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Abstract

In this work a memristive circuit consisting of a first order mem-
ristive diode bridge is presented. The proposed circuit is the simplest
memristive circuit containing the specific circuitry realization of the
memristor to be so far presented in the literature. Characterization
of the proposed circuit confirms its complex dynamic behavior, which
is studied by using well-known numerical tools of nonlinear theory,
such as bifurcation diagram, Lyapunov exponents and phase portraits.
Various dynamical phenomena concerning chaos theory, such as anti-
monotonicity, which is observed for the first time in this type of mem-
ristive circuits, crisis phenomenon and multiple attractors have been
observed. An electronic circuit to reproduce the proposed memristive
circuit was designed, and experiments were conducted to verify the
results obtained from the numerical simulations.

1 Introduction

The discovery of a nanoscale memristor in 2008,[1, 2] at Hewlett-Packard lab-
oratories, that is, a device that was only theoretically postulated in 1971,[3]
paved the way to a new research direction. Researchers from different fields



have focused their attempts to the search of components, whose behavior
could be well described by memristors or memristive systems, to the design
of new devices with memristive characteristics as well as to the investiga-
tion of possible applications, ranging from biological models[4, 5] to adaptive
filters[6] and programmable analog integrated circuits.[7, 8]

Although the physical memristor has been fabricated in 2008, first, it
will still be unavailable as a commercial component in the near future be-
cause of the cost and the technical difficulties involved in the fabrication
of a nanometer-size device. Thus, various memristor emulators, either con-
structed from off-the-shelf components,[9, 10, 11, 12, 13, 14, 15] or from
generalized memristors based on circuits with special topologies,[9, 14, 15,
16, 17] make greater contributions to modeling, to analyzing, especially to
realizing memristor-based chaotic circuits by replacing nonlinear resistance
elements in classic chaotic circuits and in this way many novel features of
chaotic behaviors could be observed.[18, 19, 20, 21| In more details, several
nonlinearities are used to describe the relation between magnetic flux and
electric charge of these memristors, such as HP memristor model,[22, 23]
non-smooth piecewise linearity,[10, 25] smooth cubic nonlinearity[12, 18, 19,
26] and smooth piecewise-quadratic nonlinearity.[18, 25]

Generation of memristor emulators were complicated and not convenient
to circuit analysis. However, in 2012, a generalized memristor proposed by
Corinto and Ascoli[14] was realized with a full-wave rectifier and a second
order RLC filter, which used only elementary electronic circuit elements
(diodes, inductor, capacitor and a resistor). This realization has many ad-
vantages, such as simple circuit structure, without ground restrictions and
being easily accessed to various applications. The key mechanism responsi-
ble for the emergence of the memristive behavior is the voltage constraints
imposed in each pair of parallel diodes. By replacing the second order RLC
filter, in the aforementioned generalized memristor, by a first order paral-
lel RC filter, a new simple first order generalized memristor was proposed
by Bao et al.,[28] in 2014, which consists only of six elementary passive
elements.

Since then, the specific generalized memristor has been used in a number
of published works. Chen et al. were the first who replaced the nonlinear
element in a nonlinear circuit with first-order memristive diode bridge.[29]
Complex nonlinear phenomena including coexisting bifurcation modes and
attractors have been discovered in this circuit. Another interesting memris-
tive chaotic circuit was derived from the classical Chua’s circuit by substi-
tuting the Chua’s diode with the aforementioned generalized memristor.[30]
In this circuit the recently discovered new class of attractors, the hidden at-



tractors, have been observed. Various dynamical phenomena such as chaos
and multiple attractors in a memristor-based oscillator obtained from Shin-
riki’s circuit by substituting the nonlinear positive conductance with the
first-order memristive diode bridge have been studied by Kengne et al.[31]
The complex behavior of a Colpitts chaotic oscillator coupled with the gener-
alized memristor has been investigated in Ref. [32]. Nijitacke et al. studied
the coexistence phenomenon of multiple attractors as well as the crisis route
to chaos in an autonomous jerk circuit by substituting its nonlinear element
with the first-order memristive diode bridge.[33]

In this paper, we propose the simplest memristor-based circuit containing
the first-order memristor bridge of Ref. [28], in regard to the aforementioned
works [29-33]. The circuit has been designed in such a way that the first-
order memristive diode bridge acts as a nonlinear element. However, inno-
vating from other memristor-based circuits created by replacing an existing
nonlinear element with a memristor, it is not based on any known nonlinear
system architecture. Circuit’s dynamical analysis confirms its complex dy-
namical behavior and interesting phenomena, such as period-doubling route
to chaos, antimonotonicity, interior crisis and coexisting attractor.

The rest of the paper is structured as follows. Section 2 deals with the
electronic structure of the generalized memristor as well as with the design
of the proposed circuit and its mathematical model, which is derived to in-
vestigate the dynamics of the system. The theoretical analysis of system’s
dynamic characteristics is studied in Section 3. In Section 4 the simula-
tion and experimental results of system’s dynamical behavior by using well-
known tools from nonlinear theory, such as bifurcation diagram, Lyapunov
exponents and phase portraits are carried out. Finally, the conclusions are
summarized in Section 5.

2 Circuit Description and State Equations

2.1 Generalized Memristor

To begin with, the generalized memristor reported in Ref. [28], is introduced.
This circuit consists of a diode bridge with a first order parallel RC filter,
as shown in Fig. 1(a), and it is a component of the proposed memristor. Its
mathematical model is expressed by the following equations:
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where p = 1/2nVp; Ig, n and Vp denote the reverse current, the emission
coefficient and the thermal voltage of the diode, respectively.[34, 35] Fur-
thermore, vc,, is the voltage of the capacitor C),, while v and 7 represent
the input voltage and current of the generalized memristor of Fig. 1. With
reference to Eq. (1) the generalized memristor is a voltage-controlled and
its memductance can be expressed by
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Figure 1: (a) The generalized memristive diode bridge with the parallel RC
filter and (b) the symbol of the generalized memristor G ;.

The following nominal values of circuit components are used in order to
realize the generalized memristive diode bridge: C,, = 2uF, R, = 0.5k}
and four 1N4148 diodes with parameters: Ig = 1nA, n = 2 and Vp = 26mV.

A sinusoidal voltage source denoted as v (v = Vpsin(wft) V), is con-
sidered to stimulate the memristor in order to study experimentally its be-
havior. For this reason a digital oscilloscope has been used for capturing
the time-series. When V,,, = 4V and f is set to 200 Hz, 1 kHz and 5 kHz,
respectively, the loci in the ¢ — v plane are hysteresis loops pinched at the
origin as shown in Fig. 2(a). As the frequency of the periodic input voltage
increases, the area of the pinched hysteresis lobe decreases monotonically
and the pinched hysteresis loop shrinks to a nonlinear single-valued func-
tion, when the frequency tends to infinity. Furthermore, when f = 200H z
and V,, is equal to 2V, 4V an 6V, respectivelly, the generalized memristor
exhibits the pinched hysteresis loop regardless of the amplitude, as shown
in Fig. 2(b). So, according to the results of Ref. [28] the proposed general-
ized memristor exhibits the three characteristic fingerprints for identifying a
memristor.[36] Due to its simplicity, its ease of realization and the absence
of ground restrictions the specific circuitry realization of a memristor is an



attractive candidate for using it in nonlinear circuits as memristor emulator
as well as in various memristor’s applications.
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Figure 2: Experimental results of the generalized memristor driven by a
periodic input voltage with (a) V,,, = 4V for different frequencies and (b)
f =200H z for different amplitudes.

2.2 The Proposed Memristive Circuit

The schematic diagram of the novel memristive circuit under consideration
is depicted in Fig. 3. The circuit consists of resistors, three capacitors and
four operational amplifiers (TLO84CN), from which three of them (U; — Us)
are configured as integrators, while the fourth (Uy) is used as an inverting
amplifier. In this circuit the nonlinear element is the generalized memristor
(Gpn) of Fig. 1(a).

By applying the Kirchhoff’s laws into the proposed circuit of Fig. 3, the
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Figure 3: Circuit diagram of the memristive circuit.

following system of differential equations is obtained.
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In the system (4), ve,, ve, and ve, are the voltages across the three
capacitors C1, Cy and Cs, respectively. It is noted that these capacitors have
the same values (C; = Co = C3 = C) in this work. System (4) is rescaled by

using dimensionless variables and parameters given by: x = Z%, y= Z‘C/;,
z:s‘g;,w:Z?/’;,T:%,a: 25“};5,b21%,c: i%,d:%and
As a result, system (4) is rewritten as:
A
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As seen in (5), the system contains eight terms, one less than the system
proposed in Ref. [30]. Also, the circuit of Fig. 3 is the simplest nonlinear
circuit based on the generalized memristor of Ref. [28] reported in literature.

The experimental realization of the proposed circuit in Fig. 3 is shown
in Fig. 4. The circuit has been built with circuit elements: R = Ra =



10k, Rb = 16.666kS2, C' = 10nF', while the power supply is £15V. In the
generalized memristor’s realization been used the circuit elements mentioned
in Section 2.1.

Figure 4: Photograph of the experimental realization of the memristive
circuit.

3 Theoretical Analysis of System’s Characteristics

In this Section the theoretical analysis of the proposed system (5), by study-
ing well-known characteristics of dynamical systems, such as dissipation,
invariance and symmetry, is presented.

3.1 Dissipation and Invariance

According to system (5), the divergence of the system is
or Oy 0z Ow

oz T oy + 5 + o —b — dh — che” " cosh(y) (6)

where V' indicates the phase volume. As the function e™"cosh(y) > 0, then
VV <0, for every y and w, so the state change of the system is bounded,
therefore system (5) is dissipative. So, it converges in the index of the
following form:
% _ e[—b—dh—che wcosh(y)]t (7)
That is, in the system (5), the time rate of change of phase volume is
e[_b_dh_Che_wCOSh(y)]t, a volume element Vj is apparently contracted by the
flow into a volume element %e[_b_dh_CheiwwSh(y)]t at time ¢.

This means that each volume containing the trajectories of system (5)

will shrinks to zero when ¢ — oo with the exponential rate %e[_b_dh_Che_wCOSh(y)]t.



Thus, all the orbits of the system (5) are finally confined to a specific subset
of zero volume, and the asymptotic motion of system (5) will be fixed on an
attractor of the system.

3.2 Symmetry

The equilibrium points of system (5) can be found by solving

—z =
—x +ae Vsinh(y) —bz =0 (8)

h[—dw + ce " cosh(y) —c] =0

Thus, system (5) has a single equilibrium point £(0, 0, 0, 0). In general,
the number of equilibrium points is not equal to the order of the system,
that is, the number of the equilibrium points is independent of the order of
the system. To linearize the system shown by system (5) at the equilibrium
point E, the corresponding Jacobian matrix is expressed by

0 -1 0 0
0 0 -1 0

=2 4 0 )
0 0 0 —h(c+d

Therefore, the characteristic equation of system (5) at the equilibrium
point E can be found as:

My — Jg| =M+ [b+ h(c+ d)] N3 + [a+ bh(c + d)] \?

+[1+ah(c+d)] A+ h(c+d) =0 (10)

The eigenvalues can be obtained from Eq. (10) to determine the stability
of this equilibrum point. Obviously, the stability of the equilibrium point of
system (5) depends on system parameters. By choosing a = ¢ = 3.846-1074,
b=06,d=20and h = 5 1073, and by using the circuit’s elements:
R = R, = 10k}, R, = 16.666k€) and C = 10nF, the eigenvalues are:
A1 = -1.24492, Ay = -0.1, A3 = 0.322461 - 0.8362317 and Ay = 0.322461
+ 0.836231¢. So E is a saddle focus equilibrium point of index 2. For
many chaotic systems, such as the well-known Chua’s circuit, saddle focus
equilibrium point of index 2 is the premise of scroll motion.
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Figure 5: Simulation and experimental chaotic attractor of system (5) for
a=c=3846-10"% b=0.6,d =20 and h =5-1073 in (a)  — y plane, (b)
x — z plane, and (¢) y — z plane.

4 Dynamical Properties of the Circuit

In this section the analysis of the proposed memristive circuit’s dynamical
behavior with the aforementioned set of system’s (5) parameters and initial
conditions (xo, Yo, 20, wo) = (0, 0.1, 0, 0.2), by using well-known tools of
nonlinear theory, such as phase portrait, bifurcation diagram and Lyapunov
spectrum, is performed. For the investigation of the proposed memristive
circuit’s dynamical behavior, system (5) is integrated numerically using the
classical fourth-order Runge-Kutta integration algorithm. For each set of
parameters used in this work, the time step is always At = 0.002 and the
calculations are performed using variables and parameters in extended pre-
cision mode. For each parameter settings, the system is integrated for a



sufficiently long time and the transient is discarded. Furthermore, the cal-
culated Lyapunov exponents of system (5), for the chosen set of parameters
and initial conditions, by using the Wolf et al. algorithm,[37] are: L; =
0.2374, Ly = 0, Ly = -0.15566 and L4 = -1.14209. In this case, system (5)
is chaotic because it has one positive Lyapunov exponent. Simulation and
experimental chaotic attractors of the memristive circuit are displayed in
Fig. 5.

To study the type of scenario giving rise to chaos by considering the
resistor Ry, namely the parameter b in system (5), as the main bifurcation
control parameter, the bifurcation diagram in Fig. 6 is obtained, while
the other parameters remain fix. The bifurcation diagram is obtained by
plotting the variable x when the trajectory cuts the plane y = 0 with dy/dt <
0, as the control parameter b is increased (or decreased) in tiny steps in the
range 0.2 < b < 1.0. Also, the final state for a value of the control parameter
serves as the initial state for the next iteration. This procedure carried out in
our numerical simulations reproduces more closely the experimental study
of circuit’s dynamical behavior by using a variable resistor as Rp. In the
graph of Fig. 6(a), two set of data corresponding respectively for increasing
(black) and decreasing (red) values of b are superimposed. This strategy
represents a simple way to localize the range of values in which the system
develops coexisting behavior. Furthermore, the corresponding spectrum of
the three largest Lyapunov exponents is shown in Fig. 6(b). It can be
seen that the bifurcation diagram well coincide with the spectrum of the
Lyapunov exponents.

In more details, from the bifurcation diagrams of Fig. 6(a) it is pos-
sible to verify coexistence of attractors in the system (5) for the range of
0.2 < b <£0.4. In this region the system enters to chaos through a period
doubling route with the same initial period-1 steady state but beginning
from different values of x, for b = 0.2. This coexistence is a consequence of
the symmetry in the system and it depends on the fact that different initial
conditions in phase space leading to different attractors.[38, 39, 40, 41] In
Fig. 7 the experimental coexisting chaotic attractors at b = 0.35 is depicted.
For b > 0.4 the coexisting attractors disappear and the system through an
interior crisis[42] is driven to an extended chaotic attractor, as it is observed
in the bifurcation diagrams of Fig. 6(a). The occurrence of sudden quali-
tative changes of chaotic dynamics as a parameter is varied is known from
1983. That year Grebogi et al. reported that such changes may result from
the collision of an unstable periodic orbit and a coexisting chaotic attractor.
These phenomena was called crises. Since then crises phenomena and espe-
cially the interior crisis, which is one of the crises types have been observed

10
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Figure 6: (a) Bifurcation diagram of system (5) for increasing (black) and
decreasing (red) values of b and (b) the corresponding graph of the three
largest Lyapunov exponents plotted in the range 0.2 < b < 1.0.

in many dynamical systems.[43, 44, 45, 46]

Also, with a more clear view in the bifurcation diagrams of Fig. 6(a) a
second interesting phenomenon concerning system’s (5) dynamical behavior
can be observed. This is the antimonotonicity, which has been introduced by
Dawson et al..[47] This is a fundamental phenomenon in bifurcations for a
large class of nonlinear dissipative systems,[48, 49, 50] where periodic orbits
not only created but also destroyed, when one increases the control parame-
ter monotonically (smoothly) in any neighborhood of a homoclinic tangency
value-inevitable reversals of period doubling cascades. So, antimonotonicity
is due to tangential intersections between the stable and unstable manifolds
of a system.

According to this phenomenon, the system enters to chaos with the well-
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known period doubling route (p-1 — p-2 — ... — chaos) and exits from the
chaos following the reverse period doubling route (chaos — ... — p-2 — p-1).
As a result, a shape of a chaotic bubble is formed in the bifurcation dia-
gram. This phenomenon is relevant because it describes a complex scenario
of how a nonlinear system creates or destroys unstable periodic orbits by pa-
rameter alterations. At the parameter value where the Lyapunov exponent
is maximal, the chaotic attractor has embedded on it the largest amount
of unstable periodic orbits that the dynamics can create. This observation
is the first of its kind to be reported in a circuit based on the generalized
memristive diode-bridge circuit with parallel RC filter.

Figure 7: Experimental coexisting chaotic attractors, for b = 0.35.

5 Conclusion

A memristive circuit containing a first order memristive diode bridge was
presented in this paper. The dynamics of the introduced system can be
strongly chaotic presenting interesting phenomena, such as period doubling
route to chaos, antimonotonicity, interior crisis and coexisting attractors.
Especially, the phenomenon of antimonotonicity is observed for the first
time in this type of memristive circuits with a first order memristive diode
bridge. Simulation results by using well-known tools from nonlinear the-
ory, such as bifurcation diagram, Lyapunov exponents and phase portraits
confirmed the appearence of the aforementioned phenomena. An electronic
circuit to reproduce the proposed memristive circuit was designed, and ex-
periments were conducted to verify the results obtained from the numerical
simulations. Circuits with coexistence of attractors and interior crisis can
be used to understand tipping points[51]. Those circuits that present an-
timonotonicity and are simultaneously simple in electronic architecture are
specially interesting to construct electronic based circuits for chaos-based

12



cryptography with expanded key spaces,[52] or to create fast and light (low
computation power required) chaos-based cryptosystems, such as in Ref.
[53], or to create classical crytosystems that inherit the quantum crypto-
graphic property of detecting the eavesdropper.[54] Such a system can be
used in potential chaos-based applications as well in the understanding of
the memristive systems’ dynamical behavior. However, the advantages of
the proposed circuit in real engineering applications will be further explored
in future work.
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