
Accepted manuscript to appear in JCSC

Accepted Manuscript
Journal of Circuits, Systems, and Computers

Article Title: Regression-Based Prediction for Task-Based Program Performance

Author(s): Isil Oz, Muhammad Khurram Bhatti, Konstantin Popov, Mats Brorsson

DOI: 10.1142/S0218126619500609

Received: 15 October 2017

Accepted: 21 May 2018

To be cited as: Isil Oz et al., Regression-Based Prediction for Task-Based Program
Performance, Journal of Circuits, Systems, and Computers, doi:
10.1142/S0218126619500609

Link to final version: https://doi.org/10.1142/S0218126619500609

This is an unedited version of the accepted manuscript scheduled for publication. It has been uploaded
in advance for the benefit of our customers. The manuscript will be copyedited, typeset and proofread
before it is released in the final form. As a result, the published copy may differ from the unedited
version. Readers should obtain the final version from the above link when it is published. The authors
are responsible for the content of this Accepted Article.

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

https://doi.org/10.1142/S0218126619500609

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Journal of Circuits, Systems, and Computers
c© World Scientific Publishing Company

Regression-Based Prediction for Task-Based Program Performance

Isil Oz

Computer Engineering Department, Izmir Institute of Technology, Izmir, Turkey

Muhammad Khurram Bhatti

Information Technology University, Lahore, Pakistan

Konstantin Popov

SICS Swedish ICT AB, Stockholm, Sweden

Mats Brorsson

KTH Royal Institute of Technology, Stockholm, Sweden

As multicore systems evolve by increasing number of parallel execution units, parallel

programming models have been released to exploit parallelism in the applications. Task-

based programming model uses task abstractions to specify parallel tasks and schedules
tasks onto processors at runtime. In order to increase the efficiency and get the highest

performance, it is required to identify which runtime configuration is needed and how

processor cores must be shared among tasks. Exploring design space for all possible
scheduling and runtime options, especially for large input data, becomes infeasible and

requires statistical modeling. Regression-based modeling determines the effects of mul-

tiple factors on a response variable, and makes predictions based on statistical analysis.
In this work, we propose a regression-based modeling approach to predict task-

based program performance for different scheduling parameters with variable data size.

We execute a set of task-based programs by varying runtime parameters, and conduct
a systematic measurement for influencing factors on execution time. Our approach uses

executions with different configurations for a set of input data, and derives different
regression models to predict execution time for larger input data. Our results show that

regression models provide accurate predictions for validation inputs with mean error

rate as low as 6.3%, and 14% in average among four task-based programs.

Keywords: performance prediction, task-based programs, regression

1. Introduction

With the increasing availability of larger multicore architectures, parallel program-

ming models have been emerged to exploit the performance out of parallel ar-

chitectures and to provide easier programmability for high-performance systems.

Task-based programming model allows programmer to divide computation into task

abstractions and maintains dynamic scheduling techniques for load imbalance.1,2,3,4

For instance, OpenMP implements task parallelism by using explicit task constructs

as parallel work units.3

1

Manuscript (pdf) Click here to download Manuscript (pdf) regression.pdf

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

2 I.Oz et.al

In order to get the highest performance for task-based programs processing large

data and to use parallel resources efficiently, it is required to identify which runtime

configuration is needed and how processor cores must be shared among tasks. For

example, Figure 1 demonstrates execution time variability for different data sizes

of fft program. The configurations include a set of thread numbers and scheduling

strategies. Exploring design space for all possible scheduling and runtime options,

especially for large data, becomes infeasible and requires estimations for execution

time.

●

16777216 33554432 67108864

0
10

20
30

40
50

60
70

fft

Number of Floats

E
xe

cu
tio

n
T

im
e

(s
ec

)

Fig. 1. Execution time deviations for task-based fft program with different configurations for a set

of data size.

Techniques in statistical inference are becoming increasingly popular for per-

formance prediction purposes5,6,7,8. Statistical models offer comparable prediction

results with a small set of design space exploration. Building an accurate statistical

model for performance prediction requires a systematic and detailed analysis by

considering influencing factors and factor interactions9. While omitting important

factors causes bias on estimation results, inclusion of too many factors complicates

the performance model.

In this paper, we propose a regression-based approach to predict task-based

program performance for different scheduling parameters with variable data size.

Our approach uses executions with different configurations for a set of input data,

and presents different regression models to predict execution time for larger data.

We can summarize the main contributions of this work as follows:

• We present a set of factors that affect task-based program performance,

and derive regression models to predict execution times. Our regression

models use execution times for a set of input data by varying the values of

factors, and predict the performance for larger data.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 3

• We conduct experiments for a set of task-based OpenMP programs from

BOTS benchmark suite10 to apply the regression models. We analyze the

accuracy of proposed regression models on training data, and select the

models with the lowest mean percentage error to apply on larger data.

• We apply the selected regression models on larger input data for the target

programs, and predict the execution times for given configurations. Our

experimental evaluation shows that regression models predict performance

for validation inputs with mean error rate as low as 6.3%, and 14% in

average among four task-based programs.

The remainder of this paper is structured as follows: Section 2 provides a formal

definition of our target problem and the proposed method. Section 3 gives the details

of our regression-based approach for task-based program performance analysis, and

experimental methodology to apply the regression models is presented in Section

4. Section 5 presents the experimental evaluation and discussion about the results.

We discuss related work in Section 6 and conclude the paper in Section 7.

2. Problem Formulation

2.1. System Model

We consider a parallel system running task-based parallel programs with a given

configuration. The programs can be executed by different runtime parameters and

different input sizes, and perform computations in a time interval:

T = P (C), (1)

C = (I = i, R1 = a1, R2 = b1, R3 = c1, ..., Rn = z1),

where T is the execution time of the task-based program P executed for the given

configuration C, and I is the input size, R1, R2,..., Rn are the runtime parameters

with the assigned values for each parameter. If we run fft application by using

Breadth-First (bf) scheduler for 16777216 data points, we can have the representa-

tion for each specific execution:

T = fft(I = 16777216, Scheduler = bf) (2)

In order to get the highest performance for task-based programs processing

large data and to use parallel resources efficiently, we want to decide which runtime

configuration is needed. Since exploring design space for all possible runtime options

is not infeasible, we aim to have a prediction mechanism for the execution times

of task-based programs. We want to have a prediction for the execution time of a

specific configuration before executing it.

2.2. Objective

In this paper, we propose a regression-based performance prediction method to

predict the execution times of task-based programs. We assume that we have a

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

4 I.Oz et.al

set of execution times for different runtime configurations for a program, and our

aim is to get the execution time for a large input set for the given runtime options

without executing the program.

For instance, given that T1, T2, T3 for the configurations C1, C2, C3 respectively,

we want to have an execution time prediction T̂ for the specified configuration Cx,

which is not the same as C1, C2, or C3.

Given that T1 = P (C1), T2 = P (C2), T3 = P (C3) (3)

Find T̂ for any Cx

3. Regression-Based Performance Prediction

In this section, we describe our regression-based approach for performance predic-

tion of task-based programs. We explain the motivation behind the regression-based

approach for performance prediction, then present a brief information about our

method. Then we describe the input variables included in our analysis, and finally

we detail our regression model derivation.

3.1. Motivation

Given large runtime parameter options, we need to predict the execution time of

task-based programs. We use regression-based approach due to its practical and

feasible charactarestics for our purpose. The other prediction approaches can fail

for our problem. For instance, analytical model construction requires exhaustive

analysis of each runtime option, and this is not very practical for runtime systems

of task-based programs. Although the simulation is an effective approach for per-

formance prediction, the simulation of the runtime system is not straightforward11.

Moreover, the simulation time for a detailed simulation including all runtime con-

siderations becomes impractical especially for large input sets. Therefore, we select

regression-based approach, which is both practical and feasible. It relies on statisti-

cal analysis which shows the relationship between the parameters and application

performance, and only requires an initial set of data for model training, obtained

from a small set of measurements in the larger runtime options. We construct pre-

dictive models for smaller input sets, and predict the execution times for large input

data.

3.2. Method Overview

Regression analysis is a statistical technique to estimate the value of a dependent

variable given the independent variables.12 For example, a linear regression model

can be built by assuming that two variables (x1 and x2) determine the response

variable (y):

y = β0 + β1x1 + β2x2 + ε, (4)

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 5

where y is dependent variable, x1 and x2 are independent variables, β0, β1, and

β2 are estimated parameters, and ε is an error term. This model assumes that two

factors affect the response, and they do not interact with each other. The accuracy

of the regression-based prediction relies on the model construction. While omitting

important factors in the model causes bias on estimation results, inclusion of too

many factors complicates performance model.

Our regression-based method first derives a model based on a training set of pre-

viously executed configurations and their measured performance. It then predicts

performance for unknown configuration based on this model. Each configuration

consists of runtime parameters, that are individually measurable properties. By us-

ing the model formulation given in Equation 4, we can define independent variables

x1, x2, ..., xn for each runtime parameter, and treat execution time as a separate

dependent variable y.

T = β0 + β1R1 + β2R2 + ...+ βnRn + ε, (5)

where T is the execution time, and R1, R2,..., Rn are the runtime parameters.

In this work, we make some assumptions. First, we assume that input data for

the target program can be specified by its size or can be measured quantitatively.

Since executing larger problems takes time and exploring complete design space

becomes infeasible, our approach proposes a model to make predictions for larger

input data by executing small-size inputs. We further assume that we know which

variables contribute significantly to execution time. Our models are defined by some

function of these variables. We consider the variables given in Section 3.3 in our

regression model, and try to avoid errors from different executions by including

results from multiple runs in the training data. Finally, we assume that a program

can be run using any configuration of the input variables.

3.3. Input Variables

We aim to estimate execution times for task-based programs with different configu-

rations to be able to determine runtime parameters for performance prediction. In

this work, we focus on OpenMP programs implemented by explicit task constructs,

and deal with task-centric parameters. We include scheduler, cut-off policy, num-

ber of threads, and input size as factors in our regression model, and predict the

execution time of target program for a given configuration.

3.3.1. Task Scheduler

Scheduling of tasks plays an important role in the execution of task-based programs

running on multicore systems.13 The scheduling policy defines the order of execution

of tasks and the resource where each task will be executed. The choice for assigning

the tasks to the available threads/cores in the system becomes critical especially

for irregular applications with heterogeneous tasks. Queueing and work-stealing

strategies also induce performance impacts on the program executions.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

6 I.Oz et.al

We consider different combinations of schedulers and queuing policies provided

by Nanos++ runtime system.14 Mainly, we explore Breadth-First (bf) and Work-

First (wf) schedulers with specific options.13

• Breadth-First (bf): This scheduler policy only implements a sin-

gle/global ready queue. When the parent task spawns children, all ready

child tasks are placed into this ready queue (ordered as FIFO by default)

and execution of parent task continues. All successor tasks are generated

immediately before a thread executes tasks from the next level.

• Work-First (wf): This scheduler policy implements a local ready queue

per thread. When the parent task creates a task, the execution continues

with the new created task by leaving the parent task into current threads

ready queue.

Table 1 presents the schedulers used in our evaluation. Steal Parent option enables

wf scheduler to steal parent task if there is no task in the local ready queue, which

makes the scheduler equivalent to cilk scheduler.1 Queue Access for Ready Queue

option defines queue access algorithm for the ready queue (i.e., global queue for

bf scheduler, local queue for wf scheduler), while Queue Access for Stealing option

defines the algorithm for stealing. A queue is ordered following a FIFO (First In

First Out) or LIFO (Last In Last Out) algorithm.

Table 1. Schedulers used in our evaluation.

Scheduler Scheduler Type Steal Parent Queue Access Queue Access
Name for Ready Queue for Stealing

bff Breadth-First - FIFO -

bfl Breadth-First - LIFO -

wfpff Work-First Yes FIFO FIFO

wfpfl Work-First Yes FIFO LIFO

wfplf Work-First Yes LIFO FIFO

wfpll Work-First Yes LIFO LIFO

wfff Work-First No FIFO FIFO

wffl Work-First No FIFO LIFO

wflf Work-First No LIFO FIFO

wfll Work-First No LIFO LIFO

3.3.2. Cut-off Policy

Several works have proposed how to reduce the overhead of task creation by means

of using cut-off policies.13,15 To limit the size of the number of task creations,

Nanos++ runtime system provides an internal cut-off strategy (throttling). We

include three throttling policies in our evaluation:14

• Task depth: This throttle policy takes the decision according to the depth

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 7

of the task. If the maximum nested level reaches a fixed limit, the runtime

does not create new tasks.

• Ready tasks: This throttle policy takes the decision according to the

number of ready tasks. If the number of ready tasks in the system is greater

than a fixed limit, the runtime does not create new tasks.

• Number of tasks: This throttle policy takes the decision according to the

existing number of tasks. If the number of tasks in the system is greater

than a fixed limit, the runtime does not create new tasks.

Table 2 presents the throttle mechanisms and throttling limit values used in our

evaluation.

Table 2. Throttle policies used in our evaluation.

Throttle Name Throttle Type Throttle Limit

taskdepth Task depth 4

readytasks Ready tasks 100

numtasks Number of tasks 100

Figure 2 presents execution time values for different scheduler/throttle pairs

for task-based fft program executed with 2-threads. While program performance

stays stable for taskdepth throttle policy, it exhibits different behavior for varying

schedulers if throttle policy is readytasks or numtasks. This example case shows

that schedulers may affect the program performance in a different way if throttle

policies vary in the execution.

3.3.3. Number of Threads

The number of threads identifies the parallel program performance for most of the

applications.16,17 Since parallelism makes use of resources in a multicore system,

the performance of the applications with higher degree of parallelism increases as

the number of threads/cores increases. On the other hand, intensity of shared cache

contention rises with the number of threads. Since threads, which are running si-

multaneously, request cache lines at the same time, this contention incurs significant

performance penalties if they work on different data. We include two-thread, four-

thread, and eight-thread execution cases for our evaluation. We assign one thread per

core in a multicore architecture, and use thread and core interchangeably through-

out the paper.

While we include those factors in our analysis, there are other potential param-

eters influencing parallel program performance. Most importantly, memory/cache

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

8 I.Oz et.al

bf
l

bf
f

w
fp

ff
w

fp
fl

w
fp

lf
w

fp
ll

w
fff

w
ffl

w
flf

w
fll bf
l

bf
f

w
fp

ff
w

fp
fl

w
fp

lf
w

fp
ll

w
fff

w
ffl

w
flf

w
fll bf
l

bf
f

w
fp

ff
w

fp
fl

w
fp

lf
w

fp
ll

w
fff

w
ffl

w
flf

w
fll

taskdepth readytasks numtasks

0

2

4

6

8

10

12

E
xe

cu
tio

n
 ti

m
e

 (
se

c)

Fig. 2. Performance values for fft program with different scheduler/throttle configurations, 2-

thread execution for Input Size=16777216.

hierarchy may affect execution time if tasks have strong contention for memory

resources. On the other hand, cache sharing does not impact the performance for

some parallel workloads.18 In this work, we do not aim to analyze the potential per-

formance effect of the memory, so we assume that our system has enough memory

resources for parallel programs, and do not include memory-related factors in our

analysis.

3.4. Model Derivation

We derive a regression model, by including four variables affecting performance of

task-based programs, and try to determine the execution time as including it as the

response variable in our model. We can formulate the proposed model as follows:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε, (6)

where y is the execution time of the program, x1 is the input size, T is the number

of threads, S is the scheduler type, and C is the cut-off policy.

We propose regression models using several runs of the same program with

smaller input sets, and make performance prediction for larger input execution

cases. We vary the values of input variables for a set of small-size input, where runs

take reasonable times for different configurations. We derive regression models by

using relationship between input variables and execution time to predict execution

time for larger input data. Our regression models are functions of the independent

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 9

variables:

ET = F (I, T, S, C), (7)

where ET is the execution time of the program, I is the input size, T is the number

of threads, S is the scheduler type, and C is the cut-off policy. While the input size

and the number of threads are quantitative factors in the model, the scheduler type

and the cut-off policy values are included as qualitative factors.

3.4.1. ANOVA Analysis

First, we apply Analysis of variance (ANOVA) to determine the factors and factor

interactions to be included in the regression model for performance prediction.12

ANOVA, which is a collection of statistical models, provides information about how

much each factor and interaction between factors contribute to variance of data.

The fundamental technique relies on a partitioning of the total sum of squares (SS)

into components related to the effects used in the model. For example, the model

for two-factor ANOVA at different levels can be presented as follows:

SSTotal = SSA + SSB + SSAB + SSE

a∑

i=1

b∑

j=1

n∑

k=1

(yijk − y...)2 = bn
a∑

i=1

(yi.. − y...)2 + an
b∑

j=1

(y.j. − y...)2+

n

a∑

i=1

b∑

j=1

(yij. − yi.. − y.j. − y...)2 +

a∑

i=1

b∑

j=1

n∑

k=1

(yijk − yij.)2,

(8)

where y represents each observation, a, b, and n represent the number of levels

for Factor A and Factor B, and the number of replications for each factor level,

respectively. This equation indicates that total variance (SSTotal) may be explained

by the effect of Factor A (SSA), Factor B (SSB), the interaction between Factor A

and B (SSAB), and the experimental error within observations (SSE).

3.4.2. Regression Models

After screening out unimportant factor interactions, regression model can be em-

ployed to determine a relationship between the factors and response variables.

Firstly, we consider that main factors and 2-factor interactions contribute to per-

formance deviation and derive models based on this assumption without further

analysis. We also derive models by using ANOVA results to determine the factors

to be included in the model. In order to get better fits, we use log transformation

for quantitative variables.19 While log(x) represents the log transformed value of

the quantitative factor x, factor(y) represents the class of the qualitative factor

y. If the model considers factor interactions (simultaneous influence of two vari-

ables), it includes a term represented by the multiplication of two factors (e.g.

factor(x) ∗ factor(y)) Mainly, we derive six regression models:

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

10 I.Oz et.al

• Log transformed linear model (modeLog): Linear model with re-

sponse variable and quantitative factors transformed, main factors only.

log(ET)∼(log(I) + log(T) + factor(S) + factor(C)).

• Log transformed quadratic model (modelQuad): Log transformed

model with quadratic terms for quantitative factors included.

log(ET)∼(log(I)+(log(I))2 + log(T)+(log(T))2 +factor(S)+factor(C)).

• 2-factor interaction model (model2): Log transformed model with 2-

factor interactions included.

log(ET)∼(log(I) + log(T) + factor(S) + factor(C)+

log(I) ∗ log(T) + log(I) ∗ factor(S) + log(I) ∗ factor(C)+

log(T) ∗ factor(S) + log(T) ∗ factor(C) + factor(S) ∗ factor(C)).

• All interactions model (modelAll): Log transformed model with all

2-factor, 3-factor, 4-factor interactions included.

log(ET)∼(log(I) + log(T) + factor(S) + factor(C)+

log(I) ∗ log(T) + log(I) ∗ factor(S) + log(I) ∗ factor(C)+

log(T) ∗ factor(S) + log(T) ∗ factor(C) + factor(S) ∗ factor(C)+

log(I) ∗ log(T) ∗ factor(S) + log(I) ∗ log(T) ∗ factor(C)+

log(I) ∗ factor(S) ∗ factor(C) + log(T) ∗ factor(S) ∗ factor(C)+

log(I) ∗ log(T) ∗ factor(S) ∗ factor(C)).

• Anova interactions model (modelAov): Log transformed model with

factor interactions that are significant in ANOVA analysis included.

• Anova 2-factor interaction model (modelAov2): Log transformed

model with 2-factor interactions that are significant in ANOVA analysis

included.

3.4.3. Model Evaluation

We compare regression models for each program, and apply the model with mini-

mum prediction error on the unseen input sets (i.e., validation data). To assess the

model accuracy, we use Root Mean Squared Error (RMSE), Mean Absolute Error

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 11

(MAE), and Mean Absolute Percentage Error (MAPE) metrics:

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2

MAE =
1

n

n∑

i=1

|yi − ŷi|

MAPE =
1

n

n∑

i=1

∣∣∣∣
yi − ŷi
yi

∣∣∣∣

where n is the number of configurations, yi is the observed value of the ith config-

uration, and ŷi is the predicted value of the ith configuration.

We calculate each metric value for training data, and select the models that

have the lowest errors to be applied on validation data.

Figure 3 presents the flow of our regression modeling. First, we derive models by

using training data gathered from real executions. Then we predict the execution

times of the configurations with larger data by using the best model with minimum

error rate.

Target program
on target architecture

Configurations

C1 : I=1, T=2, S=bff, C=taskdepth
C2 : I=1, T=2, S=bff, C=numtasks
….......
 I=2,
….......
 I=3,
….......

Training data

ET (C1)
ET (C2)
….......
….......

Models

modeLog
modelQuad
model2
modelAll
modelAov
modelAov2

Regression model

Configurations

C1 : I=4, T=2, S=bff, C=taskdepth
C2 : I=4, T=2, S=bff, C=numtasks
….......
 I=5,
….......

Execution

Predicted performance

ET (C1)
ET (C2)
….......
….......

Prediction

Model
derivation

Model
evaluation

Fig. 3. Our regression modeling flow.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

12 I.Oz et.al

4. Experimental Methodology

In our experimental analysis, we use a set of task-based programs from Barcelona

OpenMP Tasks Suite (BOTS).10 BOTS provides a set of programs using explicit

task parallelism and the tasking model in OpenMP 3.0.20 We select four applications

from the benchmark suite including fft, sort, sparselu, and strassen.

• fft : computes recursively the one-dimensional Fast Fourier Transform of a

vector of n complex values using the Cooley-Tukey algorithm.

• sort : sorts a random permutation of n 32-bit numbers with a fast parallel

sorting variation of mergesort.

• sparselu: computes an LU matrix factorization over sparse matrices, with

n matrix size.

• strassen: computes matrix multiplication of large dense matrices using

hierarchical decomposition algorithm, with n matrix size.

To evaluate regression models, we use R, a statistical computing environment.21

We build our modeling framework based on R packages.

We execute our task-based programs on an AMD Opteron 6172 processor-based

multicore system. First, we execute each program with three different input sizes

(training data) by altering input variables and train regression models. Then, we

predict execution times for two other input sets (validation data) for the same

configurations. Table 3 presents our training and validation input data sizes for

each benchmark program, where input size is represented by n above definitions.

The input size represents the number of complex numbers for fft, the number of

integers for sort, the size of the matrix (nxn blocks) for sparselu, and the size of

the matrix (nxn elements) for strassen.

Table 3. Size of input sets in our evaluation.

Benchmark Training Input Validation Input

fft 16777216, 33554432, 67108864 134217728, 268435456

sort 1048576, 2097152, 4194304 8388608, 16777216

sparselu 25, 50, 75 100, 200

strassen 512, 1024, 2048 4096, 8192

5. Experimental Results

To train our regression models, we execute each program for three different input

sizes by varying configurations. We use five replications for each case. Namely,

for each program, we have 3(input) × 3(thread) × 10(scheduler) × 3(throttle) ×

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 13

5(replica) = 1350 runs for training data. After training regression models with

those data and comparing the performance of the models, we apply the models

with the lowest error to the configurations with larger input size. To assess the

performance of the models for this validation data, we also execute programs with

larger input data. By comparing prediction results and observed values, we evaluate

the accuracy of regression-based approach on performance prediction.

5.1. ANOVA Results

First, we apply ANOVA analysis to determine the significance of factors and factor

interactions. In our analysis, we include input size (I), number of threads (T), cut-

off policy (C), and scheduler (S). We use five replications (subject) as the error

term in ANOVA equation.

log(ET)∼((log(I) + log(T) + factor(C) + factor(S)+

log(I) ∗ log(T) + log(I) ∗ factor(C) + log(I) ∗ factor(S)+

log(T) ∗ factor(C) + log(T) ∗ factor(S) + factor(C) ∗ factor(S)+

log(I) ∗ log(T) ∗ factor(C) + log(I) ∗ log(T) ∗ factor(S)+

log(I) ∗ log(T) ∗ factor(S) + log(T) ∗ factor(C) ∗ factor(S)+

log(I) ∗ log(T) ∗ factor(C) ∗ factor(S))+

Error(factor(subject)/(log(I) + log(T) + factor(C) + factor(S)))).

Table 4. ANOVA table for fft.

Df Sum Sq Mean Sq F value Pr(>F)

log(I) 1 646.87 646.87 590561.54 0.0000

log(T) 1 124.35 124.35 179231.93 0.0000

factor(C) 2 61.63 30.81 48630.42 0.0000

factor(S) 9 60.12 6.68 6706.07 0.0000

log(I):log(T) 1 0.06 0.06 5.91 0.0152

log(I):factor(C) 2 0.44 0.22 21.89 0.0000

log(I):factor(S) 9 1.34 0.15 14.98 0.0000

log(T):factor(C) 2 3.12 1.56 156.54 0.0000

log(T):factor(S) 9 1.84 0.20 20.50 0.0000

factor(C):factor(S) 18 34.01 1.89 189.84 0.0000

log(I):log(T):factor(C) 2 0.03 0.02 1.68 0.1867

log(I):log(T):factor(S) 9 0.04 0.00 0.49 0.8796

log(T):factor(C):factor(S) 18 1.35 0.07 7.52 0.0000

log(I):factor(C):factor(S) 18 0.69 0.04 3.87 0.0000

log(I):log(T):factor(C):factor(S) 18 0.10 0.01 0.54 0.9379

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

14 I.Oz et.al

Table 5. ANOVA table for sort.

Df Sum Sq Mean Sq F value Pr(>F)

log(I) 1 472.85 472.85 336647.26 0.0000

log(T) 1 142.62 142.62 158877.10 0.0000

factor(C) 2 92.37 46.18 101565.56 0.0000

factor(S) 9 5.36 0.60 1180.45 0.0000

log(I):log(T) 1 0.08 0.08 17.03 0.0000

log(I):factor(C) 2 0.20 0.10 21.03 0.0000

log(I):factor(S) 9 0.40 0.04 9.11 0.0000

log(T):factor(C) 2 7.46 3.73 770.86 0.0000

log(T):factor(S) 9 0.55 0.06 12.73 0.0000

factor(C):factor(S) 18 5.71 0.32 65.60 0.0000

log(I):log(T):factor(C) 2 0.05 0.02 5.05 0.0065

log(I):log(T):factor(S) 9 0.05 0.01 1.14 0.3340

log(T):factor(C):factor(S) 18 1.24 0.07 14.28 0.0000

log(I):factor(C):factor(S) 18 0.34 0.02 3.88 0.0000

log(I):log(T):factor(C):factor(S) 18 0.06 0.00 0.68 0.8362

Table 6. ANOVA table for sparselu.

Df Sum Sq Mean Sq F value Pr(>F)

log(I) 1 2057.47 2057.47 149583253.79 0.0000

log(T) 1 297.10 297.10 42018340.39 0.0000

factor(C) 2 0.00 0.00 70.75 0.0000

factor(S) 9 4.19 0.47 418261.13 0.0000

log(I):log(T) 1 1.97 1.97 1346.67 0.0000

log(I):factor(C) 2 0.00 0.00 0.03 0.9738

log(I):factor(S) 9 0.38 0.04 28.81 0.0000

log(T):factor(C) 2 0.00 0.00 0.01 0.9931

log(T):factor(S) 9 1.68 0.19 128.10 0.0000

factor(C):factor(S) 18 0.00 0.00 0.02 1.0000

log(I):log(T):factor(C) 2 0.00 0.00 0.00 0.9962

log(I):log(T):factor(S) 9 0.15 0.02 11.68 0.0000

log(T):factor(C):factor(S) 18 0.00 0.00 0.00 1.0000

log(I):factor(C):factor(S) 18 0.00 0.00 0.01 1.0000

log(I):log(T):factor(C):factor(S) 18 0.00 0.00 0.00 1.0000

Table 4, Table 5, Table 6, and Table 7 present ANOVA tables for fft, sort,

sparselu, and strassen programs, respectively. The rows in the tables present the

statistics about each factor (e.g. log(I) for input size factor) or factor interactions

(e.g. log(I) : log(T) for the interaction between input size and number of threads).

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 15

Table 7. ANOVA table for strassen.

Df Sum Sq Mean Sq F value Pr(>F)

log(I) 1 3039.29 3039.29 88243.22 0.0000

log(T) 1 168.43 168.43 2694.30 0.0000

factor(C) 2 2.34 1.17 505.28 0.0000

factor(S) 9 3.79 0.42 161.03 0.0000

log(I):log(T) 1 2.37 2.37 757.21 0.0000

log(I):factor(C) 2 1.14 0.57 183.07 0.0000

log(I):factor(S) 9 0.26 0.03 9.09 0.0000

log(T):factor(C) 2 0.31 0.15 49.42 0.0000

log(T):factor(S) 9 0.11 0.01 4.05 0.0000

factor(C):factor(S) 18 1.31 0.07 23.32 0.0000

log(I):log(T):factor(C) 2 0.13 0.07 20.96 0.0000

log(I):log(T):factor(S) 9 0.03 0.00 1.14 0.3341

log(T):factor(C):factor(S) 18 0.38 0.02 6.78 0.0000

log(I):factor(C):factor(S) 18 0.54 0.03 9.59 0.0000

log(I):log(T):factor(C):factor(S) 18 0.07 0.00 1.29 0.1818

The columns in the tables present different statistics, the important statistic for

our analysis is P-value (Pr(>F)) that specifies if the factor on this row significantly

influences the response variable (Refer to12 for the details of the additional data

given in tables). 0.0000 P-value (Pr(>F)) indicates that the factor on this row

significantly influences the response variable.

For fft, ANOVA results indicate that all main factors affect the execution time

of the application. Moreover, two-factor interactions including scheduler or cut-off

policy, and three-factor interactions including both scheduler and cut-off policy

contribute to the variance of the performance. As demonstrated in,13 scheduler-

related decisions play an important role on the performance of FFT computations

and our results are compatible with this observation.

For sort and strassen, all main factors, two-factor interactions, and most of

three-factor interactions have zero P values that contribute to performance varia-

tion.

For sparselu, all main factors and interactions, except the ones including cut-off

policy, affect the program performance. As indicated in,13 all schedulers perform

similarly for different cut-off policies for this program.

5.2. Results for Training Data

As discussed in Section 3.4, we train different regression models based on ANOVA

results. We apply each model for each program, and calculate prediction errors in

terms of RMSE, MAE, and MAPE. Table 8 presents error values for six regression

models.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

16 I.Oz et.al

Table 8. Prediction errors for different regression models.

modeLog modelQuad model2 modelAll modelAov modelAov2

fft
RMSE 4.303 3.903 2.184 1.925 1.984 2.219
MAE 2.618 2.441 1.328 1.224 1.245 1.350

MAPE 0.167 0.156 0.084 0.079 0.079 0.085

sort
RMSE 0.021 0.020 0.013 0.011 0.011 0.013
MAE 0.014 0.013 0.008 0.007 0.008 0.008

MAPE 0.096 0.089 0.056 0.049 0.051 0.056

sparselu
RMSE 1.206 0.863 0.502 0.472 0.472 0.502
MAE 0.522 0.342 0.318 0.319 0.319 0.318

MAPE 0.049 0.038 0.033 0.032 0.032 0.033

strassen
RMSE 0.100 0.093 0.048 0.037 0.038 0.048
MAE 0.051 0.048 0.024 0.018 0.018 0.024

MAPE 0.065 0.062 0.042 0.035 0.036 0.042

The mean percentage error (MAPE) stays below 17% (maximum at modeLog

model for fft program) for all models and programs. Moreover, for all four programs,

models with factor interactions (model2, modelAll, modelAov, modelAov2) yield

lower error rates, less than 10% for each case. Including all factors or including only

factors from ANOVA analysis does not change error percentage significantly. Even

in some programs, MAPE values are exactly the same for both models (modelAll

and modelAov); 0.079 for fft, 0.032 for sparselu program.

After evaluating six regression models, we decide to apply the models model2,

modelAll, modelAov, modelAov2 for further analysis due to their lower error rates.

Since the difference between these models is not significant, we do not want to

eliminate any of them and evaluate their performance for validation data, which

has configurations with larger input size.

5.3. Results for Validation Data

To validate the efficiency of regression-based approach on performance prediction

across input sizes, we apply regression models on unseen input data. We predict

execution times of programs for two additional input sets with varying configu-

rations. In order to compare our predicted values, we also execute the programs

with the same input sizes and the same configurations. We get five runs for each

configuration to avoid the error between different runs, and use the average of

five runs as the observed execution time. For this part of our evaluation, we have

2(input)×3(thread)×10(scheduler)×3(throttle)×5(replica) = 900 runs for each

program.

Figure 4 and Figure 5 show observed and predicted values (for four models)

for different configurations of fft executions, with 134217728 and 268435456 floats,

respectively. There are 3(thread)× 10(scheduler)× 3(throttle) = 90 configurations

for each case. Figure 6 also presents percentage error rates for different regression

models. The prediction error for larger data is higher due to too many tasks created

by the execution (Figure 9(b)). Since there are simultaneously executed parallel

tasks in the system, the contention between those tasks has effect on execution time

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 17

fft, Input=134217728, model2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

50

100

150

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●●

●
●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●●

●
●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

Observed
Predicted

●

●

fft, Input=134217728, modelAll

Configurations
E

xe
cu

tio
n

tim
e

(s
ec

)

50

100

150

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●
●

●●

●

●

●

●
●●

●

●

●●

●
●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●●●●●●●●●

●

●
●

●

●
●

●●

●

●

●

●
●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

Observed
Predicted

●

●

fft, Input=134217728, modelAov

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

50

100

150

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●
●

●●

●

●

●

●

●●

●

●

●●

●
●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●●●●
●●●●●

●

●
●●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

Observed
Predicted

●

●

fft, Input=134217728, modelAov2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

50

100

150

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●●

●
●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●●

●
●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

Observed
Predicted

●

●

Fig. 4. Observed and predicted values for fft, Input size=134217728.

which we do not consider in our analysis. Those results lead us for future work that

examines the contention factor in parallel program performance. The models that

include all factor interactions (modelAll) and factor interactions decided by ANOVA

analysis (modelAov) seem more successful. Both models fit data more accurately

especially when the data exhibits more steady behavior (e.g., configurations between

1 and 10, configurations between 60 and 70, as shown in Figure 4 and Figure 5).

Similarly, Figure 7, Figure 8 and Figure 9 present results for sort program. In

terms of error percentages, the performance of regression models do not differ sig-

nificantly. However, modelAll exhibits lower rates for the largest input size (Figure

9(b)).

As discussed in Section 5.1, ANOVA analysis for sparselu yields the largest F

values for input size (I) and number of threads (T) factors, which indicate the most

important factors in performance deviation. We can see this behavior in Observed

values on the Figure 10 and Figure 11. The configuration sets in the intervals 0-30,

30-60, and 60-90 differ by number of threads, and the performance deviations inside

these intervals are not significant. With this predictable behavior, regression-based

approach exhibits high prediction accuracy for sparselu program. As seen in Table

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

18 I.Oz et.al

fft, Input=268435456, model2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

100

200

300

400

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●
●

●●

●
●

●

●
●●

●
●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●●

●●

●
●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●●

●
●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

Observed
Predicted

●

●

fft, Input=268435456, modelAll

Configurations
E

xe
cu

tio
n

tim
e

(s
ec

)

100

200

300

400

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●
●

●●

●
●

●

●
●●

●
●

●●

●
●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●

●

●
●

●●

●

●

●

●●
●

●

●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●●●●●
●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

Observed
Predicted

●

●

fft, Input=268435456, modelAov

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

100

200

300

400

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●
●

●●

●
●

●

●
●●

●
●

●●

●
●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●●●●●
●●●

●●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

Observed
Predicted

●

●

fft, Input=268435456, modelAov2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

100

200

300

400

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●
●

●●

●
●

●

●
●●

●
●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●●

●●

●
●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●●

●

●

●

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

Observed
Predicted

●

●

Fig. 5. Observed and predicted values for fft, Input size=268435456.

model2 modelAll modelAov modelAov2

0
20

40
60

80
10

0

fft, Input=134217728

Model

P
er

ce
nt

ag
e

E
rr

or

(a) fft, Input size=134217728

model2 modelAll modelAov modelAov2

0
20

40
60

80
10

0

fft, Input=268435456

Model

P
er

ce
nt

ag
e

E
rr

or

(b) fft, Input size=268435456

Fig. 6. Results for predicting fft validation input sets.

8, even error rate for simple model (i.e., MAPE for modeLog) is not very high

(which is equal to 0.049) compared to other models.

For strassen, 2-factor interaction models (model2 and modelAov2) perform

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 19

sort, Input=8388608, model2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●●●●●●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●●

●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●

●
●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●
●●

●
●●●

●
●

●

●●●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

Observed
Predicted

●

●

sort, Input=8388608, modelAll

Configurations
E

xe
cu

tio
n

tim
e

(s
ec

)

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●●●●●●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●●●●●●●●●●

●

●●●

●
●

●●

●
●

●

●

●
●

●

●

●
●

●●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

Observed
Predicted

●

●

sort, Input=8388608, modelAov

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●●●●●●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●●●●●●●●●●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●
●●

●

●

Observed
Predicted

●

●

sort, Input=8388608, modelAov2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●●●●●●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●●

●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●

●
●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●
●●

●
●●●

●
●

●

●●●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

Observed
Predicted

●

●

Fig. 7. Observed and predicted values for sort, Input size=8388608.

slightly better as in the training phase. While the difference is not clear in Fig-

ure 13 and Figure 14, Figure 15(b) exposes the difference with smaller median

errors.

Figure 16 presents overall percentage error results for validation input sets.

While error rates for training data stay below 10% for the selected models (see

Table 8), it increases to 25% for validation data size of fft program. When we

look at fft program characteristics, we can see that it forks many tasks (approxi-

mately 10M tasks for 128M input size), and the tasks compete for memory resources

substantially.10 Therefore, the cache effect might play an important role in perfor-

mance of this program. Since we do not include this effect in our analysis, we get

the largest error rate for fft. This investigation guides us for future work to work

on memory-related factors.

On the other hand, for more easily predictable sort program, the error rate re-

mains almost the same for validation data (7.3% at maximum) compared to training

data error rate (5.6% at maximum). While we use ANOVA analysis to specify sig-

nificant factor interactions, models derived without ANOVA analysis (model2 and

modelAll) perform similarly with models based on ANOVA analysis (modelAov and

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

20 I.Oz et.al

sort, Input=16777216, model2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●
●

●●

●

●

●

●

●
●

●
●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●
●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●
●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●
●

●●

●
●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

Observed
Predicted

●

●

sort, Input=16777216, modelAll

Configurations
E

xe
cu

tio
n

tim
e

(s
ec

)

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●
●

●●

●

●

●

●

●
●

●
●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●
●●●●●●●●

●

●
●●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●●●●●●●●●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

Observed
Predicted

●

●

sort, Input=16777216, modelAov

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●
●

●●

●

●

●

●

●
●

●
●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●
●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●
●●●

●
●●●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●
●●

●

●

Observed
Predicted

●

●

sort, Input=16777216, modelAov2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60 70 80 90

●●●●●●●●●●

●

●●●

●
●

●●

●

●

●

●

●
●

●
●

●●

●

●

●●●●●●●●●●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●
●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●
●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●
●

●●

●
●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

Observed
Predicted

●

●

Fig. 8. Observed and predicted values for sort, Input size=16777216.

●

●

●

●

●

●

●●●

●

●
●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●●

model2 modelAll modelAov modelAov2

0
20

40
60

80
10

0

sort, Input=8388608

Model

P
er

ce
nt

ag
e

E
rr

or

(a) sort, Input size=8388608

●

●

●

●

●● ●

●

●

●

●

●

model2 modelAll modelAov modelAov2

0
20

40
60

80
10

0

sort, Input=16777216

Model

P
er

ce
nt

ag
e

E
rr

or

(b) sort, Input size=16777216

Fig. 9. Results for predicting sort validation input sets.

modelAov2). This demonstrates that additional factors (not coming from ANOVA

analysis) do not disrupt prediction accuracy.

We also conduct a simulation-based comparison study for our target programs

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 21

sparselu, Input=100, model2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

20

40

60

80

0 10 20 30 40 50 60 70 80 90

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

Observed
Predicted

●

●

sparselu, Input=100, modelAll

Configurations
E

xe
cu

tio
n

tim
e

(s
ec

)

20

40

60

80

0 10 20 30 40 50 60 70 80 90

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

Observed
Predicted

●

●

sparselu, Input=100, modelAov

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

20

40

60

80

0 10 20 30 40 50 60 70 80 90

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

Observed
Predicted

●

●

sparselu, Input=100, modelAov2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

20

40

60

80

0 10 20 30 40 50 60 70 80 90

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

Observed
Predicted

●

●

Fig. 10. Observed and predicted values for sparselu, Input size=100.

to compare with our regression-based approach. We simulate our applications on

Sniper multi-core simulator22. To make the simulation configuration easier and

to make the simulation time practical, we use a dual-core architecture (Nehalem-

like) and include 2-thread execution configurations for our comparison study. We

exclude fft, since Sniper simulation crashed during the execution for the validation

input sets; and do not include sparselu due its impractical simulation times. We

choose the best-performed (the lowest prediction error) model to represent our

regression-based approach. Figure 17 presents the percentage error results of these

configurations for our model and simulation execution. The results demonstrate

that while our regression-based approach performs better than 10% error rates, the

prediction error of the simulation-based approach can be increased to almost 20%

for some cases. Although the simulation has lower error rate than our regression-

based approach for strassen, with input size 4096 ; since the error rates are not too

high for this case, the simulation does not yield very helpful prediction (both rates

(6% for regression, and 3% for simulation) are acceptable in general). For the other

two applications, we even do not have any results due to simulation limitations.

We also measure the time required for the simulation and our regression-based

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

22 I.Oz et.al

sparselu, Input=200, model2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90

●●
●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●
●●●●●●●●

●●

●●●●●●●●
●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

Observed
Predicted

●

●

sparselu, Input=200, modelAll

Configurations
E

xe
cu

tio
n

tim
e

(s
ec

)

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90

●●
●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●
●●●●●●●●

●●

●●●●●●●●
●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Observed
Predicted

●

●

sparselu, Input=200, modelAov

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90

●●
●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●
●●●●●●●●

●●

●●●●●●●●
●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Observed
Predicted

●

●

sparselu, Input=200, modelAov2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90

●●
●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●
●●●●●●●●

●●

●●●●●●●●
●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●

Observed
Predicted

●

●

Fig. 11. Observed and predicted values for sparselu, Input size=200.

model2 modelAll modelAov modelAov2

0
20

40
60

80
10

0

sparselu, Input=100

Model

P
er

ce
nt

ag
e

E
rr

or

(a) sparselu, Input size=100

model2 modelAll modelAov modelAov2

0
20

40
60

80
10

0

sparselu, Input=200

Model

P
er

ce
nt

ag
e

E
rr

or

(b) sparselu, Input size=200

Fig. 12. Results for predicting sparselu validation input sets.

approach. We include the time for training data collection for regression-based

approach (total time for 1350 executions), and the simulation time (total time

for simulations) for simulation-based approach. Table 9 presents the elapsed time

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 23

strassen, Input=4096, model2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

5

10

15

20

0 10 20 30 40 50 60 70 80 90

●

●
●

●
●●●

●
●

●

●

●●●

●
●●●

●

●

●

●

●●

●
●

●
●

●●

●●
●●●●●●●●

●

●●●
●

●●●
●●

●

●

●●

●
●

●●

●
●

●●●●●●●●●●

●

●●●
●●

●●
●

●

●

●

●●

●●

●●

●●

●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●
●

●●
●

●

●

●

●●

●
●

●●

●
●

●●

●
●

●
●

●●

●
●

●
●

●●●●
●●

●●

●

●

●●
●●

●●

●●

●●
●

●

●●

●●

●●

Observed
Predicted

●

●

strassen, Input=4096, modelAll

Configurations
E

xe
cu

tio
n

tim
e

(s
ec

)

5

10

15

20

0 10 20 30 40 50 60 70 80 90

●

●
●

●
●●●

●
●

●

●

●●●

●
●●●

●

●

●

●

●●

●
●

●
●

●●

●●
●●●●●●●●

●

●●●
●

●●●
●●

●

●

●●

●
●

●●

●
●

●●●●●●●●●●

●

●●●
●●

●●
●

●

●

●

●●

●●

●●

●●

●●
●

●

●

●

●●

●

●

●

●

●●
●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●
●●

●
●

●

●

●●●
●

●●●
●

●
●

●●

●
●

●●

●
●

●

●

●●
●●

●●
●●

●

●
●●●●●●●●

●

●
●

●

●●

●●

●●

Observed
Predicted

●

●

strassen, Input=4096, modelAov

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

5

10

15

20

0 10 20 30 40 50 60 70 80 90

●

●
●

●
●●●

●
●

●

●

●●●

●
●●●

●

●

●

●

●●

●
●

●
●

●●

●●
●●●●●●●●

●

●●●
●

●●●
●●

●

●

●●

●
●

●●

●
●

●●●●●●●●●●

●

●●●
●●

●●
●

●

●

●

●●

●●

●●

●●

●

●

●●

●
●

●●

●
●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●
●●

●
●

●

●

●●●
●

●●●
●

●●

●●

●
●

●●

●
●

●
●

●●
●●

●●
●●

●

●
●●

●●●●●●

●

●
●●

●●

●●

●
●

Observed
Predicted

●

●

strassen, Input=4096, modelAov2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

5

10

15

20

0 10 20 30 40 50 60 70 80 90

●

●
●

●
●●●

●
●

●

●

●●●

●
●●●

●

●

●

●

●●

●
●

●
●

●●

●●
●●●●●●●●

●

●●●
●

●●●
●●

●

●

●●

●
●

●●

●
●

●●●●●●●●●●

●

●●●
●●

●●
●

●

●

●

●●

●●

●●

●●

●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●
●

●●
●

●

●

●

●●

●
●

●●

●
●

●●

●
●

●
●

●●

●
●

●
●

●●●●
●●

●●

●

●

●●
●●

●●

●●

●●
●

●

●●

●●

●●

Observed
Predicted

●

●

Fig. 13. Observed and predicted values for strassen, Input size=4096.

for each case, the simulation takes much longer time even training data collection

requires more executions.

Table 9. Timing of regression-based and simulation-based prediction methods (in minutes).

sort sort strassen strassen

(I=8388608) (I=16777216) (I=4096) (I=8192)

regression 3,319 3,319 16,761 16,761

simulation 184 376 333.5 1892

6. Related Work

In this section, we present the related work about performance analysis and pre-

diction of parallel applications.

Measurement-based performance analysis: Duran et.al13 present

OpenMP task scheduling strategies and their impact on execution time by eval-

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

24 I.Oz et.al

strassen, Input=8192, model2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

50

100

150

0 10 20 30 40 50 60 70 80 90

●
●

●●●●●●
●

●

●

●

●●

●●

●●

●
●

●

●
●●

●
●

●●

●●

●●●●●●●●●●

●

●
●●

●●

●●

●●

●

●●●

●●

●●

●●

●●●●●●●●●●
●●●●

●●
●●

●●

●

●

●●

●●

●●

●●

●

●

●●●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●
●

●●●
●

●

●

●●

●
●

●●

●
●

●

●

●
●

●
●

●●

●
●

●

●
●●●●

●●●●

●

●

●●
●●

●●
●●

●
●

●
●

●●

●●

●
●

Observed
Predicted

●

●

strassen, Input=8192, modelAll

Configurations
E

xe
cu

tio
n

tim
e

(s
ec

)

50

100

150

0 10 20 30 40 50 60 70 80 90

●
●

●●●●●●
●

●

●

●

●●

●●

●●

●
●

●

●
●●

●
●

●●

●●

●●●●●●●●●●

●

●
●●

●●

●●

●●

●

●●●

●●

●●

●●

●●●●●●●●●●
●●●●

●●
●●

●●

●

●

●●

●●

●●

●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●●

●
●

●

●

●●

●
●●●

●
●

●
●

●●

●

●

●●

●
●

●

●

●●

●●
●●

●●

●

●
●●●●

●●●●

●

●

●●

●
●

●●

●●

Observed
Predicted

●

●

strassen, Input=8192, modelAov

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

50

100

150

0 10 20 30 40 50 60 70 80 90

●
●

●●●●●●
●

●

●

●

●●

●●

●●

●
●

●

●
●●

●
●

●●

●●

●●●●●●●●●●

●

●
●●

●●

●●

●●

●

●●●

●●

●●

●●

●●●●●●●●●●
●●●●

●●
●●

●●

●

●
●●

●●

●●

●●

●

●

●●

●
●

●●

●

●

●

●

●●
●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●●

●
●

●

●

●●

●
●●●

●
●

●
●

●●

●

●

●●

●
●

●

●
●●

●●
●●

●●

●

●
●●

●●●●●●

●
●

●●

●
●

●●

●
●

Observed
Predicted

●

●

strassen, Input=8192, modelAov2

Configurations

E
xe

cu
tio

n
tim

e
(s

ec
)

50

100

150

0 10 20 30 40 50 60 70 80 90

●
●

●●●●●●
●

●

●

●

●●

●●

●●

●
●

●

●
●●

●
●

●●

●●

●●●●●●●●●●

●

●
●●

●●

●●

●●

●

●●●

●●

●●

●●

●●●●●●●●●●
●●●●

●●
●●

●●

●

●

●●

●●

●●

●●

●

●

●●●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●
●

●●●
●

●

●

●●

●
●

●●

●
●

●

●

●
●

●
●

●●

●
●

●

●
●●●●

●●●●

●

●

●●
●●

●●
●●

●
●

●
●

●●

●●

●
●

Observed
Predicted

●

●

Fig. 14. Observed and predicted values for strassen, Input size=8192.

●

●

model2 modelAll modelAov modelAov2

0
20

40
60

80
10

0

strassen, Input=4096

Model

P
er

ce
nt

ag
e

E
rr

or

(a) strassen, Input size=4096

●

●

●

●

model2 modelAll modelAov modelAov2

0
20

40
60

80
10

0

strassen, Input=8192

Model

P
er

ce
nt

ag
e

E
rr

or

(b) strassen, Input size=8192

Fig. 15. Results for predicting strassen validation input sets.

uating combinations of different scheduling components with a set of applications.

The effect of scheduling techniques and cut-off policies is examined by a detailed

experimental study. While the study conducts several experiments to see the effect

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 25

model2 modelAll modelAov modelAov2
0

5

10

15

20

25

30

35

fft sort sparselu strassen

Model

P
e

rc
e

n
ta

g
e

 E
rr

o
r

Fig. 16. Results for predicting validation input sets.

Fig. 17. Percentage error of regression-based and simulation-based predictions.

of schedulers, it does not have any statistics. Our work supports those evaluations

by rigorous statistical analysis. Schmidl et.al23 define a set of performance problems

related to task parallelism and evaluate their impact on OpenMP applications by

using an instrumentation based performance tool. Sibai et.al24 propose a thread

scheduling algorithm for a multicore system, and present a simulation study to

compare the performance of the scheduling algorithm with various thread migra-

tion policies to other algorithms. These studies give an insight about the task-based

program execution, and motivate the study for performance analysis of schedulers

in task-based programs.

Simulation-based performance analysis: Rico et.al11 present TaskSim

which is a multi-core architecture simulator providing the simulation of task-based

parallel applications on multi-cores using traces. They introduce different archi-

tecture model abstractions by excluding timing of operations, and compare the

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

26 I.Oz et.al

speed and accuracy of the performance models based on these abstractions. The

study presents scalability results for OmpSs programs collected via TaskSim, and

demonstrates that the accuracy of the simulation results increases as more archi-

tectural properties are included in the simulation. Grass et.al25 presents a sampled

simulation technique for dynamically scheduled task-based parallel programs. They

simulate only a fraction of all task instances in order to reduce the simulation time,

and observe tolerable accuracy results with faster simulations. The simulation-based

performance prediction requires detailed runtime system implementation of task-

based programs, and high simulation times for large input may make the work

impractical. Our regression-based approach requires only the result of a subset of

executions, trains prediction models, and predicts the execution times based on

those models. However, the simulation may help our training data collection phase

if the target architecture is not available in the earlier design times.

Analytical performance models: Xu et.al26 propose a shared cache-aware

analytical performance model for multicore processors. The model predicts effec-

tive cache size for concurrently running processes by considering both cache miss

rate and performance degradation as functions of process effective cache size. Tu-

dor et.al27 also propose an analytical model to analyze speedup of shared-memory

programs on multicore systems. The model determines the speedup and speedup

loss by using data dependency and memory overhead for various configurations

of threads, cores and memory access policies. Wu et.al28 present a model to pre-

dict the parallel execution time for parallel tasks. The prediction approach uses a

transformation to derive a normal distribution for the parallel execution time, and

utilizes normal features to derive maximum parallel execution time distribution.

Shudler et.al29 propose an empirical method for finding the isoefficiency function

of a task-based program, by considering efficiency, input size, and core count. They

combine performance modeling with benchmarking, and construct efficiency models

with smaller error rates. Ryabko et.al30 introduce computer capacity metric by pro-

viding equations to estimate the performance of a processor. We use a statistical

performance model instead of an analytical approach for performance prediction

due to the complex runtime options of task-based programs.

Machine-learning based performance prediction: Barnes et.al7 use re-

gression models to predict parallel program scalability, and achieve small predic-

tion errors for parallel applications. Wang et.al31 also propose prediction methods

to predict the number of threads and the scheduling policy for OpenMP programs.

Our performance model deals with task-based OpenMP programs, and focuses on

scheduler-related parameters to predict the performance for large data sets. Ipek

et.al5 propose a performance model trained by multilayer neural networks for per-

formance prediction on large-scale parallel platforms. The evaluation adjusts model

parameters by training data, and then assesses the performance of the model by

prediction error on validation data. Lee et.al32 derive and validate regression mod-

els for performance and power prediction. The experimental evaluation indicates

that statistical modeling provides accurate prediction results, and regression can be

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 27

used for design decisions instead of exhaustive microarchitectural design space ex-

ploration. Lee et.al6 compare polynomial regression and artificial neural networks

for performance prediction of parallel applications. While the accuracy of these

techniques is comparable, regression offers more statistical understanding and neu-

ral networks offer more usability. Nadeem et.al33 describe a neural network based

model to predict workflow execution time in the grid environment. They model

the workflow execution by considering workflow structure and execution runtime

attributes, and evaluate their model for real-world applications. With higher predic-

tion rates, the study guides the different optimization strategies such as scheduling

policy for grid environments. Although the target architecture of this work is dif-

ferent, it supports the idea of the machine-learning based approach as the runtime

behavior prediction.

In this work, we evaluate regression-based modeling to predict execution time of

task-based programs across input sizes. We train a set of regression models including

different factors and factor interactions, and assess the prediction accuracy for a

set of validation data. To the best of our knowledge, this paper is the first work

that evaluates task-based OpenMP program performance by considering scheduling

parameters, and proposes a statistical model to predict the performance for large

data sets.

7. Conclusions

In this paper, we present a regression-based approach for task-based program per-

formance prediction. Our approach uses executions with a set of input data by

varying runtime parameters, to predict performance for a larger input data size.

Our experimental evaluation shows that we can derive regression models based on

training data and predict performance with mean error rate as low as 6.3%, and

14% in average among four task-based programs. Our prediction methodology offers

accurate results to guide runtime decisions for high performance.

Acknowledgements

The research leading to these results has received funding from the ARTEMIS joint

under-taking under grant agreement number 295440 under Article 171 of the treaty

and ERCIM Alain Bensoussan Fellowship Program.

References

1. Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system.
In ACM SIGPLAN symposium on Principles and practice of parallel programming
(PPOPP), 1995.

2. TBB. Thread building block. http://www.threadingbuildingblocks.org, 2014.
3. Eduard Ayguade, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico

Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. The design of

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

28 I.Oz et.al

openmp tasks. IEEE Transactions on Parallel and Distributed Systems, 20(3):404–
418, 2009.

4. GCD. Grand central dispatch reference. http://libdispatch.macosforge.org, 2014.
5. Engin Ipek, Bronis R. de Supinski, Martin Schulz, and Sally A. McKee. An approach

to performance prediction for parallel applications. In International Euro-Par confer-
ence on Parallel Processing, 2005.

6. Benjamin C. Lee, David M. Brooks, Bronis R. de Supinski, Martin Schulz, Karan
Singh, and Sally A. McKee. Methods of inference and learning for performance mod-
eling of parallel applications. In Symposium on Principles and practice of parallel
programming (PPoPP), 2007.

7. Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk Reeves, Bronis
de Supinski, and Martin Schulz. A regression-based approach to scalability predic-
tion. In International conference on Supercomputing (ICS), 2008.

8. Arsalan Shahid, Muhammad Yasir Qadri, Martin Fleury, Hira Waris, and Ayaz Ah-
mad. Ac-dse: Approximate computing for the design space exploration of reconfig-
urable mpsocs. Journal of Circuits, Systems and Computers, 2018.

9. Tomas Berling and Per Runeson. Efficient evaluation of multifactor dependent sys-
tem performance using fractional factorial design. IEEE Transactions on Software
Engineering, 29(9):769–781, 2003.

10. Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard
Ayguade. Barcelona openmp tasks suite: A set of benchmarks targeting the exploita-
tion of task parallelism in openmp. In International Conference on Parallel Processing
(ICPP), 2009.

11. Alejandro Rico, Felipe Cabarcas, Carlos Villavieja, Milan Pavlovic, Augusto Vega,
Yoav Etsion, Alex Ramirez, and Mateo Valero. On the simulation of large-scale ar-
chitectures using multiple application abstraction levels. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 8(4), 2012.

12. Douglas C. Montgomery. Design and Analysis of Experiments. Wiley, 2009.
13. Alejandro Duran, Julita Corbalan, and Eduard Ayguade. Evaluation of openmp task

scheduling strategies. In International conference on OpenMP in a new era of paral-
lelism (IWOMP), 2008.

14. Nanos++. Nanos++ runtime system. http://pm.bsc.es/nanox, 2014.
15. Alejandro Duran, Julita Corbalan, and Eduard Ayguade. An adaptive cut-off for task

parallelism. In ACM/IEEE conference on Supercomputing (SC), 2008.
16. Bjorn B. Brandenburg, John M. Calandrino, and James H. Anderson. On the scal-

ability of real-time scheduling algorithms on multicore platforms: A case study. In
Real-Time Systems Symposium (RTSS), 2008.

17. Shoaib Akram, Manolis Marazakis, and Angelos Bilas. Understanding scalability and
performance requirements of i/o-intensive applications on future multicore servers.
In International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2012.

18. Eddy Z. Zhang, Yunlian Jiang, and Xipeng Shen. Does cache sharing on modern cmp
matter to the performance of contemporary multithreaded programs? In Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2010.

19. J. M. Bland and D. G. Altman. Transformations, means, and confidence intervals.
BMJ, (312):1079, 1996.

20. OpenMP. Openmp application program interface, v.3.0.
http://www.openmp.org/mp-documents/spec30.pdf, 2008.

21. R. R language. http://www.r-project.org, 2014.
22. Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeckhout.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

April 18, 2018 14:56 WSPC/INSTRUCTION FILE regression

Regression-Based Prediction for Task-Based Program Performance 29

An evaluation of high-level mechanistic core models. ACM Transactions on Architec-
ture and Code Optimization (TACO), 11(28), 2014.

23. Dirk Schmidl, Peter Philippen, Daniel Lorenz, Christian Rssel, Markus Geimer, Dieter
an Mey, Bernd Mohr, and Felix Wolf. Performance analysis techniques for task-based
openmp applications. In International Workshop on OpenMP (IWOMP), 2012.

24. Fadi N. Sibai. Simulation and performance analysis of multi-core thread scheduling
and migration algorithms. In International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS), 2010.

25. Thomas Grass, Alejandro Rico, Marc Casas, Miquel Moreto, and Eduard Ayguade.
Taskpoint: Sampled simulation of task-based programs. In International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2016.

26. Chi Xu, Xi Chen, Robert P. Dick, and Zhuoqing Morley Mao. Cache contention
and application performance prediction for multi-core systems. In IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), 2010.

27. Bogdan Marius Tudor and Yong Meng Teo. A practical approach for performance
analysis of shared-memory programs. In IEEE International Parallel and Distributed
Processing Symposium, 2011.

28. Rongteng Wu, Jizhou Sun, and Jinyan Chen. Parallel execution time prediction of
the multitask parallel programs. Performance Evaluation, 65(10):701–713, 2008.

29. Sergei Shudler, Alexandru Calotoiu, Torsten Hoefler, and Felix Wolf. Isoefficiency in
practice: Configuring and understanding the performance of task-based applications.
In Symposium on Principles and Practice of Parallel Programming (PPoPP), 2017.

30. Boris Ryabko and Anton Rakitskiy. An analytic method for estimating the compu-
tation capacity of computing devices. Journal of Circuits, Systems and Computers,
26(5), 2017.

31. Zheng Wang and Michael F.P. OBoyle. Mapping parallelism to multi-cores: A ma-
chine learning based approach. In Symposium on Principles and practice of parallel
programming (PPoPP), 2009.

32. Benjamin C. Lee and David M. Brooks. Accurate and efficient regression modeling for
microarchitectural performance and power prediction. In International conference on
Architectural support for programming languages and operating systems (ASPLOS),
2007.

33. Farrukh Nadeem, Daniyal Alghazzawi, Abdulfattah Mashat, Khalid Fakeeh, Abdullah
Almalaise, and Hani Hagras. Modeling and predicting execution time of scientific
workflows in the grid using radial basis function neural network. Cluster Computing,
20(3):2805–2819, 2017.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JCSC

J
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
O

N
Y

 B
R

O
O

K
 U

N
IV

E
R

SI
T

Y
 o

n
06

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

