obtain these bounds is justified in section 4.

3.2 Neural Network constructed

Assume now that we have a neural network consisting of two input units labeledX1 and

Y1, two units in the hidden layer (E andF) and one unit in the output layer (Z1) as shown

in figure 2.

E

F

X

Y

Z

1

1

1

Figure 2: A neural network constructed

This neural network has been chosen to model the Bayesian network of figure 1. Each

root is represented by one unit in the input layer (since the second is a complement in the

case of two-valued variables). The unitsX1 andY1 in the neural network represent the

first states of nodesX andY in the Bayesian network andZ1 represents the first state of

Z. Thus, the input valuesA andC are fed into unitsX1 andY1 respectively. The unitsE

andF do not correspond to any node in the Bayesian network.

The output of unitZ1 is found using the following procedure: First unitsE andF will

perform a weighted sum of their input values which will be given by:

SE = AWX1E + CWY1E (3)

and

SF = AWX1F + CWY1F (4)

where the notationWij means the weight of the connection fromi to j. After these sums

are computed, the sigmoid function is used to compute the outputs of the hidden units.

These are given by:

fE =
1

1 + e�SE�t1
(5)

and

fF =
1

1 + e�SF�t2
(6)

wheret1 andt2 are some thresholds.

Now, fE andfF will be the input values toZ1 and the weighted sum ofZ1 will be given

by:

SZ1 = fEWEZ1 + fFWFZ1 =
WEZ1

1 + e�SE�t1
+

WFZ1

1 + e�SF�t2
(7)

Finally, the output of unitZ1 is given by:

fZ1 =
1

1 + e�SZ1�t3
(8)

wheret3 is again a threshold parameter.

The objective is to determine the weights and thresholds in terms of the conditional prob-

ability matrix elements so that the Bayesian network and the neural network give the same

output.

4 The basic idea for obtaining the correspondence

We first find the correspondence of a special case Bayesian network in which the output

function is linear inX1 andY1 and then we consider the general case of the quadratic

Bayesian output function, as the one given by equation 2.

4.1 Linear output case

Assume that the Bayesian network was constructed in such a way that the output function

was linear inA andC. For this to happen the coefficient of theAC term in equation

2 must be zero. In other words, the following restriction on the conditional probability

matrix elements must apply:

m1 = m2 +m3�m4 (9)

Then, the resulting Bayesian output function becomes:

fB = (m2 �m4)A + (m3 �m4)C +m4 (10)

It is well known2;1 that a neural network with no hidden layer is capable of implementing

the above linear function.

Therefore the neural network output function reduces to one with the same number of

degrees of freedom (i.e. we are free to choose values forWX1Z1, WY1Z1 and t) as the

Bayesian output function (where we can choose the values ofm2, m3 andm4) due to the

linearity condition. So, the problem reduces to finding a way so that the neural network

output:

fN =
1

1 + e�x
(11)

wherex =WX1Z1A+WY1Z1C+ t behaves like the Bayesian network output, i.e. linearly,

in the specified range [min,max] of the Bayesian network output.

A lot of research in the past has been directed towards approximating the discriminant

function that separates the two classesZ = low andZ = high in the feature space. The

optimal discriminant function between two classes is that which minimizes the Bayesian

classification error3. It is known that a multilayer perceptron can approximate this dis-

criminant function by piecewise linear segments5. The Bayesian network however, is

usually used for probabilistic reasoning and fusion of information coming from uncertain

sources. The purpose of using it is not only to assign a class to the output variable, but also

to have a reliable estimate of the confidence with which this class is assigned. If we were

only interested in the two networks (the neural and the Bayesian) to get the hard classific-

ation error right, we would have to try to match their behaviour as closely as possible near

the threshold value (i.e. near the valueSZ1 + t3 = 0 which is the discriminant function).

As we are interested, however, in the overall agreement between the two networks, we

must choose a criterion of correspondence that reflects this requirement.

This can be achieved by linearizing the sigmoid functiony = 1=(1 + e�x) over the range

[min, max] of its possible values, withx =WX1Z1A +WY1Z1C + t.

The line of approximating the sigmoid function over the finite [min, max] range can be

chosen, so that the total least square error of the approximation over the full range of the

values ofx is minimized.

From the correspondence of the parameters of the linearized sigmoid function and the

linear Bayesian output function, we can derive a set of equations that relate the parameters

of the neural network, with those of the Bayesian.

X1

1 Z1Y

P

Figure 3: The new product input node is introduced

4.2 Generalised case

Assume now that the conditional probability matrix is such that the restriction of linearity,

given by equation 9, does not hold. In fact, the Bayesian network output is a function with

four degrees of freedom given by:

fB = (m1 �m2 �m3 +m4)AC + (m2 �m4)A+ (m3 �m4)C +m4 (12)

We therefore have a quadratic function in terms ofA andC which cannot be implemented

by the simple perceptron with no hidden layers. However, an architecture with one hidden

layer as the one shown in figure 2 would result a neural output function with nine degrees

of freedom compared with the Bayesian output function of four degrees. This difference

in the number of degrees of freedom is a serious drawback when a direct correspondence

has to be obtained. This problem, however, can be overcome by reducing it to the previous

case of no hidden layer. For this reason we introduce the cross product termAC as a new

feature alongsideA andC. This new feature will be calculated by a special processor.

We therefore end up with the Bayesian output being a linear function in terms ofAC, A

andC which can easily be implemented with a neural network of the same architecture

as before, as shown in figure 3 where the additional unit in the input layer, labeledP ,

represents the product of the valuesA andC of the input unitsX1 andY1 respectively.

This way the neural network output has the same number of degrees of freedom as the

Bayesian output i.e. four. By following the same method as the one adopted in the

previous section, we can determine the line that best fits the sigmoid in the finite range

of its possible output values determined by the conditional probability matrix elements.

Then we can obtain a direct correspondence with the Bayesian output of equation 12, from

which, by equating the coefficients, we can obtain the relationship between the parameters

of the two networks.

5 Defining and solving the correspondence problem

The linearization of the sigmoid function has to happen over the whole range of its defin-

ition. For optimal performance, we shall define first an over all error and then choose

the linearization parameters so that this error is minimized. The independent variables of

the problem areA andC and ideally, we would like to minimize the square difference

between the output of the Bayesian and the neural networks over all combinations of val-

ues ofA andC. If we call the square difference in the two outputsF (A;C), then clearly,

the error function we want to minimize is given by:

f =
Z 1

0

Z 1

0
F (A;C)dAdC (13)

where

F (A;C) � [
1

1 + e�x(A;C)
� (sx(A;C) + �)]

2

(14)

x(A;C) � WPZ1AC+WX1Z1A+WY1Z1C+ t, and� and� are the parameters of the line

that approximates the sigmoid function.

Upon changing variables of integration from(A;C) to (A; x), we obtain:

f =
Z 1

0

Z x2(A)

x1(A)
F (x)

@(A;C)

@(A; x)
dxdA (15)

wherex1(A) andx2(A) are the limits ofx, and the Jacobean is given by:

@(A;C)

@(A; x)
=

1

WPZ1A+WY1Z1

(16)

It turns out that the analytic calculation of this integral is not possible. A more convenient

form then for its numerical evaluation turns out to be:

f =
Z xmax

xmin
F (x)

Z A2(x)

A1(x)

@(A;C)

@(A; x)
dAdx (17)

whereA1(x) andA2(x) are the limits ofA which are functions ofx, andxmin and

xmax are the values ofx for which the sigmoid function obtains itsmin andmax values

respectively.

We define

p(x) �
Z A2(x)

A1(x)

1

WPZ1A +WY1Z1

dA (18)

The total error function then is given by:

f =
Z xmax

xmin
p(x)[

1

1 + e�x
� (sx+ �)]

2

dx (19)

In this expressionp(x) plays the role of the importance of each error according to the

number of combinations of valuesA andC that can give rise to the particularx value.

Thus, when we choose the approximating linear function by minimizing the error, more

importance will be given to errors that are expected to arise more frequently than less

frequent errors. To illustrate this point, assume that we have a Bayesian network as above

with the independent entries of the matrix beingm1 = 0:2, m2 = 0:7, m3 = 0:25 and

m4 = 0:4. Figure 4 shows the output of the Bayesian network as a function ofA andC

which are measured along the two axes. Each band of grey represents a particular range

of output values. For example, the black band starting on the top right corner gives all the

A-C combinations which give an output between 0.2 and 0.3. Continuing with steps of

0.1 we reach the bottom left corner which has an output value of 0.7. From this plot we

can clearly see that some outputs (and hence somex’s due to the one-to-one mapping) are

given by a greater number of combinations of values ofA’s andC ’s than others.

The integral of equation 18 can easily be calculated analytically, but special care should be

taken for its limits. Figure 5 shows diagrammatically the area of integration. The relative

orientation of the limiting linesx1(A) = 0 andx2(A) = 0 depends on the weights of

the neural network. Thus, the exact shape of the area over which we have to integrate

depends on the relative location along thex axis of pointsP1, P2, P3 andP4. In general

there are 24 possible sequences by which these points may appear along thex axis and

each of them would correspond to a different formula forp(x). Even if p(x) was given

in its closed form, integral 19 (or its first derivatives with respect tos and�) could not

be calculated analytically. So, as one has to resort to numerical methods anyway, instead

of giving the analytic evaluation of integral 18, it would be more instructive and more

relevant to the general case, to use a numeric approach from the beginning.

In the following two subsections, we shall describe how equation 19 should be used for

the case when one knows the elements of the conditional probability matrix and wants to

derive the weights of the neural network, and for the case when one knows the weights of

the neural network and wants to derive the elements of the conditional probability matrix

of the Bayesian network.

It can be shown (see Appendix B) that in this general cases and� are given by:

s =
S3 � �S2

S1
(20)

and

� =
S1S5 � S3S2

S1S4 � S2
2

(21)

whereS1; :::; S5 are as defined in Appendix B.

A

C

Figure 4: Contours of constant values offB (given by eq.12) as functions of the
independent variablesA andC

Z1X 12 x-W A-t=0

x(A)= Z1X Y1 Z1 1PZ 11 x-W A-W A-W -t=0

A

X

10

P
4

P3 x(A)=

P1

P
2

Figure 5: The area representing the termp(x)

5.1 From the Neural network to the Bayesian network

When the weights of the neural network are known from the training phase, it is not

difficult to calculate the integrals that appear in the expressions fors and � given by

equations 20 and 21. First we have to calculatep(x) from equation 18. The integrand

of (18) is effectively the ratio�A�C=(�A�x) where�A;�C and�x are elementary

ranges of the values of the corresponding variables. To compute this numerically, we need

to sample the area(A;C) with a regular grid and count how many sample points are inside

rectangle�A�x given that there is one, say, sample point inside rectangle�A�C. As

�A is common to both, we only need to use sample points along theC axis and from the

definition ofx in terms ofA, C and the (known) neural net weights, count the number of

sample points we have inside each interval�x, as a function ofA. This then has to be

integrated overA to calculate (18). This integration is done by sampling theA axis and

for each range�A access and accumulate the corresponding values of the integrand.

The above process is equivalent to saying that to computep(x) we consider a regular grid

of points in the(A;C) space, for each point we calculate the value ofx and then count

how many(A;C) points are mapped in the interval�x.

The integrals that appear in formulae (25) are then calculated numerically using the

trapezium rule and the tabulated values ofp(x). As some of the integrands are expo-

nential functions, the trapezium rule may not be adequate for their calculation. Thus,

the whole process is performed twice, the second time with the grid of points chosen in

the (A;C) space, twice as dense as the first time. The result is assumed correct only

if all the corresponding integrals calculated in both steps agree with each other within a

pre-specified accuracy.

If one has high confidence in the training data as being representative of the true classes

that the network will be called to identify in the testing phase, and one does not rely on

the generalization capabilities of the network, then the accuracy of the approximation can

be further improved: instead of minimizing the error uniformly over the whole(A;C)

space, we weigh the values ofx by functionp(x) that reflects the frequency by which

values of the(A;C) pair actually are expected to appear in practice. This is not difficult

to be achieved: After the network has been trained and its weights are fixed, we calculate

the histogram ofx values by using the(A;C) values of the training patterns themselves.

Thus, in this case a modified version of equation (18) is implicitly used:

p(x) �
Z A2(x)

A1(x)

1

�WPZ1A�WY1Z1

~g(A; x)dA (22)

where~g(A; x) is the prior probability density function of the data we are dealing with,

expressed in terms of(A; x) and derived from the corresponding functiong(A;C), say,

that applies to the(A;C) space. This option allows us to reduce the error of our classifier

exploiting prior knowledge concerning our problem.

5.2 From the Bayesian network to the Neural network

When the weights of the neural networks are not known, the calculation ofp(x) is not

straightforward. One needs to calculate first the histograms of the output valuesfB of the

Bayesian network as given by equation 12 by considering a regular sampling grid in the

(A;C) space. The histogram of thep(x) values then can be derived from them, assuming

that the Bayesian and the neural outputs should be the same. Thus, we use the equation

x = lnfB � ln(1 � fB). This histogram is corrected to have bins of equal width by

interpolation and then it is used in the numerical calculation of the integrals that appear

in (30).

6 Correspondence in singly connected networks with
intermediary nodes

In this section we describe how to obtain correspondence in singly connected Bayesian

networks where the input nodes are connected to the output nodes through some interme-

diary nodesa. See figure 6.

CA B D

G

(a)

CA B D

E F

G

(b)

Figure 6: Example Bayesian networks (a) without intermediary nodes and (b)
with intermediary nodes

Usually the intermediary nodes are introduced in a Bayesian network in the first place to

aid the construction of conditional probability matrices. It is more often the case that rules

connecting directly input to output may not be available by the experts but instead rules

are only provided between the nodes of interest and some other intermediary nodes whose

state at any point in time is usually of less interest. Moreover even if rules did exist which

connected input to output, the conditional probability matrix between them could be of

high dimensionality with further difficulties in deriving its elements. If we now follow our

suggested method of obtaining the correspondence, the number of degrees of freedom of

the Bayesian network will be different from that of the suggested neural network.

The method to overcome the above problem is to reduce the singly connected network of

figure 6b to the network of figure 6a and apply the method of correspondence as before. In

order to do this we need to calculate the conditional probability matrixP (GjA;B;C;D)

which will now define the newreducednetwork. This probability can be found in terms of

aSingly connected is a Bayesian network with only one path between any two nodes

the conditional probabilitiesP (EjA;B), P (F jC;D) andP (GjE; F) which now define

the existing network. This formula is given by:

P (GjA;B;C;D) =
X
j

X
i

P (GjEj; Fi)P (EjjA;B)P (FijC;D)

where the sums range over all states of variablesE andF .

We have now created a conditional probability matrix which will be used in the network

shown in figure 6a but performs effectively the same inference given the same data as the

one of figure 6b since the information of the intermediary nodes is incorporated in the

unifiedmatrixP (GjA;B;C;D).

In summary, when the Bayesian network has intermediary nodes, we obtain correspond-

ence with the neural network by reducing it to a simpler architecture with fewer degrees

of freedom.

7 Application to a Geographic Information System

In this section we present an application of the method presented in this paper for ob-

taining the elements of the conditional probability matrix of a Bayesian network from the

weights of the corresponding trained neural network.

The application we consider is that of assessing the degree of risk of desertification of

burned forest areas in the Mediterranean region, given some information (evidence) on

the factors that influence desertification.

Burned stands in the Mediterranean forests usually regenerate naturally between 2 to 5

years after a forest fire. However, several factors can prevent this natural regeneration.

The degree of land degradation (desertification) varies between different areas and de-

pends on the topography of the area, surface geology, soil depth and human factors.

 D

 A

RP E

SD

SD : Soil Depth (bare, shallow, deep)
A : Ground Aspect (south, west/east, north)

E : Risk of Erosion (low, medium, high)
RP: Regeneration Potential (low, medium, high)

R S

S : Ground Slope (gentle, middle, steep)
R : Rock Type (permeable, semi-permeable, impermeable)

D : Risk of Desertification (no/slight, low, medium, high,very high)

AG

AG : Animal Grazing (slightly, moderately, heavily grazed)

Figure 7: Bayesian network constructed

We have created the Bayesian network shown in figure 7 for the purpose of taking into

consideration all these factors in order to assess the risk of desertification of a burned

forest. All variables and their possible states are also shown in figure 7. We represent

all variables of interest by nodes and draw arcs form causes to effects using the inform-

ation provided by experts. These links are then quantified by the conditional probability

matrices. We demonstrate in this section how we derive the three conditional probability

matricesP (EjR; S; SD), P (RP jSD;A;AG) andP (DjE;RP) using the proposed al-

gorithm. Experts have supplied us with rules with which we can infer (by hard reasoning)

the state of the three derivative nodes, namelyE, RP andD, given the state of their cor-

responding parents. We can therefore consider the above network as consisting of three

simple subnetworks, namely one with inputsR, S andSD, one with inputsSD, A and

AG, and one with inputsE andRP .

We can then construct the corresponding neural network for each of these three networks

and train it, each one with its own training data provided.

We shall now demonstrate how we can obtain the conditional probability matrix for the

first sub-network. As described in previous sections, we construct a single layer neural

network shown in figure 8 which consists of 26 input and 2 output nodes. The two output

nodes return the confidences of a region being in the two independent states of erosion,

low andmedium. The 26 input nodes are determined as follows: For each independent

state of each parent variable, we assign one input unit in the corresponding neural network

representing the confidence in that state. This gives a total of 6 inputs for the 3, 3-valued

parent variables namelyR, S andSD. The remaining 20 input units are all the possible

product combinations of these 6 confidences, excluding products of confidences in states

of the same variable. For example, let us denote the confidence in theith state of variable

R by Ri etc, i.e. let subscripts indicate which state and capital letters which variable of

the network. Then we have in the input layer of the corresponding neural network the

units representing:R1, R2, S1, S2, SD1, SD2, R1S1, R1S2, R1SD1,...,R2S2SD2. There

are 26 such units. The confidence with which the output node belongs to classhigh can

be inferred from the outputs in nodesE1 andE2, ie the confidences with which it belongs

to the classeslow andmedium.

I

I1

2

I 26

E1

E 2

Figure 8: A neural network which corresponds to the first Bayesian sub-network of fig-
ure 7

We then use as training patterns the results and data provided by experts for the risk of

erosion for 39 sites. After training the neural network, we obtain its weights. As we have

observed from the test sites, the 39 training patterns seemed representative of the true

classes that the network would need to identify. Therefore we derivedp(x) that appears

in equation 18 by calculating the frequency with which each output occurs when tested

on the training patterns. After deriving the parameters of the approximating line, using

equations 20 and 21, we calculated the first column of the matrix using the weights on the

links connected to the statelow. This column gives the probability oferosion beinglow

given all the possible combinations of the parents. The remaining 26 weights are used to

derive the second column of independent matrix elements corresponding toerosion being

medium. The other conditional probability matrices are derived in a similar fashion.

Table 1 shows the root-mean square (RMS) error for each output, for each of the variables

i.e. the quadratic difference between the neural network output and the Bayesian network

output over all 39 training patterns. Their average RMS error shown in the last column is

computed using the individual RMS errors for each output.

RMS

State 1 State 2 State 3 State 4 Average

Erosion 0.015 0.012 N/A N/A 0.0135
Output Regeneration 0.010 0.009 N/A N/A 0.0095

Desertification 0.022 0.023 0.011 0.021 0.0192

Table 1: The RMS error resulting by calculatingp(x) using the training pattern
file.

RMS

State 1 State 2 State 3 State 4 Average

Erosion 0.039 0.019 N/A N/A 0.0290
Output Regeneration 0.029 0.014 N/A N/A 0.0215

Desertification 0.043 0.042 0.035 0.024 0.0360

Table 2: The RMS error resulting by calculatingp(x) using uniformly distributed
random inputs.

Table 2 was derived by calculating the correspondence between the two networks assum-

ing uniform distributions of the input variables in the range (0,1).

As we can see from the tables, the method of uniform random input has higher error than

the method of obtainingp(x) using the pattern file outputs. This is as expected since the

probability distribution of each output as derived using the pattern file, is closer to the

“true” probability distribution, assuming that we consider as “true” the distribution which

best models the training data.

This is because the method of using uniformly distributed random inputs neglects the

information given by the pattern file, thus produces the highest RMS error taken over all

training patterns.

Table 3 shows the results of the risk oferosion, regeneration potential anddesertification

obtained using the Bayesian network with derived conditional probability matrices using

correspondence as indicated by the RMS of table 1. The results are for the 39 sites used

for training and each column gives the belief in the risk of each of the variables. The

class with the highest probability is assigned as the final classification label. The “
p

” in

each column indicates agreement with the expert. Out of the 39 sites, 37 sites agreed on

the risk of erosion, 38 agreed for the risk of regeneration potential and 35 agreed on the

desertification risk.

Table 4 shows the results obtained by the Bayesian network for the three variables on 14

test sites which were not used for the derivation of the conditional probability matrices.

Again the “
p

” is to indicate agreement with experts. Out of 14 sites, 12 agreed on the

erosion, 11 agreed on regeneration potential and 11 agreed on desertification risk.

8 Summary and Conclusions

We have presented in this paper a novel method for eliciting the conditional probability

matrices needed for a Bayesian network with the help of a neural network. We demon-

strated how we can obtain a correspondence between the two networks by deriving a

closed-form solution so that the outputs of the two networks are similar in the least square

error sense, not only when determining the discriminant function, but for the full range of

their outputs. The probability density functions of the independent variables of the prob-

lem is taken into consideration when we compute the least square error approximation.

We have shown that any singly connected Bayesian network, where input is represented

by the root nodes (i.e. nodes with no parents) and the output by the leaf nodes (i.e.

nodes with no children), can be reduced to one with direct links from input to output

by maintaining the same information as the complete structure. This method guarantees

exact correspondence and can be extended to any number of inputs. The total number

of nodes in the input layer of the neural network constructed to represent a Bayesian

network consisting ofM nodes, each withNi (for i = 1 : : :M) states, is
QM
i=1Ni � 1.

Site BEL(E) BEL(RP) BEL(D)

lavrio1 (0.13, 0.26, 0.61)
p

(0.09, 0.26, 0.65)
p

(0.10, 0.15, 0.43, 0.23, 0.09)
p

lavrio2 (0.42, 0.45, 0.13) (0.16, 0.15, 0.69)
p

(0.14, 0.26, 0.38, 0.13, 0.09)
p

lavrio3 (0.42, 0.45, 0.13)
p

(0.15, 0.16, 0.69)
p

(0.14, 0.26, 0.38, 0.13, 0.09)
p

lavrio4 (0.63, 0.26, 0.11)
p

(0.10, 0.15, 0.75)
p

(0.16, 0,32, 0.27, 0.14, 0.11)
p

lavrio5 (0.63, 0.26, 0.11)
p

(0.59, 0.27, 0.14)
p

(0.10, 0.20, 0.43, 0.15, 0.12)
p

lavrio6 (0.63, 0.26, 0.11)
p

(0.15, 0.16, 0.69)
p

(0.15, 0.31, 0.29, 0.14, 0.11)
p

pateras1 (0.49, 0.38, 0.13)
p

(0.59, 0.27, 0.14)
p

(0.10, 0.18, 0.47, 0.14, 0.11)
p

pateras2 (0.49, 0.38, 0.13)
p

(0.59, 0.27, 0.14)
p

(0.10, 0.18, 0.47, 0.14, 0.11)
p

pateras3 (0.49, 0.38, 0.13)
p

(0.59, 0.27, 0.14)
p

(0.10, 0.18, 0.47, 0.14, 0.11)
p

pateras4 (0.49, 0.38, 0.13)
p

(0.59, 0.27, 0.14)
p

(0.10, 0.18, 0.47, 0.14, 0.11)
p

pateras5 (0.74, 0.17, 0.09)
p

(0.04, 0.15, 0.81)
p

(0.17, 0.36, 0.21, 0.14, 0.12)
p

pateras6 (0.49, 0.38, 0.13)
p

(0.59, 0.27, 0.14)
p

(0.10, 0.18, 0.47, 0.14, 0.11)
p

pateras7 (0.27, 0.64, 0.09)
p

(0.14, 0.39, 0.47)
p

(0.12, 0.21, 0.41, 0.17, 0.09)
p

pateras8 (0.27, 0.64, 0.09)
p

(0.16, 0.15, 0.69)
p

(0.13, 0.23, 0.44, 0.12, 0.08)
p

pateras9 (0.27, 0.64, 0.09)
p

(0.14, 0.43, 0.43)
p

(0.12, 0.20, 0.40, 0.18, 0.10)
p

pateras10 (0.74, 0.17, 0.09)
p

(0.04, 0.15, 0.81)
p

(0.17, 0.36, 0.21, 0.14, 0.12)
p

pateras11 (0.74, 0.17, 0.09)
p

(0.16, 0.15, 0.69)
p

(0.16, 0.34, 0.25, 0.13, 0.12)
p

pateras12 (0.87, 0.12, 0.01)
p

(0.16, 0.15, 0.69)
p

(0.17, 0.38, 0.20, 0.12, 0.13)
p

pateras13 (0.87, 0.12, 0.01)
p

(0.16, 0.15, 0.69)
p

(0.17, 0.38, 0.20, 0.12, 0.13)
p

pateras14 (0.27, 0.64, 0.09)
p

(0.16, 0.15, 0.69) (0.13, 0.23, 0.44, 0.12, 0.08)
p

pateras15 (0.27, 0.64, 0.09)
p

(0.10, 0.15, 0.75)
p

(0.14, 0.24, 0.42, 0.13, 0.07)
p

pateras16 (0.27, 0.64, 0.09)
p

(0.10, 0.15, 0.75)
p

(0.14, 0.24, 0.42, 0.13, 0.07)
p

pendeli1-1 (0.42, 0.45, 0.13))
p

(0.04, 0.15, 0.81)
p

(0.15, 0.28, 0.34, 0.14, 0.09)
pendeli1-2 (0.13, 0.26, 0.61)

p
(0.10, 0.15, 0.75)

p
(0.11, 0.15, 0.47, 0.20, 0.07)

p
pendeli1-3 (0.14, 0.25, 0.61)

p
(0.14, 0.39, 0.47)

p
(0.09, 0.14, 0.40, 0.25, 0.12)

p
pendeli1-4 (0.42, 0.45, 0.13)

p
(0.16, 0.15, 0.69)

p
(0.14, 0.26, 0.38, 0.13, 0.09)

p
pendeli1-5 (0.42, 0.45, 0.13)

p
(0.04, 0.15, 0.81)

p
(0.15, 0.28, 0.34, 0.14, 0.09)

pendeli1-6 (0.42, 0.45, 0.13)
p

(0.16, 0.15, 0.69)
p

(0.14, 0.26, 0.38, 0.13, 0.09)
p

pendeli1-7 (0.14, 0.25, 0.61)
p

(0.14, 0.39, 0.47)
p

(0.09, 0.14, 0.40, 0.25, 0.12)
p

pendeli2-1 (0.13, 0.26, 0.61)
p

(0.16, 0.15, 0.69)
p

(0.11, 0.15, 0.48, 0.19, 0.07)
p

pendeli2-2 (0.42, 0.45, 0.13) (0.16, 0.15, 0.69)
p

(0.14, 0.26, 0.38, 0.13, 0.09)
p

pendeli2-3 (0.13, 0.26, 0.61)
p

(0.09, 0.26, 0.65)
p

(0.10, 0.15, 0.43, 0.23, 0.09)
p

pendeli2-4 (0.13, 0.26, 0.61)
p

(0.09, 0.26, 0.65)
p

(0.10, 0.15, 0.43, 0.23, 0.09)
p

barnavas1 (0.14, 0.25, 0.61)
p

(0.14, 0.39, 0.47)
p

(0.09, 0.14, 0.40, 0.25, 0.12)
barnavas2 (0.14, 0.25, 0.61)

p
(0.16, 0.15, 0.69)

p
(0.11, 0.15, 0.48, 0.19, 0.07)

p
barnavas3 (0.14, 0.25, 0.61)

p
(0.14, 0.39, 0.47)

p
(0.09, 0.14, 0.40, 0.25, 0.12)

p
barnavas4 (0.14, 0.25, 0.61)

p
(0.16, 0.15, 0.69)

p
(0.11, 0.15, 0.48, 0.19, 0.07)

p
barnavas5 (0.14, 0.25, 0.61)

p
(0.16, 0.15, 0.69)

p
(0.11, 0.15, 0.48, 0.19, 0.07)

p
barnavas6 (0.42, 0.45, 0.13)

p
(0.15, 0.16, 0.69)

p
(0.14, 0.26, 0.38, 0.13, 0.09)

Table 3: Results of erosion, regeneration potential and desertification of the 39
training sites using the matrices derived

Site BEL(E) BEL(RP) BEL(D)

Tlavrio1 (0.13, 0.26, 0.61)
p

(0.16, 0.19, 0.65)
p

(0.10, 0.15, 0.47, 0.20, 0.08)
p

Tlavrio2 (0.42, 0.45, 0.13)
p

(0.11, 0.24, 0.65)
p

(0.15, 0.37, 0.17, 0.15, 0.16)
p

Tpateras1 (0.87, 0.12, 0.01)
p

(0.11, 0.24, 0.65)
p

(0.16, 0.34, 0.25, 0.13, 0.12)
p

Tpateras2 (0.74, 0.17, 0.09)
p

(0.16, 0.15, 0.69)
p

(0.16, 0.34, 0.25, 0.13, 0.12)
p

Tpateras3 (0.27, 0.64, 0.09)
p

(0.16, 0.19, 0.65)
p

(0.13, 0.23, 0.43, 0.13, 0.08)
p

Tpateras4 (0.74, 0.17, 0.09)
p

(0.11, 0.24, 0.65)
p

(0.15, 0.33, 0.22, 0.16, 0.14)
p

Tpateras5 (0.27, 0.64, 0.09)
p

(0.16, 0.19, 0.65)
p

(0.13, 0.23, 0.43, 0.13, 0.08)
p

Tpateras6 (0.27, 0.64, 0.09)
p

(0.15, 0.26, 0.59) (0.13, 0.22, 0.42, 0.15, 0.08)
p

Tpendeli1-1 (0.13, 0.26, 0.61))
p

(0.16, 0.19, 0.65)
p

(0.10, 0.15, 0.47, 0.20, 0.08)
p

Tpendeli1-2 (0.36, 0.40, 0.24) (0.15, 0.26, 0.59) (0.12, 0.23, 0.37, 0.17, 0.11)
Tpendeli1-3 (0.13, 0.26, 0.61)

p
(0.15, 0.26, 0.59) (0.10, 0.15, 0.44, 0.22, 0.09)

Tpendeli2-1 (0.30, 0.31, 0.39) (0.64, 0.29, 0.07)
p

(0.07, 0.13, 0.51, 0.17, 0.12)
p

Tbarnavas1 (0.42, 0.45, 0.13)
p

(0.11, 0.24, 0.65)
p

(0.14, 0.26, 0.35, 0.15, 0.10)
p

Tbarnavas2 (0.42, 0.45, 0.13)
p

(0.11, 0.24, 0.65)
p

(0.14, 0.26, 0.35, 0.15, 0.10)

Table 4: Results of erosion, regeneration potential and desertification of the 14
test sites using the matrices derived

The additional features are
QM
i=1Ni � 1 � M . This indicates that the number of new

features in the neural network increases exponentially with the addition of further nodes

in the Bayesian network. However, the required neural network would, otherwise, need

the additional units to be added in hidden layers if the method of introducing new features

were not adopted. Moreover, by reducing anyN -th order function to a linear function, we

automatically have a structure for the neural network i.e. a simple two layered perceptron,

which will guarantee to model the function. Otherwise a suitable number of hidden layers

and of hidden units in these layers would have to be defined.

The proposed algorithm provides a theoretical study specifying the link between the two

models, i.e. the Bayesian networks and the neural networks. Moreover, it provides a way

of determining the weights for the neural network without training if the elements of the

conditional probability matrix of the Bayesian network were available. Alternatively, the

elements of the conditional probability matrix can be determined in terms of the weights

and thresholds of the corresponding trainable neural network. This is particularly useful

since the method of deriving these matrix elements so far was by quantifying expert rules

which had the risk of inconsistencies and ambiguities.

A Obtaining the bounds of the Bayesian output
function

In this section we will prove that the Bayesian output function given by (12), is bounded

and attains its maximum and minimum values at the corners of the unit square defined by

the variablesA andC which both range from 0 to 1. The four corners are indeed the four

independent elements of the conditional probability matrix i.e.m1,m2,m3 andm4.

For notational simplicity, assume a general notation of the function as:

f = �AC + �A+ C + (23)

The stationary point of the function is(A;C)=(�

�
;��

�
).

The Hessian matrix off is:

H =
�
0 �
� 0

�

Using the eigenvalues� and�� of this matrix, we can determine the nature of the station-

ary point (see Claycombe and Sullivan2). Since one eigenvalue is positive and the other

one negative, then the stationary point is neither a maximum nor a minimum. Therefore

the function does not have a maximum or minimum in the interior of the permitted region

and since it is a continuous function, it therefore attains its maximum and minimum on

the boundary of the region (see Beveridge and Schechter1) i.e. on the linesA = 0,A = 1,

C = 0 orC = 1.

Along the boundary defined byA = 0 the functionf is linear inC and therefore the

maximum and minimum are attained at the extreme values ofC i.e. 0 or 1 according to

the values of and and similarly for the other lines defining the permitted region. For

global maximum and minimum we choose the corner with the highest and lowest values

respectively. We therefore proved that on the boundary, the maximum and minimum

values lie on the corners of the unit square. These corners i.e.(A = 0; C = 0), (A =

0; C = 1), (A = 1; C = 0) and(A = 1; C = 1) represent the conditional probability

matrix elementsm4,m3,m2 andm1 respectively.

So for obtaining the extrema we simply choose the maximum and minimum values of the

conditional probability matrix.

The above proof extends to any number of parent nodes in the Bayesian network.

B Local linear approximation of the sigmoid function

In this appendix we give the derivation of the formulae determining the parameters of the

line that approximates in the least square error sense the sigmoid function over a finite

range. The function that has to be minimized, taking into consideration the probability

density function of the independent variables, is given by (19).

Taking the derivatives with respect to the parameters of the line and equating them to zero,

we obtain:

@f

@s
= s

Z xmax

xmin
p(x)x2dx + �

Z xmax

xmin
p(x)xdx�

Z xmax

xmin

xp(x)

1 + e�x
dx = 0 (24)

IntroducingS1, S2 andS3 as:

S1 �
Z xmax

xmin
x2p(x)dx

S2 �
Z xmax

xmin
xp(x)dx

S3 �
Z xmax

xmin

x

1 + e�x
p(x)dx

(25)

we get:

sS1 + �S2 = S3 (26)

Similarly, differentiating with respect to� and equating to zero we obtain:

@f

@�
= s

Z xmax

xmin
p(x)xdx + �

Z xmax

xmin
p(x)dx�

Z xmax

xmin

p(x)

1 + e�x
dx = 0 (27)

IntroducingS4 andS5 as:

S4 �
Z xmax

xmin
p(x)dx

S5 �
Z xmax

xmin

1

1 + e�x
p(x)dx (28)

we get:

sS2 + �S4 = S5 (29)

Solving equations (26) and (29) we obtain:

s =
S3 � �S2

S1
(30)

and

� =
S1S5 � S3S2

S1S4 � S2
2

(31)

The integralsS1, S2, S3, S4 andS5 are then solved numerically to derive the values of the

parameterss and� of the line.

References

1. Beveridge, G. S. G. and Schechter, R. S.,Optimization: Theory and Practice, McGraw-

Hill, Inc., 1970.

2. Claycombe, W. W. and Sullivan, W. G.,Foundations of Mathematical Programming,

Reston Publishing Company, Inc., 1975.

3. Devijver, P. A. and Kittler, J.,Pattern recognition: A statistical approach, Prentice-

Hall International Inc. London, 1982.

4. Duin, R. P. W., “Superlearning Capabilities of Neural Networks?,” inProceedings of

the 8th Scandinavian Conference on Image Analysis, 1993, pp. 547–554.

5. Longstaff, I. D. and Cross, J. F., “A pattern recognition approach to understand the

multi-layer perceptron,”Pattern Recognition Letters, 5, 1987, pp. 315–319.

6. Nabhan, T. M. and Zomaya, A. Y., “Toward generating neural network structures for

function approximation,”Neural Networks, 7(1), 1994, pp. 89–99.

7. Pearl, J., “Fusion, propagation, and structuring in Belief Networks,”Artificial Intelli-

gence, 29, 1986, pp. 241–288.

8. Pearl, J.,Probabilistic reasoning in intelligent systems: Networks of plausible infer-

ence, Morgan Kaufmann Publishers Inc., 1988.

9. Stassopoulou, A., Petrou, M. and Kittler, J., “Bayesian and neural networks for geo-

graphic information processing,”Pattern Recognition Letters, 17, 1996, pp. 1325–1330.

