
Modeling of Hybrid Henry Gas Solubility
Optimization Algorithm with Deep Learning based
LED Driver System
Fayaz Ahamed  (  fayazahamedresearchscholar@gmail.com )
Y. Sukhi 

Research Article

Keywords: LED Driver, Deep learning, Thermal mechanical loading, Henry gas solubility optimization,
Spectral power distribution

Posted Date: January 10th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2449840/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2449840/v1
mailto:fayazahamedresearchscholar@gmail.com
https://doi.org/10.21203/rs.3.rs-2449840/v1
https://creativecommons.org/licenses/by/4.0/


Modeling of Hybrid Henry Gas Solubility Optimization Algorithm with 
Deep Learning based LED Driver System   

1,*Fayaz Ahamed A, 2Dr.Y.Sukhi 
 

1,*Assistant Professor, Department of  EEE, R.M.K Engineering College, 

 
2Professor, Department of EEE, R.M.K Engineering College, 

2ysi.eee@rmkec.ac.in 
1,*fayazahamedresearchscholar@gmail.com 

 

Abstract 

Light emitting diodes (LED) become an effective lighting solution because of the 

characteristics of energy efficiency, flexible controllability, and extended lifetime. They find 

use in numerous lighting systems for residents, industries, enterprises, and street lighting 

applications. The efficiency and trustworthiness of the LED systems considerably based on the 

thermal mechanical loading improved several degradation schemes and respective interfaces. 

The complication of the LED systems limits the theoretic interpretation of the core reasons for 

the luminous variation or the formation of the direct correlation among the thermal aging 

loading and the luminous output. Therefore, this article designs a new Hybrid Henry Gas 

Solubility Optimization with deep learning (HHGSO-DL) algorithm for LED driver system 

design. The presented HHGSO-DL technique mainly concentrates on the derivation of 

empirical relationships among the design parameters, thermal aging loading, and luminous 

outcomes of the LED product. In the presented HHGSO-DL technique, bidirectional long 

short-term memory (BiLSTM) algorithm is executed for examining the empirical relationship 

and its hyperparameters can be tuned by the HHGSO algorithm. In this work, the HHGSO 

algorithm is derived by the integration of traditional HGSO algorithm with oppositional based 

learning (OBL) concept. The performance of the HHGSO-DL technique can be investigated 

on LED chip packaging and LED luminaire with thermal aging loading. The extensive results 

demonstrate the promising performance of the HHGSO-DL technique over other state of art 

approaches. 

Keywords: LED Driver; Deep learning; Thermal mechanical loading; Henry gas solubility 

optimization; Spectral power distribution 

1. Introduction 

Power LEDs were the most effective light source in the marketplace, and it has lifetime. Power 
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LEDs were utilized in many lighting mechanisms, like street lighting, suburban enterprise, and 

industrial applications [1]. LED driver utilizes dc-dc converters for maintaining constant LED 

current since it is destructed when an overcurrent circulated over them. Nowadays, power LED-

driver mechanism operates through power converter namely dc-dc converter [2] that was 

utilized for attaining a constant LED current due to power LEDs. In some cases, such variations 

can end them [3]. Hence a LED driver related to dc-dc converters was needed for controlling 

LED current as LEDs have higher sensitivity to voltage variations are criteria that cause current 

to make a great increase in value if the volt has smaller changes. LED drivers related to buck 

converters with constant on-time control loops were provided, and optimum outcome in the 

LED current control was attained [4]. The LED chip has a lifespan of as long as 25 000– to 

1,00,000 h, while LED or system lamps include a short life. Nowadays, it is noted that there 

were several mechanical failures to cause rapid deprivation of LEDs mechanism. The water in 

silicone causes bubble generation [5]. The high temperature at silicone or phosphor interface 

may cause cracking, discolorations, and decohesion of interface layer. One more study shows 

that including phosphor with higher temperature aging will stiffen silicone matrix. Fig. 1 shows 

the LED system with its packaging. 

 



Fig. 1. LED system with its packaging [22] 

The thermal dissipation design had a play a vital role [6]. Additionally, the LEDs driver, which 

was highly complex system in an LED lamp, has an important effect on performance of the 

LEDs, since driver regulated the electric current inputs for LED mechanism [7]. Several 

research works have engrossed in investing systems or systems for degrading LED 

mechanisms. For instance, a physics-of-failure-related reliability predictive method for LED 

drivers was formulated for estimating failure rate distribution of electrolytic capacitors of a 

given LEDs driver mechanism [8]. The electronic–thermal simulation was taken place to study 

the relation among driver’s luminous flux and output current. Currently, a complete study has 

been held for investigating the impact of phosphor and humidity on moisture absorption, 

mechanical behavior, hygroscopic swelling, and thermal properties of silicone composite 

compared to pure silicone [9]. Recently, the machine learning (ML) technique was broadly 

utilized in different research fields. It was proved that manages the complexities with high 

multivariate relationships and nonlinearity. In the domain of electronic packaging, for 

renowned failure systems [10]. 

This article focuses on the development of Hybrid Henry Gas Solubility Optimization with 

deep learning (HHGSO-DL) algorithm for LED driver system design. The presented HHGSO-

DL technique aims to derive the empirical relationship among design parameters, thermal aging 

loading, and luminous outcomes of the LED product. In the presented HHGSO-DL technique, 

bidirectional long short-term memory (BiLSTM) method can be utilized to examine the 

empirical relationship and its hyperparameters can be tuned by the HHGSO algorithm. In this 

work, the HHGSO algorithm is derived by the integration of traditional HGSO algorithm with 

oppositional based learning (OBL) concept. The experimental result analysis of the HHGSO-

DL technique can be inspected on LED chip packaging and LED luminaire with thermal aging 

loading.  

2. Related Works 

In [11], the fractional-order system was explained with respect to El-Khazali biquadratic 

element that creates the low-order estimate, rather than utilizing a description. A 2-mode 

controller infrastructure was synthesized based on uncontrolled plant requirements and 

parameter is modified with PSO and GA techniques for evaluation. Two error-based minimized 

conditions can be utilized for considering outcome efficacy in the procedure. The 2 limitations 

complement the optimized approach, one searches for ensuring preferred robustness but the 



other avoids in synthesized a higher-gain controller. Xu et al. [12] examine an offset-free 

method forecast controller to dc/dc buck converter providing constant power load with assured 

dynamic efficacy and stability. Primarily, a receding horizon optimized (RHO) technique was 

expressed to better voltage tracking. For handling unknown load variation and scheme 

uncertainty, a high-order sliding approach observer was planned and combined as optimized 

challenge. Afterward, an explicit closed-loop solution was attained by resolving the RHO 

technique offline. 

Kreiss et al. [13] introduce a control technique for parallel interconnection of heterogeneous 

power converters. The single resistive load was considered that provided by random count of 

buck converters using general DC bus. This technique was dependent upon control allocation 

method and a constrained quadratic optimizes system. In [14], a new approach for 

tuning fractional order controller (FOC) named fractional order pole placement (FOPP) was 

presented. The presented technique extends typical (integer order) pole placement approach, 

utilizing commensurable transfer function to signify FOC and locating the fractional dominant 

pole in extended stability area dependent upon 3 terms fractional transfer functions. The 

presented FOPP was utilized for designing FOC for DC-DC buck converters.  

Zhang et al. [15] examine the subsea high voltage DC/DC converters (HVC) that highly 

enhance the power and voltage levels of underwater observation networks. The typical series-

parallel converter is dependent upon multi-module and deals with several technical issues like 

several fault points, complex transformer isolation, superior output power, and lower power 

density in maximum input voltage level. The underwater HVC of this work implements 

modular multi-level resonant DC/DC converters. The authors [16] present a single-stage IPT 

converter for battery charge level. Through a constant working frequency and without feedback 

wireless transmission, receiver side directly controls the resultant for complying with CC-CV 

charging profile, but the receiver side supports the decrease of modulated phase shift angle at 

transmitter side, so enhancing performance. In addition, the authors execute implicit a resultant 

voltage regulation, avoiding require of extra dc–dc converters. 

Liao et al. [17] present an optimizing parallel virtual resistance (PVR) related active damping 

control for improving the constancy of cascades dc method from the dc micro-grid. The benefit 

of this technique is not only occurring the closed-loop dynamic result of source converters 

(SC), among them occurs the stability necessities of equivalent input impedance of load 

converters. In [18], a new approach for non-linear and adaptive control of bucks DC-DC 



converter was projected. Even though an extensive load variation, presented controller was 

able of regulates resultant voltage from Discontinuous Conduction Mode (DCM) and 

Continuous Conduction Mode (CCM).  

3. The Proposed Model 

In this study, we have developed a new HHGSO-DL technique for LED driver system design. 

The presented HHGSO-DL technique is majorly intended the determination of the empirical 

relationship among the design parameters, thermal aging loading, and luminous outcomes of 

the LED product. In the presented HHGSO-DL technique, the HHGSO with BiLSTM model 

can be employed to examine the empirical relationship and its hyperparameters can be tuned 

by the HHGSO algorithm. Fig. 2 shows the derivation of the presented S6- PFC LED driver 

by incorporating a buck-boost converter with the mentioned single-switch soft-switched 

resonant DC-DC converter [10]. The resonant converter utilizes a unidirectional switch 

operating under ZCS condition. These converters can be integrated such that both of them share 

a common switch. Since in the integrated structure, currents of both converters flow through 

the common switch, its ZCS turn-off condition is lost. 

3.1. System Modeling 

The LED‐driver model was generally a non-linear mechanism. The state‐space averaging 

modeling technique was utilized as a replacement for state‐space switching method since it 

facilitated the model of control stages [19]. Depending on after mentioned words, and by 

utilizing the schematic diagram of LED‐driver mechanism nonlinear state‐space averaged 

mechanism method is given below: �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑃,                                        (1) 𝑦(𝑡) = 𝛤𝑥(𝑡), 

with 

𝐴 = [  
 0 −1𝐿1𝐶 − 1𝐶𝑅𝑦]  

 , 𝐵 = [𝐸𝐿0] , 𝑃 = [0𝑉𝑦𝐶𝑅𝑦] , 𝛤 = [1 0],                       (2) 

Here 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡)]𝑇 = [𝑖𝐿(𝑡), 𝜈𝐶(𝑡)]𝑇 ∈ ℝ𝑛 signifies the state vector, signified by the 

inductor current and capacitor voltage, with 𝑛 = 2. The resultant vector was provided by 𝑦(𝑡). 



In order to track control design, it considers the outcome is only 𝑖𝐿(𝑡). For controlling LED 

driver, the dynamic mechanism (1) can be discretization through the Euler technique. Then the 

following mechanism can be attained: 𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘) + 𝑃𝑑 ,                           (3) 𝑦(𝑘) = 𝛤𝑑𝑥(𝑘), 

with 

𝐴𝑑 = [  
 0 −𝑇𝑠𝐿𝑇𝑠𝐶 − 𝑇𝑠𝐶𝑅𝑦 + 1]  

 , 𝐵𝑑 = [𝐸𝑇𝑠𝐿0 ] , 𝑃𝑑 = [ 0𝑉𝑦𝑇𝑠𝐶𝑅𝑦] , 𝛤𝑑 = [1 0],         (4) 

Here 𝑇𝑠 signifies the sample time. 

 

Fig. 2. Circuit topology and derivation of the proposed LED driver [10] 

3.2. Design of BiLSTM Model 

In this work, the HHGSO-DL technique exploits the BiLSTM model for the identification of 

empirical relationships between the design parameters. Hochreiter and schmidhuber developed 

an LSTM mechanism which is adapted version of RNN [20]. It can be considered as RNN’s 



long‐term memory of historical data, and avoid gradient disappearing problems of RNN by 

substituting recurrent hidden layers (HLs) in RNN with ‘memory blocks’. Due to the ‘memory 

block’ presented in LSTM, the LSTM was considered as the forward propagation chain 

structure as follows: 

The input of LSTM denoted as = (𝑥1, 𝑥2, … , 𝑥𝑇), and the target output as 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑇), 

the targeted output 𝑦𝑡 at 𝑡 time is evaluated based on the subsequent steps: 

(1) Calculate forget gate 𝑓𝑡: 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                       (5) 

(2) Calculate input gate: 𝑖𝑟 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                            (6) 𝐶𝑟′ = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                   (7) 

(3) Upgrade cell state: 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡′                                               (8) 

(4) Calculate output gate: 𝑂𝑡 = 𝜎(𝑊𝑜[ℎt−1, 𝑥𝑡−1] + 𝑏𝑜)                                            (9) ℎ𝑡 = 𝑂t ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)                                                               (10) 

(5) Calculate predicted value 𝑦𝑡: 𝑦𝑡 = 𝑊𝑦ℎ𝑡 + 𝑏𝑦                                                                   (11) 

Where 𝑖𝑡 and 𝐶′: resides the input gates, 𝐶𝑓 and 𝐶𝑟−1: represent present and prior cell state, correspondingly; 𝑂𝑡 and ℎ𝑡: indicates the output gate and the outcome of ℎ𝑡 HL for present period is attained;  𝑊𝑓 , 𝑊𝑖, 𝑊𝑐, 𝑊𝑜 and 𝑊𝑦: denotes the weight matrix for forgetting gate, input gate, present cell 

state, output gate, and output layer, correspondingly; 𝑏𝑓 , 𝑏𝑐, 𝑏𝑜 and 𝑏𝑦: symbolize the equivalent bias vector; 



𝜎(𝑥) and tanh (x): signify Sigmoid and Tanh activation functions, correspondingly and it is 

formulated by: 

𝜎(𝑥) = 11 + 𝑒−𝑥                                                   (12) 

𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝜒 − 𝑒−𝑥𝑒𝜒 + 𝑒−𝑥                                          (13) 

 

Fig. 2. Framework of BiLSTM 

BLSTM is a deformation configuration of LSTM that has forward as well as backward LSTM 

layers. The BLSTM simultaneously considers historical and upcoming information. Fig. 2 

defines the infrastructure of BiLSTM. The structure of BLSTM-NN has been demonstrated. 

Every memory block has 2 LSTM layers. By using the forward LSTM layer 𝑆𝑓 , 𝑡 ∈ [1, T] and 

the backward LSTM layer 𝑆𝑟′ , 𝑡 ∈ [𝑇, 1], 2 HLs with opposite time sequence was attained. 

Later, the 2 HL states are interconnected for getting a similar outcome. The forward and 

backward LSTM layers could attain the previous and future data of an input sequence, 

correspondingly. The HL state 𝐻𝑡 of BLSTM at 𝑡 time has ℎ𝑡⃗⃗  ⃗ forward and ℎ𝑡⃖⃗ ⃗⃗  backward: 

ℎ𝑡⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ℎ𝑡−1, 𝑥𝑡 , 𝑐𝑡−1, ), t ∈ [1, 𝑇]                                       (14) 

ℎ𝑡⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (ℎ𝑡+1, 𝑥𝑡 , 𝑐𝑡+1 𝑟 ∈ [𝑇, 1]                                   (15) 

𝐻𝑡 = [ℎ𝑡⃗⃗  ⃗, ℎ𝑡⃖⃗ ⃗⃗ ]                                                                 (16) 



Whereas 𝑇 indicates the length of time series. 

3.3. Algorithmic Design of HHGSO Algorithm for Parameter Optimization 

For enhancing the efficiency of the BiLSTM model, the HHGSO algorithm can be used as 

hyperparameter optimizer. HGSO algorithm is based on the solubility behaviors of gas in the 

fluid according to Henry’s law which is inversely proportional to the corresponding gas 

pressure and temperature [21]. Henry’s law can be mathematically formulated using below 

equation where 𝑆𝑔 corresponds to the solubility of the gas: 𝑆𝑔 = 𝐻 × 𝑃𝑔                                                                (17) 

In Eq. (17), 𝐻 indicates Henry’s constant, and 𝑃𝑔 characterizes the partial pressure of the gases. 

The relationship between the temperature dependence and Henry’s constant of the algorithm is 

defined using the Van’t Hoff formula: 𝑑 ln 𝐻𝑑(𝑙/𝑇) = −𝛻𝑠𝑜𝑙𝐸𝑅                                                            (18) 

In Eq. (18), 𝛻𝑠𝑜𝑙𝐸 denotes the enthalpy of dissolution, 𝑅 shows the gas constant, and 𝐴 and 𝐵 

represent two variables for 𝑇 that rely on 𝐻. According to the Van’t Hoff formula, Eq. (17) is 

simplified below: 

𝐻(𝑇) =  exp (𝐵𝑇) × 𝐴                                               (19) 

In Eq. (19), 𝐻 indicates the 𝐴 and 𝐵 parameter function for 𝑇 dependence of 𝐻. On the other 

hand, it is possible to create a formulation according to 𝐻𝜃 at the reference temperature 𝑇 =298.15 K.  

𝐻(𝑇) = 𝐻0 ×  exp (−𝛻𝑠𝑜1𝐸𝑅 (1𝑇 − 1𝑇𝜃))                              (20) 

Since the Van’t Hoff equation is valid once 𝛻𝑠𝑜1𝐸 denotes a constant, Eq. (20) is formulated 

by: 

𝐻(𝑇) =  exp (−𝐶 × (1𝑇 − 1𝑇𝜃)) × 𝐻𝜃                                  (21) 

As abovementioned, the HGSO technique is explained in eight stages as shown below: 



Step1: Initialization process. The position of 𝑁 number of gases is initialized randomly as 

follows: 𝑋𝑖(𝑡 + 1) = 𝑋min + 𝑟 × (𝑋max − 𝑋min)                             (22) 

In Eq. (22), 𝑡 and 𝑟 represent the existing count of iterations and a uniformly distributed random 

parameter, correspondingly. The location of 𝑖𝑡ℎ gas in population 𝑁 can be symbolized as 𝑋(𝑖).  𝑋max and 𝑋 min are the maximal and minimal boundaries of the problem. 𝐻𝑗(𝑡), and 𝑃𝑖𝑗𝐶𝑖 , 
are the Henry’s constant, partial pressure, and constant for 𝑖𝑡ℎ gas and 𝑗𝑡ℎ clusters. The 

parameter is initialized based on Eq. (21):  𝐻𝑗(𝑡) = 𝑙1 × 𝑟𝑎𝑛𝑑(𝑂, 1), 𝑃𝑖𝑗 = 𝑙2 × 𝑟𝑎𝑛𝑑(0,1), 𝐶𝑗 = 𝑙3 × 𝑟𝑎𝑛𝑑(𝑂, 1)   (23) 

where 𝑙1 = 5𝐸 − 02, 𝑙2 = 100, and 𝑙3 = 1𝐸 − 02 are constant. 

Step2: Clustering, the size of cluster is equivalent to the number of types of gases. The gas in 

the similar cluster has similar Henry’s constant value (𝐻𝑗). 

Step3: Evaluation, the cluster is evaluated for finding the better gas in the respective cluster. 

Next, the best clusters are ranked according to the fitness value and discover the optimum gas 

in the whole population. 

Step 4: Upgrade Henry’s coefficient, 𝐻𝑗 is modified based on below equation for 𝑗𝑡ℎ cluster 

and iter characterize the overall quantity of iterations: 

𝐻𝑗(𝑡 + 1) = 𝐻𝑗(𝑡) ×  exp (−𝐶𝑗 × ( 1𝑇(𝑡) − 1𝑇𝜃)) , 𝑇(𝑡) 

= (− 𝑡𝑖𝑡𝑒𝑟)                                                    (24) 

Step5: Upgrade solubility, the HGSO modifies the solubility of 𝑖𝑡ℎgas in cluster 𝑗(𝑆𝑖,𝑗) based 

on Eq. (25) where 𝑃𝑖,𝑗 indicates partial pressure on 𝑖𝑡ℎ gas in 𝑗𝑡ℎ cluster and 𝐾 represent a 

constant: 𝑆𝑖,𝑗(𝑡) = 𝐾 × 𝐻𝑗(𝑡 + 1) × 𝑃𝑖,𝑗(𝑡)                                   (25) 



 

Fig. 3. Flowchart of HGSO 

Step6: Upgrade location, The HGSO modify the location of 𝑖𝑡ℎ gas in cluster 𝑗 (𝑋(𝑖,𝑗)) at 𝑡𝑡ℎ 

iterations using Eq. (24) whereby 𝑟 indicates the random number. 

𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑖,𝑗(𝑡) + 𝐹 × 𝑟 × 𝛾 × (𝑋𝑖,𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) 

+𝐹 × 𝑟 × 𝛼 × (𝑆𝑖,𝑗(𝑡) × 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖𝑗(𝑡)) 

𝛾 = 𝛽 × exp (−𝐹𝑏𝑒𝑠𝑡(𝑡) + 𝜀𝐹𝑖𝑗(𝑡) + 𝜀 ) , 𝜀 = 0.05                                 (26) 

𝑋𝑏𝑒𝑠𝑡 and 𝑋(𝑖,𝑏𝑒𝑠𝑡) represents the best of swarm and cluster, correspondingly that is directly 

accountable to controlling the exploitation and exploration phases. Furthermore, 𝛽, and 𝛾 



represent the influence of other gases on present gas, a random number, and the interaction 

capability of gas in a similar cluster. The fitness of 𝑖𝑡ℎ gas in 𝑗𝑡ℎ cluster is signified as 𝐹(𝑖,𝑗). 
On the other hand, the fitness of global optimum is represented as 𝐹𝑏𝑒𝑠𝑡. To guarantee diversity, 

the flag 𝐹 controls the search direction. 

Step7: Escape from local optimal, this step rank and chooses the amount of worst agents (𝑁𝑤) 

by means of Eq. (27) for escaping from local optimal whereby 𝑁 indicates the number of 

searching agents: 𝑁𝑤 = 𝑁 × (𝑟𝑎𝑛𝑑(𝑐2 − 𝑐1) + 𝑐1), 𝑐1 = 0.1, 𝑐2 = 0.2                          (27) 

Step8: Upgrade the worst agent location.  𝑥(𝑖,𝑗) = 𝑋min(𝑖,𝑗) + 𝑟 × (𝑋max(𝑖,𝑗) − 𝑋min(𝑖,𝑗))                                  (28) 

In Eq. (28), 𝑋min, and 𝑋max represents a random value, minimum, and maximum bounds of the 

problem, correspondingly. Fig. 3 demonstrates the flowchart of HGSO technique. 

Algorithm 1: Pseudocode of HGSO algorithm 

Start  

Initialize population 𝑋𝑖(𝑖 = 1,2, … ,𝑁) , count of gas types 𝑖, 𝐻𝑗 , 𝑃i,j, 𝐶𝑗 , 𝑙1, 𝑙2 and 𝑙3.  
Separate the population agents into the count of gas types (cluster) with similar Henry’s 

constant value (𝐻𝑗) 

Assess all clusters j. 

Get the optimal gas 𝑋𝑖,𝑏𝑒𝑠𝑡 in all clusters, and the optimal search agent 𝑋𝑏𝑒𝑠𝑡. 
while (stopping criteria not met (𝑖. 𝑒. 𝑡 < Max𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)) 

  for all search agents do 

   Upgrade the location of individual search agents. 

  end for 

  Upgrade Henry’s co-efficient of all gas types.  



  Upgrade solubility of all gas. 

  Rank and choose the count of worse agents.  

  Upgrade the location of the worse agents. 

  Upgrade the optimal gas 𝑋𝑖3𝑏𝑒𝑠𝑙, and optimal searching agent 𝑋𝑏𝑒𝑠𝑡 
  𝑡 = 𝑡 + 1 

  end while 

  return 𝑋𝑏𝑒𝑠𝑡  
end 

 

The underlying HGSO technique has several shortcomings including slower convergence and 

easily getting trapped in local optima. This drawback arises from upgrading some solutions 

toward the local optimum solution even though there are more suitable and available however 

far away solutions that HGSO could not manage to determine. Consequently, the solution in 

the opposite direction is needed to be taken into account for avoiding these shortcomings. The 

study assists to enhance the HGSO in 2 ways. Initially, the OBL is exploited for initializing the 

population by exploring all the search space and accelerating the convergence for every 

solution to prevent stagnating in a local optimum solution. Furthermore, it can be utilized to 

control the upgraded solution in the opposite direction and compare the solution with the 

present one for checking whether there is alternative solution. Thereby, it prevents local 

optimum minimum. The subsequent subsection explains the stages exploited for the presented 

technique. The HHGSO method begins by initializing an arbitrary population of 𝑋 that has size 

of 𝑁 so that the location vector for the first solution was defined by xi = [xi1, xi2, ⋯ , xin] where 𝑖 = 1,2, ⋯ ,𝑁. Then, the OBL is exploited for calculating the solution from the opposite 

direction of all the solutions and produces an opposite population of 𝑋. With the populations 

of 𝑋 and 𝑋, the 𝑁 amount of optimum solutions is selected. During this stage, the steps are 

given below: 

• Begin the solution for population of 𝑋 randomly.  

• Evaluate the opposite population of 𝑋 as follows: 



𝜒𝑖𝑗 = 𝑢𝑖 + 𝑙𝑖 − 𝑥𝑖𝑗 whereas 𝑖 = 1,2,⋯ , 𝑁 and 𝑗 = 1,2,⋯ , 𝑛. Now, 𝑙 and 𝑢 denote the 

lower as well as upper bounds for the searching space, correspondingly. 𝑥𝑖𝑗 and 𝑥 indicates 

the 𝑗𝑡ℎ solution of 𝑖𝑡ℎ location for the 𝑋 population and the 𝑋opposite population, 
correspondingly. 

• Select 𝑁 number of optimum solutions from the 𝑋 ∪ 𝑋 union for creating a new 

population. 

The better solution (𝑥𝑝) can be defined (from the initial stage) afterward selecting the better 𝑁 

solutions. The agent in population of 𝑋 are upgraded by the HGSO technique and the fitness 

function is evaluated. Furthermore, the opposite population of 𝑋 is evaluated based on the OBL 

and the fitness function for every 𝑥 is defined. Next, select 𝑁 count of optimum solutions in 

the union of population(𝑋 ∪ 𝑋). Each step is repeated until ending criteria are attained.  

4. Results and Discussion 

In this section, the experimental validation of the HHGSO-DL technique is investigated briefly. 

 

Fig. 4. Spectrum power in varying inputs current 



The SPDs of the several chip packaging in several temperatures and input currents as shown in 

Fig. 4. The color features derivative in the SPDs. While the 3 LED chips are executed, there 

are 3 important peaks. The flat plateau at ∼530–625nm is the influence of emission of the 

phosphors that is based on the blue and cyan chips. In all distinct sets of currents and 

temperatures, the fundamental SPD shapes could not be altered. The spectral power enhances 

with maximal from the input current.  

 

Fig. 5. Convergence Rate 

Fig. 5 examines the convergence analysis of HHGSO-DL technique with varying iterations. 

The results inferred that the HHGSO-DL technique achieves effective convergence over 

several iterations. The color features obtained from the SPD are given in Table 1, comprising 

the correlated color temperature (CCT) and the color co-ordinate depending upon the CIE 1931 

standard. 

Table 1 Color features in SPD 

No. Input current  Case temperature (°C) CCT (K) CIE X CIE Y 

1 50mA 25 5233 0.3715 0.3510 

2 50mA 40 4698 0.3349 0.3761 

3 50mA 60 5334 0.3215 0.3772 

4 50mA 70 5590 0.3095 0.3625 

5 50mA 80 5257 0.3415 0.3659 

6 80mA 25 4967 0.3517 0.3754 



7 80mA 40 4895 0.3176 0.3565 

8 80mA 60 4989 0.3129 0.3577 

9 80mA 70 5145 0.3540 0.3655 

10 80mA 80 5560 0.2986 0.3837 

11 110mA 25 4747 0.3417 0.3425 

12 110mA 40 4754 0.3702 0.3742 

13 110mA 60 5546 0.3447 0.3614 

14 110mA 70 5681 0.3537 0.3779 

15 110mA 80 5061 0.3426 0.3758 

16 140mA 25 5178 0.3651 0.3616 

17 140mA 40 5294 0.3755 0.3727 

18 140mA 60 4818 0.3388 0.3743 

19 140mA 70 5606 0.3516 0.3694 

20 140mA 80 5216 0.3105 0.3509 

21 170mA 25 4736 0.3383 0.3726 

22 170mA 40 4882 0.3572 0.3760 

23 170mA 60 5402 0.3454 0.3586 

24 170mA 70 5656 0.3275 0.3536 

25 170mA 80 5709 0.3067 0.3412 

26 200mA 25 4611 0.3142 0.3626 

27 200mA 40 5232 0.3747 0.3600 

28 200mA 60 5260 0.3002 0.3542 

29 200mA 70 5333 0.3469 0.3713 

30 200mA 80 5128 0.2977 0.3453 

Table 2 reports the experimental outcomes of the HHGSO-DL technique under varying aging. 

The results indicated that the lumen maintenance gets degraded with a rise in aging.  In 

addition, the value of CCT gets improvised with an increase in aging.  

Table 2 Experimental result of HHGSO-DL technique  

Experimental data 

Case Aging  Lumen maintenance (%) CCT (K) Xa Ya 

Case_1 0h 100.00 2968 0.4335 0.4143 

Case_2 240h 97.99 2974 0.4470 0.3732 

Case_3 480h 96.70 3079 0.4492 0.3795 

Case_4 720h 93.23 3079 0.4360 0.4233 

Case_5 960h 91.14 3100 0.4446 0.3989 

Case_6 1200h 87.90 3123 0.4257 0.3862 

Case_7 1440h 84.01 3125 0.4233 0.4220 

Case_8 1680h 80.44 3133 0.4208 0.3816 

Case_9 1920h 77.09 3218 0.4129 0.3624 

Case_10 2160h 74.26 3226 0.4208 0.3849 



The SPD error norm analysis of the HHGSO-DL technique investigated varying levels of 

current and temperature as shown in Table 3. The results indicated that the HHGSO-DL 

technique reaches reduced values of SPD error norm. It is noticed that the SPD error norm 

values degrade with an increase in current and temperature values.  

Table 3 SPD error norm analysis of HHGSO-DL technique under varying current and 

temperature  

Current 
Temperature 

25°C 40°C 60°C 70°C 80°C 

50mA 1.8625 2.8959 2.5575 1.7609 1.2701 

80mA 1.0623 1.1103 0.8762 0.6549 0.5192 

110mA 0.6047 0.5646 0.2984 0.4072 0.4350 

140mA 0.4305 0.2934 0.2854 0.3871 0.4129 

170mA 0.3615 0.2369 0.2074 0.2504 0.3188 

200mA 0.3478 0.2150 0.1709 0.1663 0.2679 

Table 4 reports the overall predictive accuracy results of the HHGSO-DL technique with 

different values of input current and case temperature. The results indicated that the HHGSO-

DL technique has shown effectual outcomes in all cases. For instance, with input current of 

50mA and case temperature of 25°C, the HHGSO-DL technique has obtained ∆CCT of 

0.01592K and ∆XYa of 0.00729. Concurrently, with input current of 50mA and case 

temperature of 70°C, the HHGSO-DL approach has attained ∆CCT of -0.02606K and ∆XYa of 

0.01279. Simultaneously, with input current of 50mA and case temperature of 70°C, the 

HHGSO-DL methodology has obtained ∆CCT of -0.02606K and ∆XYa of 0.01279. 

Meanwhile, with input current of 80mA and case temperature of 80°C, the HHGSO-DL system 

has achieved ∆CCT of -0.00881K and ∆XYa of 0.00707. Eventually, with input current of 

110mA and case temperature of 25°C, the HHGSO-DL method acquired ∆CCT of -0.00018K 

and ∆XYa of 0.00930.   

Table 4 Prediction accuracy of HHGSO-DL technique with different input current and case 

temperature  

Case No. Input current  Case Temperature   ∆CCT (K) ∆XYa 

1 50mA 25°C 0.01592 0.00729 

2 50mA 40°C -0.00123 0.00141 

3 50mA 60°C -0.01797 0.00357 

4 50mA 70°C -0.02606 0.01279 

5 50mA 80°C -0.02554 0.01241 



6 80mA 25°C 0.01689 0.01014 

7 80mA 40°C 0.00438 0.00523 

8 80mA 60°C -0.00320 0.00370 

9 80mA 70°C -0.00712 0.00208 

10 80mA 80°C -0.00881 0.00707 

11 110mA 25°C -0.00018 0.00930 

12 110mA 40°C 0.00274 0.00063 

13 110mA 60°C -0.00513 0.00276 

14 110mA 70°C -0.00546 0.00687 

15 110mA 80°C -0.00861 0.00453 

16 140mA 25°C -0.00056 0.00487 

17 140mA 40°C -0.00689 0.00263 

18 140mA 60°C -0.00620 0.00109 

19 140mA 70°C -0.00824 0.00386 

20 140mA 80°C -0.00103 0.00300 

21 170mA 25°C -0.00919 -0.00043 

22 170mA 40°C -0.00572 -0.00222 

23 170mA 60°C -0.00706 0.00252 

24 170mA 70°C -0.00637 -0.00285 

25 170mA 80°C -0.00180 -0.00139 

26 200mA 25°C -0.01057 -0.00091 

27 200mA 40°C -0.00427 0.00221 

28 200mA 60°C -0.00080 0.00716 

29 200mA 70°C -0.00016 -0.00132 

30 200mA 80°C 0.00105 -0.00041 

 

To illustrate the better performance of the HHGSO-DL technique, a brief comparison study is 

made in Table 5 in terms of different measures [22]. Fig. 6 examines the SPD error norm results 

of the HHGSO-DL technique with the existing LSTM model. The results highlighted that the 

HHGSO-DL technique reaches reduced values of SPD error norm compared to the LSTM 

model. For instance, with case 2 and aging of 240hrs, the SPD error norm attains decreasing 

SPD error norm of 0.1362 while the LSTM model offers SPD error norm of 0.1450. Moreover, 

with case 4 and aging of 720hrs, the SPD error norm achieves reducing SPD error norm of 

0.1432 while the LSTM algorithm offers SPD error norm of 0.1544. Similarly, with case 8 and 

aging of 1680hrs, the SPD error norm attains lesser SPD error norm of 0.1494 while the LSTM 

system provides SPD error norm of 0.1580. Likewise, with case 10 and aging of 2160hrs, the 

SPD error norm gains reduce SPD error norm of 0.1293 while the LSTM approach offers SPD 

error norm of 0.1396. 

 



Table 5 Comparative analysis of HHGSO-DL approach with distinct measures 

Case 
Aging 
(hrs) 

SPD error norm Lumen maintenance  CCT (K) XYa 

LSTM 
HHGSO-
DL  LSTM 

HHGSO-
DL  LSTM 

HHGSO-
DL  LSTM 

HHGSO-
DL  

1 0 0.1482 0.1395 0.0000 0.0000 -0.0006 -0.0002 0.0003 0.0003 

2 240 0.1450 0.1362 0.0040 0.0034 -0.0327 -0.0340 0.0138 0.0133 

3 480 0.1456 0.1358 0.0158 0.0157 -0.0353 -0.0348 0.0180 0.0179 

4 720 0.1544 0.1432 0.0310 0.0297 -0.0417 -0.0430 0.0239 0.0224 

5 960 0.1652 0.1591 0.0723 0.0731 -0.0482 -0.0486 0.0281 0.0296 

6 1200 0.1702 0.1595 0.0847 0.0848 -0.0480 -0.0466 0.0276 0.0271 

7 1440 0.1682 0.1607 0.0789 0.0795 -0.0467 -0.0474 0.0260 0.0247 

8 1680 0.1580 0.1494 0.0675 0.0662 -0.0566 -0.0562 0.0266 0.0251 

9 1920 0.1447 0.1383 0.0473 0.0489 -0.0267 -0.0286 0.0155 0.0171 

10 2160 0.1396 0.1293 0.0158 0.0145 -0.0191 -0.0196 0.0107 0.0096 

 

Fig. 6. SPD error norm analysis of HHGSO-DL approach with distinct aging 

Fig. 7 inspects the lumen maintenance outcomes of the HHGSO-DL system with the existing 

LSTM approach. The outcomes demonstrated that the HHGSO-DL method reaches reduced 

values of lumen maintenance compared to the LSTM model. For instance, with case 2 and 



aging of 240hrs, the lumen maintenance gains minimal lumen maintenance of 0.0034 while the 

LSTM system provides lumen maintenance of 0.0040. Additionally, with case 4 and aging of 

720hrs, the lumen maintenance accomplishes decreasing lumen maintenance of 0.0297 while 

the LSTM model offers lumen maintenance of 0.0310. Likewise, with case 8 and aging of 

1680hrs, the lumen maintenance attains decreasing lumen maintenance of 0.0662 while the 

LSTM model offers lumen maintenance of 0.0675. Also, with case 10 and aging of 2160hrs, 

the lumen maintenance achieves lesser lumen maintenance of 0.0145 while the LSTM 

methodology offers lumen maintenance of 0.0158. 

 

Fig. 7. Lumen maintenance analysis of HHGSO-DL approach with distinct aging 

Fig. 8 showcases XYa outcomes of the HHGSO-DL system with the existing LSTM algorithm. 

The outcomes demonstrated that the HHGSO-DL approach gains lower values of XYa 

compared to the LSTM system. For instance, with case 2 and aging of 240hrs, the XYa attains 

decreasing XYa of 0.0133 while the LSTM method offers XYa of 0.0138. Next, with case 4 

and aging of 720hrs, the XYa attains decreasing XYa of 0.0224 while the LSTM algorithm 

offers XYa of 0.0239. In the meantime, with case 8 and aging of 1680hrs, the XYa attains 

decrease XYa of 0.0251 while the LSTM approach provides XYa of 0.0266. Lastly, with case 



10 and aging of 2160hrs, the XYa realizes minimum XYa of 0.0096 while the LSTM system 

offers XYa of 0.0107. 

 

Fig. 8. XYa analysis of HHGSO-DL approach with distinct aging 

These results stated that the HHGSO-DL technique showed better performance over the 

existing model under several dimensions.  

5. Conclusion 

In this study, we have developed a novel HHGSO-DL technique for LED driver system design. 

The presented HHGSO-DL technique is majorly intended for the determination of the empirical 

relationship among the design parameters, thermal aging loading, and luminous outcomes of 

the LED product. In the presented HHGSO-DL technique, the HHGSO with BiLSTM model 

can be employed to examine the empirical relationship and its hyperparameters can be tuned 

by the HHGSO algorithm. The experimental result analysis of the HHGSO-DL technique can 

be inspected on LED chip packaging and LED luminaire with thermal aging loading. The 

extensive results demonstrate the promising performance of the HHGSO-DL technique over 

other state of art approaches. In future, advanced DL models can be integrated into the 



HHGSO-DL technique for enhanced predictive outcomes in the design of LED driver systems. 
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