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Digital filters for recursively computing the discrete Fourier transform (DFT) and estimating the 
frequency spectrum of sampled signals are examined, with an emphasis on magnitude-response 
and numerical stability. In this tutorial-style treatment, existing recursive techniques are reviewed, 

explained and compared within a coherent framework; some fresh insights are provided and new 
enhancements/modifications are proposed. It is shown that the replacement of resonators by 
(non-recursive) modulators in sliding DFT (SDFT) analyzers with either a finite impulse response 

(FIR), or an infinite impulse response (IIR), does improve performance somewhat; however 
stability is not guaranteed, as the cancellation of marginally stable poles by zeros is still involved. 
The FIR deadbeat observer is shown to be more reliable than the SDFT methods, an IIR variant is 

presented, and ways of fine-tuning its response are discussed. A novel technique for stabilizing IIR 
SDFT analyzers with a fading memory, so that all poles are inside the unit circle, is also derived. 
Slepian and sum-of-cosine windows are adapted to improve the frequency responses for the 

various FIR and IIR DFT methods. 

Keywords: digital filters, frequency estimation, FIR filters, Fourier transform, IIR filters, recursive 
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1.   Introduction 

The remarkable efficiency of the fast Fourier transform (FFT) has confined alternative 

implementations of the discrete Fourier transform (DFT), such as recursive filter banks 
1.   -4.   , to just a handful of niche applications: where input signals are band limited (e.g. 

in communications 5.   -7.    and radar/sonar systems 8.   -10.   ); where tight architectural 

constraints are imposed (e.g. in mobile and embedded devices); and/or where low 

input/output latency is required (e.g. in safety critical 11.   , closed-loop control and 

autonomous systems). 

In many of the aforementioned digital systems, the DFT is used to form estimates of 

internal or external system states, via a power density spectrum (PDS) estimate derived 

from noisy sensor data. On the one hand, when an 𝑀-point recursive DFT is used to form 

state estimates in a digital feedback-control system, the control loop and the sensor 

signal digitizer (with an ideal low-pass anti-aliasing filter) are able to operate with a 

common period of 𝑇 seconds. On the other hand, when an 𝑀-point batch FFT is used, 

all 𝑀 samples must be collected and stored in a buffer before they are processed, thus 
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the controller must operate with a time period of 𝑀𝑇 seconds between each new 

control command. This reduces the stability margins of the system, forcing a lower 

loop-gain to be used, resulting in a ‘sluggish’ closed-loop system response. The use of 

even relatively short temporal or spatiotemporal FFTs 12.   , in guidance/autopilot 

subsystems of fast-moving autonomous vehicles, where the primary sensor is a video 

camera operating with a frame rate in the order of 100 Hz, may therefore be sufficient 

to render the system useless. In many legacy systems however, data are transferred 

from the sensor to the processor as blocks, rather than as sample-by-sample streams. 

In these cases, latency is unavoidable and well suited to batch processing using an FFT. 

Interest in recursive DFTs for coding, signal analysis and spectrum estimation 

appears to have increased in recent years 1.   -11.   , motivated perhaps by current trends 

in hardware technology where sampling frequencies of analog-to-digital converters 

continue to increase, while clock frequencies of digital processors appear to be 

plateauing after many years of near exponential growth. Sensors and processors are 

also becoming tightly coupled and being developed as integrated systems, which 

provides an opportunity for the introduction of new approaches to the management of 

data flows. There is now, more than ever, a need to develop alternative DFT algorithms 

that might be more efficient and easier to implement than the FFT on a new generation 

of sensors and parallel computing platforms 8.   ,10.   . 

In the next section some existing recursive DFT implementations are discussed and 

compared in terms of their, (impulse- and frequency-) response characteristics and 

their resistance to the accumulation of rounding errors. Despite the importance of 

rounding error sensitivity in real systems 1.   ,10.   ,11.   ,13.   -15.   ; this point has been 

overlooked in many studies on recursive frequency analyzers 3.   -5.   ,16.   -18.    which are 

highly susceptible to this problem due to the use of pole-zero cancellation on the unit 

circle. This problem has been addressed for finite impulse response (FIR) Sliding DFTs 

(SDFTs) in Refs. 13.    and 19.    through the use of modulators instead of resonators in 

the filter bank (see Section 2.2). For the most part, this approach does improve 

performance; however, the dc prototype filter used, still contains a pole on the unit 

circle at 𝑧 = 1, which leaves the filters vulnerable to rounding errors, when the input 

signal is corrupted by high-power impulsive noise, for example (see Section 3). It is 

shown in this paper that this approach may also be applied to the infinite impulse 

response (IIR) SDFTs (see Section 2.6). 

Of the recursive DFT methods considered, the deadbeat-observer technique would 

appear to be the most attractive 7.   ,20.   -23.   , due to its low complexity and rounding error 

immunity (see Section 2.3); however, it is not ideal for spectrum estimation because its 

response is fixed and generally unfavorable due to the high side-lobe level of the 

Dirichlet kernel 24.   . Some novel ways of addressing this deficiency are discussed in this 

paper (see Section 2.4), although freedom to configure and fine-tune this method, by 

shifting its open-loop poles for instance, is complicated by the outer feedback loop. The 

fading-memory IIR SDFT methods described in Refs. 16.   -18.   , do offer some tuning 

flexibility; however they are susceptible to rounding error accumulation (see Section 

2.6). The use of simple band-pass filter banks and exponentially windowed oscillators 

is also discussed (see Section 2.5). 

In addition to providing an introduction and overview of existing recursive 

methods, with an emphasis on relative strengths, weaknesses and interrelationships, a 

stabilized version of the fading memory technique described in Ref. 17.    is presented 



 

here (see Section 2.7). This new filter structure has a recursive frequency analysis stage 

followed by a non-recursive mixing stage. The optimal mixing coefficients are 

determined via a least-squares procedure in the time domain but applied as a 

convolution in the frequency domain to ensure that all poles are inside the unit circle. 

A somewhat less significant, but none-the-less useful, contribution and point of novelty 

is the adaptation of Slepian windows to FIR frequency-sampling filter-banks (see 

Section 2.2) and the use of sum-of-cosine windows to improve the response of the 

various IIR SDFT methods such as Refs. 13.    and 17.   . To illustrate these main points, 

results of computer simulations are presented and discussed in Section 3. The paper 

closes with a summary, some recommendations, and concluding remarks, in Section 4. 

2.   Overview of Some Low-Latency DFT Methods 

It is assumed in this paper that the DFT is used to construct a magnitude spectrum 

estimate |�̂�(𝑛, 𝑘)|, of a one-dimensional signal; therefore filter characteristics that 

promote the objective of detection and estimation in the frequency domain are favored 

(e.g. low variance, low bias, reasonable main-lobe width and low side-lobe levels 22.   ,24.   ) 

even if they do not satisfy all the requirements of a formal time-to-frequency 

transformation (e.g. orthogonality and perfect reconstruction 3.   ,21.   ). As the spectrum 

is a function of both time and frequency, the methods are well suited to time-frequency 

analysis 1.   ; however, the focus here is mainly on steady-state performance for 

approximately stationary signals. Scope is further limited to non-parametric and non-

adaptive methods, implemented using filter banks operating at a common sampling 

rate. Other than the signal bandwidth and the time duration over which the signal is 

approximately stationary, no prior information is used to design the filters. The filter 

responses are time invariant and their maxima are uniformly spaced in frequency. All 

methods have been factored to conform to a common conceptual architecture (see Fig. 

1). This novel decomposition is intended to facilitate the analysis and design 

comparisons described in this paper.  

For notational and coding convenience, 𝑀 is assumed to be odd and all 

coefficients/signals complex. Using complex variables, in mathematical equations and 

source code, means that first-order analysis filters may be used; however, nearly twice 

as many analyzers are required to cover the same frequency range. The associated 

symmetry benefits are evident when the methods considered here are applied to multi-

dimensional signals 12.   . 

Throughout the remainder of this section, the Methods implemented in Section 3, 

involving various permutations of new and existing techniques, are shown in bold 

typeface. A simple numeric labeling scheme is used to avoid a proliferation of long 

acronyms. The most basic analysis technique is described in the following subsection. 

Section 2 is also used: to clarify the nomenclature presented in Fig. 1, to introduce the 

function of some of the blocks in a familiar context, and to discuss the fundamentals of 

non-parametric frequency analysis.  

 



 

𝑛: Discrete-time sample index; 𝑛 = 0 … ∞. 

𝑘: Frequency ‘bin’ index. 

𝐾: Maximum ‘measurable’ frequency bin index, −𝐾 ≤ 𝑘 ≤ +𝐾. 

𝐵: Maximum frequency bin of ‘interest’ for a band-limited signal, −𝐵 ≤ 𝑘 ≤ +𝐵;  

     signal bandwidth = 2 𝐵 𝑀⁄  (cycles per sample); 𝐵 ≤ 𝐾. 

𝑀: ‘Nominal length’ (in samples) of the odd DFT;  𝑀 = 2𝐾 + 1.  

𝑧−1: Unit delay. 

𝑙: Prediction horizon (in samples); 𝑙 > 0. 

𝐻(𝑧): Discrete-time transfer function.  

𝑐: Gain factor. 

𝑥(𝑛): Digitized input signal.     

𝑥(𝑛): Estimate of the input signal.      

�̂�raw(𝑛, 𝑘): Frequency spectrum estimate (raw).     

�̂�(𝑛, 𝑘): Frequency spectrum estimate (windowed).     

𝐻pre(𝑧): Pre-filter; a scalar normalizing gain factor in most cases. 

𝐻ana(𝑧): A parallel bank of frequency-tuned analysis filters. 

𝐻mix: Mixing matrix; only used in the stabilized IIR SDFT. 

𝐻win: Window function; a convolution in the frequency domain. 

𝑐syn: Synthesis factors; the ‘partial’ IDFT, vector input, scalar output. 

𝑐fbk: Feedback gain; unity for FIR/IIR observer, zero otherwise. 

Fig. 1. Generic DFT filter architecture. 

2.1.   FIR DFT 

This non-recursive reference implementation (Method 1) is the simplest from a 

conceptual perspective but the most complex from a computational perspective. The 

time/frequency elements of the frequency-spectrum estimate �̂�(𝑛, 𝑘), are scaled bins 

of the DFT, computed via direct convolution in the time domain using a non-recursive 

filter with a finite-impulse-response, i.e. 

 �̂�(𝑛, 𝑘) = ∑ 𝑤(𝑚)𝑏𝑘(𝑚)𝑥(𝑛 − 𝑚)𝑀−1
𝑚=0  (1) 

thus 

 𝐻ana,𝑘(𝑧) = ∑ 𝑤(𝑚)𝑏𝑘(𝑚)𝑧−𝑚𝑀−1
𝑚=0   (2) 

where 

 𝑏𝑘(𝑚) = 𝑒𝑗2𝜋𝑚𝑘 𝑀⁄  (3) 
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are the filter coefficients of the frequency analyzer with 𝑗 = √−1. The term ‘bin’ is used 

here as a reminder that each filter responds not only to the frequency for which is 

designed, but also to nearby frequencies.  

The pre-filter for this technique simply normalizes the window response using 

𝐻pre(𝑧) = 1 ∑ 𝑤(𝑚)𝑀−1
𝑚=0⁄ . If a rectangular window is applied in the time domain then 

𝑤(𝑚) = 1 for 𝑚 = 0 … 𝑀 − 1 and 𝑤(𝑚) = 0 for 𝑚 = 𝑀 … ∞ thus 𝐻pre(𝑧) = 1 𝑀⁄ . 

Evaluating 𝐻ana(𝑧) around the unit circle, i.e. substituting 𝑧 = 𝑒𝑗𝜔 = 𝑒𝑗2𝜋𝑓  into Eq. (2), 

yields the frequency response of the 𝑘th frequency analyzer in the filter bank 

 𝐻ana,𝑘(𝑓) =
sin{𝑀𝜋(𝑓−𝑘 𝑀⁄ )}

𝑀sin{𝜋(𝑓−𝑘 𝑀⁄ )}
  (4) 

which is the Dirichlet kernel 𝒟𝑀(𝑓) 24.   , where 𝑓 is the normalized frequency (cycles 

per sample) and 𝜔 is the angular frequency (radians per sample).  

This response is undesirable because strong but distant signal components all 

contribute to the output of the 𝑘th bin, due to the high side-lobes, which may mask the 

presence of weak but nearby components. Use of a less ‘severe/abrupt’ or ‘tapered’ 

window function, such as the Slepian window (Method 2), improves the response by 

lowering the side-lobe level at the expense of some main-lobe broadening. A broader 

main-lobe makes it more difficult to resolve strong closely-spaced components, but it 

also decreases the attenuation of components that are located midway between 

adjacent bins 24.   . 

The finite impulse response of the Slepian window 𝑤(𝑚) for 𝑚 = 0 … ∞, is 

constructed so that only the first 𝑀 coefficients are non-zero and so that the proportion 

of its power density |𝑊(𝑓)|2 within the frequency band −𝑓∆ ≤ 𝑓 ≤ +𝑓∆ is maximized 
24.   . Convolving the frequency response of the Slepian window with the ideal response 

of the 𝑘th frequency analyzer – a unit impulse 𝛿(𝑓 − 𝑘 𝑀⁄ ) – shifts the window response 

so that the power of the windowed analyzer is maximally concentrated within the band 
𝑘

𝑀
−𝑓∆ ≤ 𝑓 ≤ 𝑘

𝑀
+ 𝑓∆. Note that this optimization criterion states nothing about the 

‘shape’ of the response in the pass band. The response in this band is therefore peaked, 

not flat; whereas the response outside this band rolls off quickly. Both features are ideal 

for frequency analysis. Slepian windows, or the first solution of the so-called discrete 

(or digital) prolate spheroidal sequence (DPSS) were used in this study because the 

maximal concentration criterion takes some of the guesswork out of the tuning process 
25.   ,26.   . For completeness, the procedure for deriving Slepian windows is given in 

Appendix A. In Ref. 27.   , the design process has also been extended and generalized for 

use in digital low-pass filter designs. 

As the window is applied in the time domain, 𝐻win  and  𝐻mix are simply the identity 

matrices. The synthesis block applies a ‘partial’ inverse DFT (IDFT) operation, which 

reconstructs the noise-free input signal at the (𝑛 + 𝑙)th sample, using only the 

frequencies within the analysis band −𝐵

𝑀
≤ 𝑓 ≤ +

𝐵

𝑀
; when the signal is known to be band 

limited, 𝐵 < 𝐾. This method does not rely on the outer feedback loop to produce a 

produce the PDS estimate; therefore 𝑐fbk = 0 and the synthesis operation is optional; 

although it may be used if the system is also required to perform a low-pass filtering 

function. However, the filter will have a very poor response – i.e. poor attenuation 

outside the pass band and uneven gain with non-linear phase inside the pass band – if 



a predictive filter is applied (𝑙 > 0). For best results, assuming a non-zero group delay 

is tolerable, 𝑙 = −𝐾 should instead be used and the delay block omitted. This yields a 

linear-phase FIR filter, with a reasonable magnitude response. The synthesis operation 

is applied using  

 �̂�(𝑛 + 𝑙) = ∑ 𝑐syn(𝑘)�̂�raw(𝑛, 𝑘)+𝐵
𝑘=−𝐵  (5) 

where 

 𝑐syn(𝑘) = 𝑒−𝑗2𝜋𝑙𝑘 𝑀⁄  (6) 

and �̂� is an estimate of the noise-free signal �̃�, see (D.3). Swapping �̂� for �̂�raw may be 

preferable in cases where tapered windows are not required (i.e. for improved 

frequency resolution). 

2.2.   FIR SDFT 

The sliding DFT (SDFT) 28.   ,29.   , sometimes referred to as the frequency-sampling 

method in older literature 22.   , uses a recursive comb pre-filter and a bank of recursive 

first-order resonator filters with an infinite impulse response (IIR), to generate a bank 

of frequency analyzers with a finite impulse response (FIR) and a Dirichlet-kernel 

frequency-response. This FIR SDFT technique is implemented using 

 𝐻pre(𝑧) = 1

𝑀
(1 − 𝑧−𝑀)  (7) 

 𝐻ana,𝑘(𝑧) = 1

1+𝑎𝑘𝑧−1  (8) 

where  

 𝑎𝑘 = −𝑒𝑗𝜔𝑘  with 𝜔𝑘 = 2𝜋𝑘 𝑀⁄ . (9) 

The outer feedback loop is not utilized by this method. 

In Eq. (8) the complex coefficient is in the feedback path of the resonator. This 

means that the phase reference of the analyzer is always at the current sample (𝑚 = 0), 

as per all of the other methods considered in this paper. This configuration is ideal for 

filtering operations; however, if a fixed phase reference is preferred (e.g. at 𝑛 = 0) then 

the complex coefficient should instead be placed in the forward path so that it appears 

in the numerator and denominator of Eq. (8) 29.   . 

Unfortunately, the response of an FIR SDFT analyzer is generated using a 

marginally-stable pole on the unit circle due to the resonator, cancelled by one of the 

zeros created by the comb (Method 3). This leaves the analyzers vulnerable to the 

accumulation of rounding errors if the zeros are unable to perfectly cancel the pole due 

to finite machine precision. This does not mean that the filters are prone to ‘explosive’ 

instability; rather, a drift or bias may gradually appear over time. These errors are 

immaterial if numeric variables are long and if processing intervals are short. The comb 

pre-filter can be interpreted as being partially responsible for the errors – as it involves 

the difference of two finite precision numbers. For signals containing only components 

at the analysis frequencies – i.e. with 𝑀 being an integer multiple of all component 

periods – the resulting difference should be zero when the system reaches steady-state, 

however a non-zero value is output when finite precision is used. The following 

resonators then integrate these errors, resulting in an offset.  



 

It was shown in Ref. 13.    that the stability of the FIR SDFT is improved if resonator 

convolution – see Eq. (8) – is replaced by a modulator, an integrator (i.e. a pole at 𝑧 =

1), and a phase corrector (the FIR “mSDFT”). The modulating signal is a complex 

sinusoid which may be generated recursively (Method 4) or pre-generated and stored 

in a look-up table (Method 5). Around the same time, a similar approach was proposed 

and used to transform the temporal dimension of a spatio-temporal filter 19.   . The 

modulating sinusoids are pre-generated for this filter; however, complexity is increased 

through the use of a comb filter in each temporal frequency bin and a non-recursive 

DFT in the spatial dimensions. 

The frequency response of the various SDFT methods may be improved through the 

application of sum-of-cosine windows in the frequency domain via a convolution 

operation, which is applied by the 𝐻win block in Fig. 1 28.   ,30.   . These windows (e.g. Hann, 

Hamming and Blackman) are designed to approximately cancel the side lobes of the 

Dirichlet kernel using bins that surround the analysis bin (see Appendix C) 24.   . However 

Slepian-type windows may also applied if an ‘optimal’ approach is preferred; note that 

mathematical optimality is not necessarily the same as system optimality, if low side-

lobes are more important than narrow main-lobes, for instance. A procedure for 

deriving the 2𝐵win + 1 window coefficients, where 𝐵win ≤ 𝐵, is described in Appendix 

B. This procedure produces the frequency-domain window coefficients �̃�(𝑘) for 

−𝐵win ≤ 𝑘 ≤ +𝐵win, that maximize the proportion of the power density in the 

frequency band −𝑓∆ ≤ 𝑓 ≤ +𝑓∆, given the constraints of a finite impulse response of 

2𝐾 + 1 samples in the time domain and a window size of only 2𝐵win + 1 bins in the 

frequency domain. Note that 𝐵win = 1 for the Hann and Hamming windows and 𝐵win =

2 for the Blackman window. Note also that if 𝐵 < 𝐾 then 𝐵win  bins at the positive and 

negative extremes of the spectrum cannot be windowed properly; rather than deriving 

customized windows for these edge bins, they are left unprocessed here. This Slepian-

type window was applied to the FIR mSDFT, implemented using a pre-generated 

modulator (Method 6). 

2.3.    FIR Deadbeat Observer 

The deadbeat observer is a control-theoretic approach to the problem of frequency 

analysis (Method 7) 7.   ,20.   -23.   . A “deadbeat” response is produced when the output is 

simply a delayed version of the input, at the sampling times at least. This is achieved by 

placing all closed-loop poles at the origin of the 𝑧 plane. An “observer” is a state-space 

control technique for estimating the internal states of a system, using a plant model 

embodied within a filter which is driven by a prediction error. The immunity of this 

method to rounding errors may also be interpreted using a fundamental control theory 

principle, which asserts that the addition of an integrator to the forward path of a 

control loop helps to drive steady-state tracking errors of the closed-loop system to 

zero. 

The deadbeat-observer approach to recursive DFT generation employs a bank of 

integrators modulated by complex sinusoids, to generate a set of equally-spaced 

marginally-stable poles around the unit circle for the open-loop system. A synthesis 

operation is then performed to yield a one-sample prediction estimate, which is then 



delayed by one sample, fed back and compared with the input. The bank of frequency 

analyzers is then driven by the resulting error signal. When the closed-loop transfer 

function of the 𝑘th frequency analyzer is determined 22.   , it can be seen that the poles of 

the other analyzers in the filter bank form a comb around the unit circle in the 𝑧 plane 

(i.e. equally-spaced zeros), one of which cancels the 𝑘th pole, thus producing the 

Dirichlet response in the frequency domain. 

The observer methods are the only techniques that need the feedback loop, in all 

other cases 𝑐fbk = 0. However; all methods may optionally use the time-averaged error-

signal as an indication of the spectrum quality – i.e. how well the specified frequency 

components represent the input signal. 

2.4.    IIR Non-Deadbeat Observer 

The situation described above is perfect for recursive DFT computation – with low 

complexity and rounding error immunity; however for spectrum estimation, the 

Dirichlet response is not always ideal. Many years ago when this method was first 

proposed 20.   , Bitmead was quick to point out that the finite-memory (i.e. FIR) deadbeat 

response of this method may be sub-optimal and that a fading memory (i.e. IIR) might 

be more desirable in some cases, where greater smoothing (in the time domain) was 

needed to reduce the effects of random noise 31.   . To deal with this problem he proposed 

the use of a Kalman filter for frequency analysis 32.   ; however, this approach is also not 

well suited to spectrum estimation as it only reduces the variance of signal components 

that coincide with the analysis frequencies (narrow main-lobes) and reduces the bias 

due to the interference of other frequencies (low side-lobes). This approach is more 

appropriate in applications, such as radar and communication systems, where the 

component frequencies are known a priori. 

The increased frequency selectivity of a slowly fading memory in a frequency analyzer 

manifests itself as a narrower/sharper main-lobe with lower side-lobes 16.   -18.   ,32.   . 

Somewhat counter-intuitively perhaps, window functions in frequency estimation 

operate by decreasing the frequency selectivity of the main lobe. As previously 

mentioned, this is a side-effect of side-lobe reduction, but is not entirely undesirable as 

it also increases the response to intra-bin components that might otherwise ‘slip 

through the cracks’ and go undetected.  

Peceli demonstrated that the response of the deadbeat observer could be improved 

(low side-lobes without overly narrow main-lobes) by increasing the pole multiplicity 

of the analyzers in the filter bank to second or third order 22.   . This approach is clearly 

very attractive; however, in this paper the focus is on banks of first-order IIR filters. 

Returning now to Fig. 1: The deadbeat (Method 7) and non-deadbeat (Method 8) 

observers are both implemented using: 𝐻pre(𝑧) = 1 𝑀⁄ ; the same analysis filter as the 

sliding DFT, see Eq. (8); 𝑙 = 1 in Eq. (5) and Eq. (6) and 𝑐fbk = 1. Other than increasing 

the pole multiplicity as discussed above, the observer method is difficult to modify 

because changes to the various transfer functions have unexpected and usually 

undesirable consequences on the closed-loop transfer function. The poles must remain 

on the unit circle, for the reasons discussed above which limits tuning flexibility; 

however, two simple adjustments are proposed below to modify the response of the 

deadbeat observer.  



 

The first modification is the use of a band-limited bank of analyzers (i.e. using 𝐵 <

𝐾). From a DFT perspective, this involves the use of many samples to evaluate just a few 

frequency bins. This approach is adopted for all of the other techniques considered in 

this paper – primarily to reduce the computational load; however, for this particular 

technique, the closed-loop response of each analyzer is also affected. In the 𝑧 plane, the 

poles move radially outwards from the origin thus the system is no longer deadbeat (i.e. 

FIR). In the time domain, the resulting response is less selective as it has a fading 

memory, with an infinite impulse response (IIR); which increases the frequency 

selectivity of the response. As discussed above, the lowering of the side-lobe levels is 

particularly useful in frequency analysis applications; however, narrow main-lobes are 

undesirable when the frequencies of signal components are unknown a priori. These 

effects are most pronounced when 𝐾 ≫ 𝐵 where the poles approach the unit circle. 

From a control-system perspective, this change in transient-response behavior in the 

time domain may be interpreted as being due to the decreased gain applied by the pre-

filter in the forward path (𝐻pre(𝑧) = 1 𝑀⁄ ). Unfortunately this band-limited approach 

does result in some distortion of the main-lobe maxima (see Section 3).  

As has already been mentioned, an overly ‘sharp’ main-lobe is not necessarily 

desirable in frequency analysis. To moderate this effect, a second (complementary) 

modification may be used. If the prediction horizon is increased beyond 1 sample (𝑙 >

1), then this decreases the frequency selectivity of the observer. As mentioned at the 

end of Section 2.1, where the IDFT is discussed, when the synthesis sample moves away 

from the center of the analysis window (where 𝑙 = −𝐾) the response deteriorates; thus 

we have an alternative mechanism for conferring the main-lobe broadening effects of a 

window function in an observer framework. If a frequency-domain window function is 

also applied (see Appendix C), then this must be done outside the closed-loop circuit (as 

shown in Fig. 1) 22.   . The existence of the pre-filter gain and the prediction-horizon 

parameters (see Fig. 1), is hidden in the standard representations of the deadbeat 

observer used in the (historic and modern) literature on this topic; thus their possible 

utility as response-tuning mechanisms has been largely overlooked. 

2.5.   IIR Band-Pass Filters 

Another way to handle the problem of rounding error accumulation described in 

Section 2.2 is to simply use a bank of first-order damped resonators, with poles inside 

the unit circle, and to eliminate the comb pre-filter. The pole radius is selected to ensure 

that there is reasonable overlap between the responses of adjacent filters, so that 

frequency ‘coverage’ is reasonably uniform; a non-minimum-phase zero may also be 

placed on the opposite side of the unit circle for rapid roll-off. Using a near-unity pole 

radius 𝑟, yields highly frequency-selective filters. One complex ‘half’ of a real Goertzel 

filter is produced when 𝑟 = 1; however, as a consequence of their ever-expanding 

memory, Goertzel filters require the application of a window to concentrate their 

impulse response in time 3.   , using one of the approaches in Ref. 30.    for instance, 

although preferably one which does not involve poles on the unit circle 33.   . However, if 

the poles of the analyzers are inside the unit circle, then time concentration is a natural 

consequence of the filter’s fading memory. 



This approach is simply the recursive application of a one-sided exponential 

window 𝑤(𝑚) = 𝑒𝜎𝑚 (where 𝜎 < 0) to an un-damped resonator. When viewed in this 

way, it is apparent that a variety of generalized windows with impulse responses of the 

form 𝑤(𝑚) = 𝑚𝜅𝑒𝜎𝑚, could be applied to customize the response, if the order of the 

recursive window is increased using the ‘shape’ parameter 𝜅, with 𝜅 > 0 34.   -36.   . 

2.6.    IIR SDFT (Non-Stabilized) 

Like the band-pass filters described in the previous section, the filters described here 

have an exponentially fading memory; but unlike those analyzers, these analyzers are 

orthogonal, which makes them more suitable for both spectrum sensing and transform 

functions. They are also particularly useful in communications systems because 

interference between equally-spaced channels is minimized. This technique features a 

fading-memory pre-filter in series with a bank of (un-damped) resonators 17.   . The comb 

pre-filter has equally-spaced zeros on the unit circle with frequency-matched poles 

inside the unit circle. The analyzers are tuned so that their poles cancel one of the zeros 

on the unit circle, to form the main lobe of the frequency response. Unlike the Dirichlet 

response of the FIR analyzers (see Sections 2.1, 2.2 & 2.3), the main-lobe of each IIR 

analyzer is ‘sharpened’ by the pre-filter’s unmatched pole inside the unit circle. In 

contrast to the deadbeat observer, the pole radius 𝑟 of the pre-filter is a directly 

configurable parameter, allowing the time/frequency selectivity to be readily tuned. 

The IIR SDFT response approaches the FIR response as 𝑟 approaches zero; furthermore, 

the response of each analyzer is independent of 𝐵. 

Like the FIR SDFT described in Section 2.2, this IIR SDFT technique also suffers from 

rounding error accumulation due to pole-zero cancellation on the unit circle – a point 

which is overlooked in Refs. 16.    and 17.   . Note that the method described in Ref. 16.    is 

essentially the same as that described in Ref. 17.   ; however, each analyzer in Ref. 

16.    has a zero at 𝑧 = 1, which is apparently added to improve the phase response, and 

poly-phase extensions are described in Ref. 17.   .  

This IIR SDFT with a fading-memory (Method 9), is implemented using, 

 𝐻pre(𝑧) =
(1−𝑟)

𝑀
∙

1−𝑧−𝑀

1−𝑟𝑧−𝑀  (10) 

and 

 𝐻ana,𝑘(𝑧) = 1

1+𝑎𝑘𝑧−1  (11) 

where 

 𝑎𝑘 = −𝑒𝑗𝜔𝑘  and 𝑟 = 𝑒𝜎𝑀 (12) 

with 𝜎 being a forgetting-factor (𝜎 < 0), which is multiplied here by a factor of 𝑀 to 

ensure that the pole radius is the same as the filters described in the next section. This 

technique does not use the outer feedback loop (𝑐fbk = 0) thus the use of the synthesis 

factors (𝑐syn) is optional.  

As described in Section 2.2 on the recursive DFT with a finite memory (the FIR SDFT, 

Method 2), the analysis resonators in this recursive DFT with a fading memory (the IIR 

SDFT, Method 9) may also be replaced by (pre-generated) modulators (the IIR mSDFT, 

Method 10). It will be shown in Section 3 that this approach does improve stability 

somewhat, for both response types, but not in all situations – A fully stabilized version 



 

is presented in the next section. Note that in the recent literature the SDFT acronym is 

usually used to refer to the FIR technique described in Section 2.2; however, in this 

paper, due to their architectural similarity (different pre-filters), the less well-known 

IIR technique described in this section (sometimes called the notch Fourier transform 
16.   ) is also referred to here as an SDFT variant. 

Like the other DFT versions, application of a window is also optional; although doing 

this (in the frequency domain) with just a few bins is counterproductive if the poles are 

close to the unit circle because each main-lobe is very narrow and the side-lobes flat 

and broad, with sharp notches at the frequencies of the other bins. As a consequence, 

side-lobes do not cancel effectively as they do for Dirichlet kernels and the windowed 

main-lobe features multiple maxima rather than a smooth monotonic decay down to 

the edge of the first side-lobe. If sum-of-cosine windows are to be applied effectively 

(see Appendix C), then the pole radius 𝑟, of the pre-filter should be set so that the 

frequency response is at least somewhat similar to the Dirichlet kernel. A Hann window 

was applied to the IIR mSDFT, implemented using a pre-generated modulator (Method 

11). 

2.7.    Stabilized IIR SDFT 

The problem of rounding-error accumulation that destabilizes the FIR- & IIR-SDFT 

methods (Sections 2.2 & 2.6) is caused by the filter-bank integration of the rounding 

errors generated by the comb pre-filter. The technique described here avoids this 

problem by removing the damped comb pre-filter and replacing it with a frequency-

domain ‘mixing’ operation (Method 12). A fading-memory response is instead realized 

using a bank of damped resonators. In effect, the mixing operation orthonormalizes a 

bank of frequency-shifted ‘leaky’ integrators which act as band-pass filters. In this 

regard, the technique is a combination of the techniques described in Sections 2.5 & 2.6 

– yielding a stable orthogonal filter bank that is suitable for both estimation and 

transformation functions.  

The mixing operation is applied using a (2𝐵 + 1) × (2𝐵 + 1) ‘mixing matrix’ 𝐻mix, 

so that the 𝑘th windowed frequency bin is a linear combination of all 2𝐵 + 1 analyzer 

outputs. Clearly, this operation is a significant overhead; however, the extra 

computational effort is worthwhile in applications where: a one-sample latency is 

required with bias-free long-term filter operation, if orthonormality is desirable and if 

band-limited signals are expected (𝐵 ≪ 𝐾), to keep the computational complexity to a 

minimum. The elements of the mixing matrix are derived in the time domain using a 

weighted least-squares procedure that is described in Appendix D. The procedure fits a 

basis set of complex sinusoids 𝜓𝑘(𝑚) = 𝑒𝑗𝜔𝑘𝑚, to the input signal 𝑥(𝑛), using an 

exponentially decaying weighting function 𝑤(𝑚) = 𝑒𝜎𝑚 = 𝑟𝑚. As shown in the 

Appendix, the forgetting factor determines the pole radius (𝑟) of the analyzers in the 

filter bank. As the pole radius approaches zero, errors may ‘creep’ into the mixing 

matrix due to ill-conditioning, because too-many of the low-frequency basis functions 

are too similar over the shorter time window. In the absence of numerical errors in the 

design and filtering processes, the frequency responses of the stabilized and non-

stabilized versions of the IIR SDFT are effectively identical for |𝑓| < 𝐵 𝐾⁄  (there are no 



nulls outside this band for the stabilized version). The response of the stabilized IIR 

SDFT is also somewhat similar to the response of the IIR non-deadbeat observer for all 

𝑓.  

This is the only technique that uses the mixing matrix 𝐻mix. For this technique 

𝐻pre(𝑧) = 1, as   𝐻mix replaces the comb and also takes care of normalization. In the 

filter bank,  

 𝐻ana,𝑘(𝑧) = 1

1+𝑎𝑘𝑧−1  (13) 

where 

 𝑎𝑘 = −𝑒𝜎+𝑗𝜔𝑘 = −𝑟𝑒𝑗𝜔𝑘 .  (14) 

All other blocks are the same as those used in the previous section. Application of a 

Hann window is optional.  

Like all of the IIR methods discussed so far, this method yields very sharp main-

lobes as the poles approach the unit circle. This heightened frequency selectivity is ideal 

for accurate phase and magnitude measurements in noisy environments when signal 

frequencies are known a priori (e.g. active sonar, radar and communication systems). 

However degraded sensitivity at non-design frequencies, relative to the Dirichlet 

response of the FIR methods, means that signals at unknown frequencies may go 

undetected. 

3.   Computer Simulations 

3.1.   Computer Code 

Source code to evaluate the various algorithms, using the generic architecture shown in 

Fig. 1, was built using a C++ compiler and executed on a PC with an i5-3570 CPU and a 

64-bit operating system. Single-precision and double-precision versions were 

instantiated to help reveal the relationship between numeric precision and bias due to 

rounding error accumulation. The specified numeric type was used only in the filter 

application and error analysis stages of execution; whereas, double precision was used 

to generate the simulated input signal and design the digital filters for both the single 

and double cases. No attempt was made to optimize the code at the instruction level, as 

the emphasis was primarily on filter-response tune-ability and rounding-error 

susceptibility. A non-negligible execution overhead was incurred through the use of 

polymorphism, diagnostics, and non in-line functions, which were used to facilitate the 

development process.  

3.2.   Method, Results and Discussion 

Table 1 shows the dependence of the magnitude error |𝑋(𝑛, 𝑘)| − |�̂�(𝑛, 𝑘)|, of the 

various DFT methods as a function of time-scale (𝑛) and noise environment, for a given 

frequency bin. Data streams were processed continuously but divided into segments of 

106 samples for simulation and analysis purposes. Two types of zero-mean additive 

noise were examined: Gaussian-noise with a unity standard deviation, added to each 

sample; and impulsive noise, uniformly distributed over ±1 × 106, and added to the 

first sample of each segment. The root-mean-squared error (RMSE) over each segment 

was analyzed in the Gaussian case; the instantaneous error (Err.) was used in all other 



 

cases. The input signal was generated using 𝐵 + 1 sinusoidal components with unity 

magnitude, random phase and frequencies that coincided with each of the analysis bins 

over 0 ≤ 𝑘 ≤ 𝐵. Real signals were used in all simulations. Over the timescale 

investigated, the trends noted below for single-precision were barely noticeable for 

double precision; therefore only single precision results are shown. Note that 

windowed variants (Methods 2, 6 & 11) were not considered in this first numerical 

experiment. The results in Table 1 reveal the following: 
 Even in the absence of noise, Err. increases over time by two orders of magnitude 

for Methods 3 & 9, due to rounding error accumulation. 
 Methods 4, 5 & 10 do provide some resistance to error accumulation, in general; 

however, their estimates are corrupted by impulsive noise. Methods 4 & 5 have 
similar accuracy.  

 Methods 8 & 12 show no signs of error accumulation and recover well after 
impulse noise events. Method 12 is only slightly faster than Method 1; Method 8 
is much faster than Method 1. 

 In the Gaussian noise scenario, the IIR Methods 9, 10 & 12 are more accurate than 
the FIR Methods 1, 3, 4 & 5, due to their narrow frequency response and long 
impulse response – see Fig. 2 & Fig. 3. Fig. 2 also shows that there is some 
asymmetric distortion of the main-lobe of Method 8. 

In a second set of numerical experiments, the ability of the various DFT methods to 

detect sinusoidal components of arbitrary frequency and magnitude was examined (see 

Fig. 4). The input signal was the sum of two sinusoidal components with frequencies 

midway between analysis bins: the first had unity magnitude and 𝑓 = 7.5 𝑀⁄ ; the 

second had a magnitude of 0.01 and 𝑓 = 17.5 𝑀⁄ . Only double precision was used. The 

responses in Fig. 2 account for the trends shown in Fig. 4. The results in Fig. 4 suggest 

the following: 
 Tapered windows are required to detect weak components that are close to strong 

components. In this respect, Methods 2, 6 & 11 are better than their un-windowed 
counterparts: Methods 1, 5 & 10. 

 The side-lobe reduction of Method 6 is nearly as good as Method 2. 
 Method 11 has lower side-lobes and a broader main-lobe than Methods 2 & 6. 
 Using a smaller 𝜎 for a larger 𝑟 in Methods 10-12 increases frequency selectivity 

(at the expense of temporal selectivity) and decreases the response to arbitrary 
signal components, i.e. components that are not near frequency bin centers.  

 Methods 11 & 12 are indistinguishable, except for the last bin, due to numerical 
errors in the design of the mixing matrix used in Method 12. 

Note that using  𝐵 < 𝐾 transforms the FIR deadbeat observer into an IIR non-

deadbeat observer; thus Method 7 could not be examined in either of the numerical 

experiments discussed above and only Method 8 results are presented.      

Fig. 3 provides additional insight into the operation of the IIR SDFT methods. The 

IIR SDFTs have an impulse-response with a ‘terrace’-like ‘envelope’, modulated by a 

sinusoidal ‘carrier’. The stabilized and non-stabilized versions generate the same 

envelope via different mechanisms (when 𝐵 = 𝐾). In the absence of windowing, the 

magnitude over each step or block of length 𝑀, is constant and equal to 

[(1 − 𝑟) 𝑀⁄ ]exp(𝜎𝑀𝑛blk) for 𝑛blk = 0 … ∞, where 𝑛blk is the block index. The quantity 

|�̂�(𝑛, 𝑘)|
2

 produced by these IIR SDFTs may therefore be interpreted as being the 𝑘th 



bin in a sliding exponentially-weighted Bartlett periodogram. Non-recursive versions 

of this frequency estimator have been examined in Refs. 37.    and 38.   . 

Table 1. Comparison of total execution time (s) and magnitude error of DFT techniques for 𝑘 = 16 with 𝐾 =
64 and 𝐵 = 32, in noise-free, Gaussian-noise and impulsive-noise scenarios. 

Method 
RMSE 

Gaussian a 
Err. 

Impulsive b 
Err. 

No Noise c 
Err. 

No Noise d 
Exec. 
Time 

1 1.80E-01 -3.60E-07 -3.60E-07 -1.20E-07 36 

3 1.80E-01 -3.80E-02 -1.50E-02 -3.20E+00 5 

4 7.80E-01 -7.80E-03 3.60E-07 6.00E-07 8 

5 1.80E-01 -7.80E-03 7.20E-07 7.20E-07 5 

8e 1.40E-01 -1.90E-06 -1.90E-06 -9.50E-07 5 

9f 9.20E-02 -3.60E-02 -1.50E-02 -3.20E+00 9 

10f 8.80E-02 -1.20E-03 7.20E-07 7.70E-07 5 

12f 8.80E-02 -1.70E-06 -9.50E-07 -1.30E-06 28 

a  Averaged over 𝑛 = 106 to  𝑛 = 2 × 106. b  At 𝑛 = 2 × 106.  c  At 𝑛 = 106.    d  At 𝑛 = 108. e With 𝑙 = 1. f With 

𝜎 = 1 (2𝑀)⁄ . 

 

 

Fig. 2. Ideal frequency responses of DFT filters for 𝐾 = 8, 𝐵 = 4, and 𝑘 = 2. Inset shows detail of main-lobe. 

 



 

 

 

Fig. 3. Impulse response of a non-stabilized IIR SDFT filter (Method 9), for 𝐾 = 64 (𝑀 = 129), 𝜎 = −1/𝑀, 
and 𝑘 = 2. Application of the Hann window function via a convolution in the frequency domain (Method 11) 

modulates each rectangular block of constant magnitude by the sum-of-cosines taper.  

 

 

Fig. 4. Detection simulation for 𝐾 = 64 and 𝐵 = 32. 

 

 



 

 

4.   Conclusion and Summary 

4.1.   Impulse Response and Filter Structure 

Of the DFT techniques considered here, Methods 1-7 have an FIR, whereas Methods 

8-12 have an IIR; furthermore, Methods 1 & 2 are non-recursive, whereas Methods 3-

12 are recursive. Methods 7 & 8 employ an outer feedback loop. Methods 2, 6 & 11 

employ tapered window functions. The various filter structures are summarized in 

Table 2.      

Table 2. Filter Structure Summary. 

Method Class 
See 

Section 
Impulse 

Response 
Recursive 

Window 
Function 

Outer 
Feedback 

loop 

1 DFT 2.1 FIR No 
Rectangular  

Time 
Disabled 

2 DFT 2.1 FIR No 
Slepian  

Time 
Disabled 

3 SDFT 2.2 FIR Yes 
Rectangular  

Time 
Disabled 

4 mSDFT 2.2 FIR 
Yes 

(Modulated) 
Rectangular  

Time 
Disabled 

5 mSDFT 2.2 FIR 
Yes 

(Pre-Gen. 
Modulator) 

Rectangular  
Time 

Disabled 

6 mSDFT 2.2 FIR Yes 
Slepian  

Frequency 
Disabled 

7 
Deadbeat 
Observer 

2.3 FIR Yes 
Rectangular  

Time 
Enabled 

8 
Non-

Deadbeat 
Observer 

2.4 IIR Yes 
Fading  
Time 

Enabled 

9 mSDFT 2.6 IIR Yes 
Fading  
Time 

Disabled 

10 mSDFT 2.6 IIR 
Yes 

(Pre-Gen. 
Modulator) 

Fading  
Time 

Disabled 

11 mSDFT 2.6 IIR 
Yes 

(Pre-Gen. 
Modulator) 

Fading Time 
& Hann 

Freq. 
Disabled 

12 SDFT 2.7 IIR 
Yes 

(Freq. 
Mixing) 

Fading  
Time 

Disabled 

 

4.2.   Computational Complexity 

The recursive DFT techniques investigated all have the potential to be faster than the 

FFT for band-limited low-pass signals where filter-banks with  𝐵 ≪ 𝐾 may be used. 

Their structure also makes them amenable to parallel implementation. With the 

exception of the stabilized IIR SDFT (Method 12), which is somewhat slower than the 

other techniques and has a complexity proportional to (2𝐵 + 1)2, all of the recursive 



 

techniques have complexity that is proportional to (2𝐵 + 1), in contrast to the non-

recursive FIR DFT (Method 1) which has complexity proportional to (2𝐵 + 1)𝑀. Even 

when there is no execution-speed advantage to be gained, relative to the FFT which has 

𝑀log2𝑀 complexity, recursive DFT techniques are more appropriate in closed-loop 

control applications where low measurement latency is desirable.  

Unlike all other FIR methods considered, the deadbeat observer technique (Method 

7) cannot be accelerated by simply reducing the number of frequency bins evaluated, 

due to the coupling between all analysers via the outer feedback loop; using 𝐵 < 𝐾 in 

the filter bank ‘sharpens’ the frequency response and ‘smears’ the impulse response so 

that it becomes infinite in duration (i.e. IIR), for each closed-loop analyser. 

4.3.   Numerical Stability 

Computer simulations confirmed that the FIR  and IIR SDFTs (Methods 3-6 and 

Methods 9-11, respectively) are susceptible to rounding error accumulation when 

single-precision floating-point arithmetic is used. Error accumulation is very gradual 

for all methods when double precision is used; these techniques may therefore be used 

with confidence to process short data sets, such as the pixels in a digital image or an 

audio file. Replacement of resonators by modulators does improve stability somewhat; 

however, high-power impulsive noise/interference, introduces errors which are never 

‘forgotten’, due to the finite machine precision used in the running sums. This suggests 

that the FIR and IIR SDFTs proposed so far in the literature are unsuitable in systems 

intended to handle inputs with a high dynamic range. Even if these anomalous inputs 

(perhaps due to ‘upstream’ system exceptions) are extremely unlikely events, their 

eventual occurrence means that the filter bank, or the entire system, must be reset if it 

is to continue functioning as designed.  

The use of simple band-pass filter-banks with all poles inside the unit circle may be 

an appropriate solution when only crude indications of channel occupancy are 

required. However, the proposed stabilized IIR SDFT (Method 12), where the filter-

bank is orthonormalized in the frequency domain, is a better solution when a more 

accurate/precise estimator or transformation is required. The outer feedback loop 

ensures the long-term stability of the (FIR and IIR) observer in all cases examined 

(Methods 7 & 8, respectively).  

4.4.   Magnitude Error 

For a given frequency bin, using a recursive filter structure (Methods 3-12) allows a 

longer average impulse response duration to be used (i.e. decreased temporal 

selectivity), without incurring an extra computational cost, which reduces the expected 

random error in the magnitude estimate due to random noise. Furthermore, the 

availability of the pole radius parameter (𝑟 = 𝑒𝜎) in the IIR techniques (Methods 9-12) 

allows the time/frequency selectivity to be fine-tuned for a given combination of 𝐵 & 𝐾 

paramters, i.e. for a particular distribution of frequency bins. Bias errors due to other 

frequency components are also reduced, as the effective length of the impulse response 

increases, due to the narrower main lobe and the lower side lobes. The application of a 

tapered window function (e.g. Slepian or Hann), in either the time (Method 2) or 



frequency domain (Methods 6 & 11), allows biases caused by the side lobes of other 

‘distant’ frequency components to be further reduced, at the expense of a decreased 

ability to resolve closely-spaced frequency components, due to a broadening of the 

main-lobe. Of course, the aforementioned benefits are completely lost, however, if 

rounding errors are permitted to accumulate in recursive implementations. Output 

characteristics of the various filters are summarized in Table 3.    

Table 3. Filter Output Summary. 

Method Main Lobe Side Lobes 
Susceptible to Rounding 

Error Accumulation   

1 Narrow High No 

2 Wide Low No 

3 Narrow High Yes 

4 Narrow High Yes (In Some Cases) 

5 Narrow High Yes (In Some Cases) 

6 Wide Low Yes (In Some Cases) 

7 Narrow High No 

8 Sharp Flat No 

9 Sharp Flat Yes 

10 Sharp Flat Yes (In Some Cases) 

11 
Wide & Non-

Monotonic 
Low Yes (In Some Cases) 

12 Sharp Flat No 

 

4.5.   Frequency Response Flexibility 

The frequency-domain Slepians were used to reduce the side-lobes of the Dirichlet 

kernel (Method 6). This approach may be applied to the output of any of the recursive 

techniques where the response is FIR (e.g. the FIR SDFT and the FIR deadbeat observer) 

or approximately FIR (e.g. the IIR SDFT for small 𝑟). Sum-of-cosine windows (see 

Method 11) may be applied in the usual way, and for the usual reasons, to the spectral 

estimates output by all techniques; however, the benefits are limited in IIR cases when 

the poles are close to the unit circle. The various IIR DFTs (Methods 8-11) may be 

tuned to be very frequency selective (narrow main-lobes with low side-lobes) with 

good noise rejection and are appropriate when the frequencies of the signal 

components are known a priori, in communications and radar applications, for 

example. In these cases, the bins may be placed to coincide with the expected 

component frequencies 16.   . Unlike the IIR SDFTs, it is not possible to change the 

frequency response of the deadbeat observer (Method 7) by adjusting the pole 

positions of the open-loop analyzers directly; however, the closed-loop poles may be 

shifted indirectly, the impulse response changed from FIR to IIR, and the side-lobes of 

the frequency response lowered, using 𝐵 < 𝐾; furthermore, the main-lobes are 

broadened, for better detection of components with unknown frequencies, by 

increasing the prediction horizon using 𝑙 > 1.  



 

Appendix A.   Derivation of the Time-Domain Slepian Window 

The discrete-time transfer-function of a non-casual FIR window-function is 

represented in the 𝒵 domain using 

 𝑊(𝑧) = 𝑧𝐾 ∑ 𝑤(𝑚)𝑧−𝑚𝑀−1
𝑚=0 = ∑ 𝑤(𝑚)𝑧−𝑚+𝐾

𝑚=−𝐾 . (A.1) 

Evaluating 𝑊(𝑧) around the unit circle, i.e. substituting 𝑧 = 𝑒𝑗𝜔 = 𝑒𝑗2𝜋𝑓  into Eq. (A.1), 

yields the frequency response 

 𝑊(𝑓) = ∑ 𝑤(𝑚)𝑒−𝑗2𝜋𝑚𝑓+𝐾
𝑚=−𝐾 .  (A.2) 

The power density spectrum of this window is therefore 

 𝑃(𝑓) = |𝑊(𝑓)|2 = 𝑊∗(𝑓)𝑊(𝑓) (A.3)  

where the asterisk superscript denotes complex conjugation. Substituting Eq. (A.2) into 

Eq. (A.3) yields 

 𝑃(𝑓) = ∑ ∑ 𝑤∗(𝑚2)𝑒+𝑗2𝜋𝑚2𝑓𝑤(𝑚1)𝑒−𝑗2𝜋𝑚1𝑓+𝐾
𝑚1=−𝐾

+𝐾
𝑚2=−𝐾   

 = ∑ ∑ 𝑤∗(𝑚2)𝑤(𝑚1)𝑒𝑗2𝜋(𝑚2−𝑚1)𝑓+𝐾
𝑚1=−𝐾

+𝐾
𝑚2=−𝐾 . (A.4) 

The power over the interval −𝑓∆ ≤ 𝑓 ≤ +𝑓∆ is 

 𝑃∆𝑓 = ∫ 𝑃(𝑓)
+𝑓∆

−𝑓∆
𝑑𝑓  (A.5) 

which may be represented using vector/matrix notation as  

 𝑃∆𝑓 = 𝐰†𝐐∆𝑓𝐰  (A.6) 

where the dagger superscript denotes a Hermitian transpose and 𝐐∆𝑓 is a 𝑀 × 𝑀 

matrix, with the element in the 𝑚2th row and 𝑚1th column being the integral 

 𝑄∆𝑓
𝑚2,𝑚1 = ∫ 𝑒𝑗2𝜋(𝑚2−𝑚1)𝑓+𝑓∆

−𝑓∆
𝑑𝑓  

 =
𝑒𝑗2𝜋(𝑚2−𝑚1)𝑓∆−𝑒𝑗2𝜋(𝑚1−𝑚2)𝑓∆

𝑗2𝜋(𝑚2−𝑚1)
  (A.7)  

which are real numbers. The Slepian window maximizes the power concentration 

within the specified frequency interval. If the (band-limited) power over the interval 

−𝑓∆ ≤ 𝑓 ≤ +𝑓∆ is 𝑃∆𝑓 and the (total) power over the interval −1

2
≤ 𝑓 ≤ +1

2
 is 𝑃1 2⁄  then 

their ratio 𝛼, with 0 ≤ 𝛼 ≤ 1, is the Rayleigh quotient 

 𝛼 =
𝑃∆𝑓

𝑃1 2⁄
=

𝐰†𝐐∆𝑓𝐰

𝐰†𝐐1 2⁄ 𝐰
 .  (A.8) 

Due to the orthonormality of the complex sinusoids over the interval −1

2
≤ 𝑓 ≤ +1

2
, 

𝐐1 2⁄ = 𝐈, where 𝐈 is the identity matrix 

 𝛼 =
𝐰†𝐐∆𝑓𝐰

𝐰†𝐰
 . (A.9) 

The eigenvector corresponding to the greatest eigenvalue of 𝐐∆𝑓 maximizes this 

quotient and it is the Slepian window function for 𝑚 = −𝐾 … + 𝐾. Finally, a delay of 

𝐾samples is applied to yield a causal window for 𝑚 = 0 … 𝑀 − 1. 



Appendix B.   Derivation of the Frequency-Domain Slepian Window 

Like the time-domain window, the frequency-domain window maximizes the 

proportion of the power density response over the interval −𝑓∆ ≤ 𝑓 ≤ +𝑓∆ using a 

window that is finite and non-zero in the time domain for 𝑚 = −𝐾 … + 𝐾; however, in 

this case it is applied in the frequency domain using only 𝑘 = −𝐵win … + 𝐵win (see 

Section 2.2). This additional constraint reduces the achievable concentration but good 

responses are still possible, even for small 𝐵win. The window is derived using the 

procedure described in Appendix A with a change of basis. The window is applied using  

 �̂�(𝑛, 𝑘) = ∑ �̃�(�́�)�̂�raw(𝑛, 𝑘 − �́�)
+𝐵win

�́�=−𝐵win
 . (B.1) 

The corresponding time-domain representation of this window is 

 𝑤(𝑚) = ∑ �̃�(𝑘)𝑒𝑗2𝜋𝑚𝑘 𝑀⁄+𝐵win
𝑘=−𝐵win

  (B.2) 

which is represented more compactly in vector/matrix form using 

 𝐰 = 𝐅�̃�  (B.3)  

where 𝐅 is a 𝑀 × (2𝐵win + 1) transformation matrix, with elements  

 𝐹(𝑚, 𝑘) = 𝑒𝑗2𝜋𝑚𝑘 𝑀⁄  . (B.4)  

Substituting Eq. (B.3) for 𝐰 in Eq. (A.9) yields  

 𝛼 =
�̃�†𝐅†𝐐∆𝑓𝐅�̃�

�̃�†𝐅†𝐅�̃�
  (B.5) 

which is solved as a generalized eigenvalue problem using 𝐅†𝐅 = 𝑀𝐈, due to the 

orthogonal columns of the time-to-frequency transformation. As in the time-domain 

case, the eigenvector corresponding to the greatest eigenvalue maximizes the 

concentration in the pass band and it is the Slepian window function for 𝑚 = −𝐾 … + 𝐾 

and 𝑘 = −𝐵win … + 𝐵win. The use of a non-causal window ensures that all elements of 

𝐅†𝐐∆𝑓𝐅 are real, which simplifies its eigen-decomposition. The window must be 

delayed by 𝐾 samples in time domain to make it causal and so that its phase origin 

coincides with that of the analyzers (at 𝑚 = 0). This is done via modulation with a 

complex sinusoid in the frequency domain using a multiplier of 𝑒−𝑗2𝜋𝑘𝐾 𝑀⁄  for each bin 

of the window.  

Appendix C.   Sum-of-Cosine Windows for Recursive DFTs  

Sum-of-cosine windows are also applied using Eq. (B.1), where the elements �̃�(𝑘) are 

simply arbitrary constants 28.   , with �̃�(0) = 1 for proper normalization (0 dB gain at 

dc); for example �̃�(𝑘) = [1

2
1 1

2], for 𝑘 = −1 … + 1, for the Hann window. To shift the 

phase origin to 𝑚 = 0 in the time domain, for the recursive filters considered in this 

paper, a factor of 𝑒−𝑗2𝜋𝑘𝐾 𝑀⁄  is applied to the 𝑘th window coefficient. These windows 

are not optimal in any sense, although they are useful to lower side-lobes none-the-less. 

These windows benefit FIR and IIR DFT filters alike, provided the IIR poles are not too 

close to the unit circle. For IIR filters, this ‘window function’ applies a periodic 

modulation over an infinite extent in the time domain; however, the exponential decay 

of the associated filter’s impulse response confines the window’s influence to recent 

samples only. 



 

Appendix D.   Derivation of the Stabilized IIR SDFT  

The ‘mixing matrix’ 𝐻mix is used in the frequency domain to orthonormalize a bank of 

recursive fading-memory filters. Orthonormalization of the impulse and frequency 

responses, ensures that 

 ∑ ℎana,𝑘2

∗ (𝑚)ℎana,𝑘1
(𝑚)∞

𝑚=0 = 𝛿𝑘1.𝑘2
   (D.1) 

and 

 𝐻ana,𝑘1
(𝑓) = 𝐻ana,𝑘1

(𝑘2
M

) = 𝛿𝑘1.𝑘2
   (D.2) 

where 𝛿 is the Kronecker delta. The elements of 𝐻win  are derived here using (D.1) which 

also ensures that Eq. (D.2) is satisfied. 

Frequency analysis (and filtering) is interpreted here as a weighted least-squares 

fitting problem. It is assumed that 

 �̃�(𝑛 − 𝑚) = ∑ 𝛽𝑘(𝑛)𝜓𝑘
∗+𝐵

𝑘=−𝐵 (𝑚)  (D.3a) 

 𝑥(𝑛) = �̃�(𝑛) + 휀  (D.3b) 

where 𝜓𝑘(𝑚) = 𝑒𝑗𝜔𝑘𝑚 are the basis functions for the assumed sinusoidal signal model, 

𝛽𝑘(𝑛) are the model coefficients at the time of the 𝑛th sample, �̃�(𝑛) is the true signal 

value, 𝑥(𝑛) is the measured (noise-‘corrupted’) signal value, and 휀 is additive zero-mean 

Gaussian noise 휀~𝒩(0, 𝜎𝑥
2), with an unknown noise variance of 𝜎𝑥

2. Maximum 

likelihood estimates �̂�𝑘(𝑛) of the parameters 𝛽𝑘(𝑛), derived using all past and present 

samples, are formed by minimizing the weighted sum-of-squared errors (SSE) where 

 SSE(𝑛) = ∑ 𝜖∗(𝑛 − 𝑚)𝑤(𝑚)𝜖(𝑛 − 𝑚)∞
𝑚=0   (D.4)  

and where 𝜖 is the residual of the least-squares fit 

 𝜖(𝑛 − 𝑚) = 𝑥(𝑛 − 𝑚) − �̂�(𝑛 − 𝑚)  (D.5) 

and 𝑤(𝑚) is the error weighting function 𝑤(𝑚) = 𝑒𝜎𝑚, with the forgetting-factor 

parameter 𝜎 < 0. In the context of our spectrum-estimation/signal-filtering problem, 𝜎 

determines the pole radius (𝑟 = 𝑒𝜎) of the filter bank in the 𝑧 plane, 𝜓𝑘(𝑚) are the 

frequency components that determine the pole angle (𝜔𝑘 = 2𝜋𝑘 𝑀)⁄  in the 𝑧 plane, and 

𝛽𝑘(𝑛) is the frequency spectrum coefficient of the 𝑘th bin at the 𝑛th sample �̂�(𝑛, 𝑘). As 

the 𝜎, 𝐵 and 𝐾 parameters (where 𝑀 = 2𝐾 + 1 and 𝐵 ≤ 𝐾) determine the pole 

positions of each first-order analyzer in the filter bank, this least-squares fitting process 

may be viewed as being an optimal zero-placement technique. If high-order analyzers 

(with non-unity pole multiplicity) are acceptable then 𝑤(𝑚) = 𝑚𝜅𝑒𝜎𝑚 with 𝜅 > 0 may 

be used (see Section 2.5); however 𝜅 = 0 in what follows (to simplify the mathematical 

working and the computer coding). 

If the least-squares fit is performed over a finite time interval 𝑚 = 0 … 𝑀 − 1, then 

the estimates of the model parameters 𝛽𝑘  (i.e. the spectrum coefficients) are 

determined in the usual way using  

 �̂� = 𝓑−𝟏𝓐𝒙 .  (D.6) 

In Eq. (D.6): �̂� is a column vector of length 2𝐵 + 1 containing the coefficient 

estimates �̂� = [�̂�−𝐵 , … �̂�𝑘2
, … �̂�+𝐵]

†
; 𝒙 is a column vector of length 𝑀 containing 



the recent input signal history 𝒙 = [𝑥(𝑛), … 𝑥(𝑛 − 𝑚), … 𝑥(𝑛 − 𝑀 + 1)]†; 𝓐 =

𝚿†𝐖 ≡ 𝐻ana and 𝓑 = 𝚿†𝐖𝚿 ≡ 𝐻mix
−1  where 𝐖 is a square 𝑀 by 𝑀 matrix of zeros with 

the weighting vector 𝒘 = [𝑤(0), … 𝑤(𝑚), … 𝑤(𝑀 − 1)] along its diagonal, and 

𝚿 is an 𝑀 by 2𝐵 + 1 matrix with the element in the 𝑚th row and 𝑘1th column equal to 

𝜓𝑘1

∗ (𝑚). 

If the least-squares fit is now performed over an infinite time interval 𝑚 = 0 … ∞, 

then the model parameters 𝛽𝑘2
 are also estimated using (D.6) however the finite 

summations in 𝓑 are now replaced by the infinite summations 

 ℬ𝑘2.𝑘1
= ∑ 𝜓𝑘2

(𝑚)𝑤(𝑚)𝜓𝑘1

∗ (𝑚)∞
𝑚=0   (D.7) 

which may conveniently be evaluated in the 𝑧 domain using 

 ℬ𝑘2.𝑘1
= 𝒵{𝜓𝑘2

(𝑚)𝑤(𝑚)𝜓𝑘1

∗ (𝑚)}|
𝑧=1

  

 = 1 [1 − 𝑒𝜎+𝑗(𝜔𝑘2−𝜔𝑘1)]⁄ . (D.8) 

And taking the 𝒵 transform of 𝓐 yields the bank of analysis filters with the 𝑘1th element 

being  

 𝒜𝑘1
= 𝒵{𝑤(𝑚)𝜓𝑘1

(𝑚)} = 1 [1 + 𝑎𝑧−1]⁄   (D.9) 

where 𝑎 = −𝑒𝜎+𝑗𝜔𝑘1 .  

The mixing matrix and a Hann-like window may be applied in a single operation 

using 𝐻mix&win = 𝐻win𝐻mix, where 𝐻win  is a tri-diagonal matrix (for 𝐵 < 𝐾) with the 

Hann window coefficients running along its diagonals (see Appendix C). 
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