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‡Departamento de F́ısica Teórica
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Abstract

Liénard systems of the form ẍ + ǫf(x)ẋ + x = 0, with f(x) an even

continous function, are considered. The bifurcation curves of limit cycles

are calculated exactly in the weak (ǫ → 0) and in the strongly (ǫ → ∞)

nonlinear regime in some examples. The number of limit cycles does not

increase when ǫ increases from zero to infinity in all the cases analyzed.
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1 Introduction

Self-sustained oscillations are found very often in nature. There are

many examples in different branches of science such as in biology, chem-

istry, mechanics, electronics, fluid dynamics, etc. [Andronov et al., 1989,

Bai-Lin, 1990]. Nonlinearities are required in order to have this kind of

behaviour. The system reaches an oscillatory dynamics caracterized by

a preferred period, wave form and amplitude, stable under slight pertur-

bations. The oscillations are generated by an internal balance of ampli-

fication and dissipation, even in the absence of external periodic forcing.

(For instance, a nonlinear damping force which increases the amplitude

for small velocities and decreases it for large velocities). This dynam-

ical state can be modelled by the stable limit cycles found in specific

nonlinear differential equations.

Limit cycles are isolated closed trajectories in phase space. They are

stable if the neighbouring solutions tend to them in an asymptotic sense

or unstable if the neighbouring solutions unwind from them. Determi-

nation of the number, amplitude and loci of limit cycles in a general

nonlinear system is an unsolved problem that has attracted much atten-

tion in this century [Yan-Quian et al., 1986]. This constitues a part of

the Hilbert’s Sixteenth Problem [Hilbert, 1902] when we are restricted to

two-dimensional autonomous systems of the form:

ẋ = Pn(x, y),
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ẏ = Qn(x, y), (1)

where Pn and Qn are polynomials of degree n with real coefficients. Al-

thoug it has been proved that the number of limit cycles in systems (1)

is finite [Ecalle et al., 1987, Ilyashenko, 1990], the determination of the

maximal number Hn of limit cycles is still far away of being known.

The van der Pol oscillator ẍ + ǫ(x2 − 1)ẋ + x = 0, where ẋ(t) =

dx(t)/dt, is an example of system (1) that has been exhaustively studied.

In this case, P3(x, y) = y and Q3(x, y) = −ǫ(x2 − 1)y − x. It displays a

limit cycle whose uniqueness and non-algebraicity has been shown for the

whole range of the parameter ǫ. Its behaviour runs from near-harmonic

oscillations for ǫ close to zero (ǫ → 0) to relaxation oscillations when ǫ

tends to infinity (ǫ → ∞), making it a good model for many practical

situations [van der Pol, 1927, López-Ruiz & Pomeau, 1997].

A generalization of the van der Pol oscillator is the Liénard equation,

ẍ+ ǫf(x)ẋ+ x = 0, (2)

with ǫ a real parameter and f(x) any real function. When f(x) is a

polynomial of degree N = 2n+1 or 2n this equation of the form (1) with

PN+1(x, y) = y and QN+1(x, y) = −ǫf(x)y − x. It has been conjectured

by Lins, Melo and Pugh (LMP-conjecture) that the maximum number

of limit cycles allowed is just n [Lins et al., 1977]. It is true if N = 2, or

N = 3 or if f(x) is even and N = 4 [Lins et al., 1977, Rychkov, 1975].

Also, it is true in the strongly nonlinear regime (ǫ → ∞) when f(x)
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is an even polynomial [López & López-Ruiz, 2000]. There are no gen-

eral results about the limit cycles when f(x) is a polynomial of degree

greater than 5 neither, in general, when f(x) is an arbitrary real function

[Giacomini & Neukirch, 1997, Giacomini & Neukirch, 1998].

In the present paper, we are interested in the Liénard equation when

f(x) is a continous even function, otherwise arbritary. We exploit the

fact that the calculation of the number of limit cycles in the weak (ǫ → 0)

and in the strongly (ǫ → ∞) nonlinear regimes is possible for this kind

of functions by means of simple algorithms. In fact, we find exactly the

bifurcation curves of limit cycles in both regimes for several examples

of viscous terms f(x). Section 2 is devoted to explain the strategies (or

algorithms) used to calculate the amplitude and number of limit cycles

in those extreme regimes, and in Section 3 we analyze some particular

cases found in the literature. Last Section contains the conclusions.

2 Limit Cycles in the Liénard Equation

In order to study the limit cycles of equation (2) it is convenient to rewrite

it in the coordinates (x, ẋ) = (x, y) in the plane. We perform the change

of variables ẋ(t) = y(x) and ẍ(t) = y(x)y′(x) (where y′(x) = dy/dx):

yy′ + ǫf(x)y + x = 0. (3)

A limit cycle Cl ≡ (x, y±(x)) of equation (3) has a positive branch

y+(x) > 0 and a negative branch y−(x) < 0. They cut the x-axis in
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two points (−a1, 0) and (a2, 0) with a1, a2 > 0. The oscillation x runs in

the interval −a1 < x < a2.

The origin (0, 0) is the only fixed point of equation (3). Then every limit

cycle Cl solution of Eq. (3) encloses the origin. The result is a nested set

of closed curves that defines the qualitative distribution of the integral

curves in the plane (x, y). The stability of the limit cycles is alternated.

For a given stable limit cycle, the two neighbouring limit cycles, the clos-

est one in its interior and the closest one in its exterior, are unstable, and

viceversa (Fig. 1).

When f(x) is an even function, the symmetries of the equation (3)

impose some properties over the shape of the limit cycles. Thus the

inversion symmetry (x, y) ↔ (−x,−y) implies y+(x) = −y−(−x) and

a1 = a2 = a. Therefore, we can restrict ourselves to the positive branches

of the limit cycles (x, y+(x)) with −a ≤ x ≤ a. The amplitude of os-

cillation a identifies the limit cycle. The parameter inversion symmetry

(ǫ, x, y) ↔ (−ǫ, x,−y) implies that if Cl ≡ (x, y±(x)) is a limit cycle for

a given ǫ, then C l ≡ (x,−y∓(x)) is a limit cycle for −ǫ. Moreover if

Cl is stable (or unstable) then C l is unstable (or stable, respectively).

Therefore it is enough to consider the positive y-branch y+(x) of the

limit cycles when ǫ > 0 for obtaining all the periodic solutions. (The

limit cycles for a given −ǫ < 0 are obtained from a reflection over the

x-axis of those limit cycles obtained for ǫ > 0).

Another property of a limit cycle can be derived from the fact that
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the mechanical energy E = (x2 + y2)/2 is conserved in a half oscillation:

∫ a

−a

dE

dx
dx = 0.

Thus, if equation (3) is integrated along the positive branch y+(x) of a

limit cycle, between the maximal amplitudes of oscillation, we obtain:

∫ a

−a
f(x)y+(x)dx = 0. (4)

The solutions y+(x) of equation (3) and (4), vanishing in the extremes,

constitute the finite set of limit cycles of equation (3).

2.1 The Weakly Nonlinear Regime

Liénard system (3) reduces to the simple harmonic oscillator when ǫ = 0.

All the circles y(x) =
√
r2 − x2 of radius r about the origin are solutions.

This path-diagram is destroyed when ǫ is slightly perturbed. Only the

limit cycles survive as closed curves. They will have a slightly modified

circular form. At order zero in ǫ, we can suppose them as circles y+(x) =
√
a2 − x2 with different amplitudes a’s. Obviously, at this order, the

condition (3) is verified, and condition (4) reads:

β(a) ≡
∫ a

−a
f(x)

√
a2 − x2dx = 0. (5)

Each solution ±a of the equation β(a) = 0 is the amplitude of a limit

cycle of the Liénard system in the weak nonlinear regime. And viceversa,

the amplitudes of all limit cycles of equation (3) are solutions of equation

(5) in that regime. These results are exact for ǫ = 0. In conclusion,
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equation (5) determines the amplitudes of the limit cycles of Liénard

system defined by f(x) when ǫ → 0.

The stability of a limit cycle in this regime is given, at the lowest

order in ǫ, by the sign of the integral:

σ ≡ −
∫ a0

−a0

ǫf(x)

y+(x)
= − ǫ

a0

[

dβ(a)

da

]

a0

,

where a0 > 0 is a solution of equation (5). The limit cycle is stable for

σ < 0 and unstable for σ > 0.

As an example, we integrate equation (5) when f(x) is an even poly-

nomial of degree 2n:

f(x) = b0 + b2x
2 + b4x

4 + · · ·+ b2nx
2n,

where b0, b2, b4, . . . , b2n are real coefficients. Then, only the amplitudes a

that satisfy the equation:

β(a) =
πa2

2

n
∑

k=0

b2k
(2k)!

4k(k + 1)! k!
a2k = 0

are allowed. The solution a = 0 corresponds to the fixed point (0, 0)

and the factor a2 can be eliminated. Thus, the possible amplitudes a are

the zeros of an even polynomial of degree 2n. There are no more than

n different solutions a > 0 and therefore, the maximun number of limit

cycles in this case is n. We conclude that LMP-conjecture is true in the

weak nonlinear regime. For instance, f(x) = x2 − 1 in the van der Pol

oscillator. Then β(a) = πa2(a2 − 4)/8 and the only existing limit cycle

has the amplitude a ≃ 2 when ǫ → 0. It is stable if ǫ > 0 and unstable

if ǫ < 0.
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2.2 The Strongly Nonlinear Regime

An algorithm that determines the number and amplitude of the limit

cycles of Liénard systems in the strongly nonlinear regime has been pro-

posed in reference [López & López-Ruiz, 2000]. A first approach to the

shape of limit cycles when ǫ → +∞ shows that the positive y-branch,

y+(x) ≡ ǫzsi (x), of a stable limit cycle with amplitude asi > 0 is given by:

zsi (x) =

{

0 if − asi ≤ x ≤ si
−F (x) + F (si) if si ≤ x ≤ asi ,

(6)

where F (x) =
∫ x
0 f(t)dt and si < 0 is called the gluing point of the

two pieces z(x) = 0 and z(x) = −F (x) + F (si). The unstable ones,

y+(x) ≡ ǫzui (x), with amplitude aui > 0 are given by:

zui (x) =

{

−F (x) + F (ui) if − aui ≤ x ≤ ui

0 if ui ≤ x ≤ aui ,
(7)

where ui > 0 is the gluing point of the two pieces in this case.

In the remaining of this section we give a brief skecht of the algorithm

(for a detailed discussion see reference [López & López-Ruiz, 2000]).

STABLE CYCLES: Consider the points s∗ < 0 where F (x) has a positive

local maximum and find the points a∗ defined by the rule:

a∗ = min {x > s∗, F (x) = F (s∗)} .

Geometrically a∗ represents the x-coordinate of the first crossing point

between the straight z = F (s∗) and the curve z = F (x) in the plane

(x, z). If a∗ < |s∗| it is not possible to build the limit cycle and we can
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eliminate this s∗ as a possible gluing point. If a∗ > |s∗| the point s∗

is a gluing point candidate. We rename and order all the pairs (s∗, a∗)

verifying this last property as (s̄i, ā
s
i ) with s̄i+1 < s̄i < 0 and collect them

into the set:

Ās ≡ {(s̄i, āsi ), F (s̄i) local maximum, F (s̄i) > 0, āsi > |s̄i|} .

By construction āsi+1 > āsi . There are two different situations when two

sucessive pairs, (s̄i, ā
s
i ) and (s̄i+1, ā

s
i+1), are considered:

(a) −āsi+1 < s̄i+1 < −āsi < s̄i. In this case it is possible to build a two-

piecewise limit cycle with the pair (s̄i, ā
s
i ) as indicated in Eq. (6). This

pair is picked out and renamed again as (si, a
s
i ).

(b) −āsi+1 < −āsi < s̄i+1 < s̄i. Now the constuction of a limit cycle

derived from the pair (s̄i, ā
s
i ) is not possible. This pair is rejected.

If there is only one pair (s̄1, ā
s
1), we consider it satisfies (a).

All the existing stable limit cycles can be found comparing the pairs

i and i + 1 under rules (a)-(b) and iterating this process. All the pairs

selected by condition (a) (and renamed as (si, a
s
i )) are collected into the

set:

As ≡ {(si, asi )} =
{

(s̄i, ā
s
i ) ∈ Ās, (s̄i, ā

s
i ) verifies (a)

}

. (8)

The number, ls = card(As), of pairs (si, a
s
i ) is the number of stable limit

cycles of the system (3).

UNSTABLE CYCLES: The same process can be repeated for the

unstable cycles by considering the points u∗ > 0, where F (u∗) is a positive
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local maximum, and their partners a∗ are defined by:

a∗ = max {x < u∗, F (x) = F (u∗)} .

The gluing point candidates u∗ must verify |a∗| > u∗. After renaming

and ordering the pairs (u∗, a∗) fulfilling this last condition as (ūi, ā
u
i ) with

ūi+1 > ūi > 0, we collect them into the set:

Āu ≡ {(ūi, ā
u
i ), F (ūi) local maximum, F (ūi) > 0, |āui | > ūi} .

A similar algorithm as indicated above can be applied in this case with

the following modified rules:

(a’) ūi < −āui < ūi+1 < −āui+1. In this case there exists an unstable

two-piecewise limit cycle resulting from the pair (ūi, ā
u
i ) and given in Eq.

(7). This pair is picked out and renamed (ui, a
u
i ).

(b’) ūi < ūi+1 < −āui < −āui+1. The pair (ūi, ā
u
i ) does not produce a limit

cycle and is rejected.

If there is only one pair (ū1, ā
u
1) we consider it satisfies (a’).

We iterate the process given by rules (a’)-(b’). All the pairs selected

by condition (a’) are collected into the set:

Au ≡ {(ui, a
u
i )} =

{

(ūi, ā
u
i ) ∈ Āu, (ūi, ā

u
i ) verifies (a’)

}

. (9)

The number, lu = card(Au), of pairs (ui, a
u
i ) is the number of unstable

limit cycles of system (3). Obviously, ls − 1 ≤ lu ≤ ls + 1.

It was claimed in [López & López-Ruiz, 2000] that the total number

l of limit cycles of Eq. (3) in the strongly nonlinear regime is l = ls + lu,
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where ls and lu are the number of stable and unstable limit cycles respec-

tively. The amplitudes of these limit cycles are given by the numbers asi

and aui , respectively.

We remark also that each pair of zeros ±xi of f(x) produces at most

one limit cycle. If f(x) is an even polynomial of degree 2n there will

be at most n limit cycles. Therefore, LMP-conjecture is also true in the

strongly nonlinear regime. For instance, in the van der Pol oscillator,

F (x) = −x + x3/3 has an unique positive local maximum at s = −1.

The amplitude a of the only existing limit cycle when ǫ → ∞ is given

by the solution of the relation F (−1) = F (a), that is, a = 2. Its shape,

y+(x) ≡ ǫz(x), is (up to order ǫ−2) given by:

z(x) =

{

0 if − 2 ≤ x ≤ −1
1

3
(−x3 + 3x+ 2) if − 1 ≤ x ≤ 2,

3 Bifurcation Curves in some Examples

We apply in this section the results of the former section to particular

examples that have been studied by different authors in the literature.

Example 1: f(x) = x2n − 1, with n = 1, 2, 3, · · ·. This case repre-

sents a generalization of the van der Pol oscillator [van der Pol, 1927]. It

has only a limit cycle for the whole range of the parameter ǫ.

(i) ǫ → 0: The amplitude an, n = 1, 2, 3, · · ·, of this limit cycle in the
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weakly nonlinear regime is the solution of the equation β(an) = 0. We

obtain:

an = 2 2n

√

√

√

√

n!(n+ 1)!

(2n)!

If n = 1 then a1 = 2 (van der Pol system) and if n → ∞ the result is

a∞=1. That is, 1 ≤ an ≤ 2 for all values of n.

(ii) ǫ → ∞: The calculation of the amplitude an of this limit cycle in the

strongly nonlinear regime requires to find the positive local maxima of

F (x) =
∫ x
0 f(t)dt. In this case, the only local maximum is at x = −1

with the value F (−1) = 2n/(2n+1). The amplitude an is therefore given

by:

an = F−1

(

2n

2n + 1

)

> 0

In particular, a1 = 2 and if n → ∞ the amplitude is a∞ = 1. Also, in

this case, 1 ≤ an ≤ 2 for each value of n.

(iii) 0 ≪ ǫ ≪ ∞: Computer simulations show that the amplitude an of

the unique limit cycle is slighty perturbed in this regime.

Example 2: f(x) = (x2 − 1)(x2 − k), where k is a real parameter

(Fig. 2). This sytem was studied by Lloyd in Ref. [Lloyd, 1987]. He

showed that it has no periodic solutions if 1/5 < k < 5, and he suggested

that there exist k∗ and k∗, depending on ǫ, such that there are two

periodic solutions if 0 < k < k∗ or k > k∗, while there are none if

k∗ < k < k∗. Moreover, he finds that k∗ ≤ (7+
√
45)/2 for some positive

ǫ. Here, the values of (k∗, k
∗) in the weakly, (k0, k

0), and in the strongly,

(k∞, k∞), nonlinear regimes are calculated. For intermediate values of ǫ

it is found numerically that k∞ ≤ k∗ ≤ k0 and k0 ≤ k∗ ≤ k∞.
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(i) ǫ → 0: The amplitudes a±, solutions of the equation β(a) = 0, of the

limit cycles in this regime are the positive values of the expression:

a± =
{

(k + 1)±
√

(k + 1)2 − 8k
} 1

2

If k < 0 there is only one limit cycle of amplitude a+. If k > 0 the

sign of the discriminant ∆ = (k + 1)2 − 8k determines the number of

periodic solutions. The roots of ∆ are: k0 = 3 −
√
8 ≃ 0.17157 and

k0 = 3 +
√
8 ≃ 5.82842. Then, if k0 < k < k0, ∆ is negative and

there is no limit cycle. If 0 < k < k0 or k > k0, ∆ is positive and the

system has two periodic solutions of amplitudes a±. In k = 0 a limit

cycle of small amplitude bifurcates from the origin after an Andronov-

Hopf bifurcation. In k = k0 and k = k0 the two limit cycles appear or

disappear by a saddle-node bifurcation.

(ii) ǫ → ∞: The limit cycles in this regime are determined by the the

positive local maxima of F (x) = x5/5− (k+ 1)x3/3+ kx. If k < 0 there

is only a positive local maximum at x+ = −1 with the value F (−1) =

(2− 10k)/15. The amplitude a+ of this limit cycle is:

a+ = F−1

(

2− 10k

15

)

> 0

If 0 < k < 1/5 there are two positive local maxima: one is at x+ = −1

and the other one is at x− =
√
k. The condition for the existence of two

limit cycles is: F (−1) > F (
√
k). This is verified when 0 < k < k∞ =

(3−
√
5)2/4 ≃ 0.14589. The amplitudes a± of these limit cycles are:

a+ = F−1

(

2− 10k

15

)

> 0

a− =

∣

∣

∣

∣

∣

∣

max







F−1





(10− 2k)k
3

2

15



 < 0







∣

∣

∣

∣

∣

∣
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If 1/5 < k < 1 there is only a positive local maximum at x =
√
k for

which F−1(x) has not an antiimage. Then there is not periodic solutions

in that interval of k. The same behaviour is found when 1 < k < 5, but

now the positive local maximum is located at x = 1.

If k > 5 there are two positive local maxima localized at x+ = −
√
k and

at x− = 1. The condition for having periodic solutions reads: F (−
√
k) >

F (1). This condition holds when k > k∞ = (3+
√
5)2/4 ≃ 6.85410. The

amplitudes a± of these limit cycles are:

a+ = F−1





(2k − 10)k
3

2

15



 > 0

a− =

∣

∣

∣

∣

∣

max

{

F−1

(

10k − 2

15

)

< 0

}∣

∣

∣

∣

∣

If k∞ < k < k∞ the system has no periodic solutions.

(iii) 0 ≪ ǫ ≪ ∞: Numerical computations of this system suggest that

the curves k∗(ǫ) and k∗(ǫ) behave as it is shown in Fig. 2. Thus we find

that k∞ ≤ k∗ ≤ k0 and k0 ≤ k∗ ≤ k∞ for every real ǫ.

In summary, if k0 < k < k0 there is no periodic solution, and, if 0 <

k < k∞ or k > k∞ the system has two limit cycles. Observe that k∞ <

(7 +
√
45)/2, and the requirement k > (7 +

√
45)/2 is not necessary for

having two limit cycles for some ǫ, as it was proposed in [Lloyd, 1987].

Some amplitudes a± are given in the following table:
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k ǫ = 0 ǫ = 1 a

0
√
2 1.41431 a+

0 0 0 a−
0.16 1.19001 1.19000 a+
0.16 0.95072 0.95172 a−
5 Ø Ø a+
5 Ø Ø a−
7 3.29065 3.29504 a+
7 2.27410 2.44764 a−

Example 3: f(x) = 5x4 − 3µx2 + δ, where µ and δ are two real

parameters (Fig. 3). This system is a generalization of Example 2.

Several authors have studied the case δ = 1: in Ref. [Rychkov, 1975],

Rychkov shows that this equation have two cycles when ǫ > 0 and µ >

2.5; Alsholm has improved this result lowering the bound to µ > 2.3178

(µ ≥ 2.3178 δ
1

2 ), and in [Odani, 1996], Odani obtained a sharper result

µ >
√
5. In [Giacomini & Neukirch, 1997], Giacomini & Neukirch obtain

a sequence of algebraic approximations, in the parameter plane (δ, µ) for

ǫ = 1, to the bifurcation set Bǫ=1(δ, µ) = 0, where the system undergoes

a saddle-node bifurcation. Here, the bifurcation curves B0(δ, µ) = 0 and

B∞(δ, µ) = 0 in the weakly and in the strongly nonlinear regimes are

calculated, respectively. We obtain B0(δ, µ) = 9µ2− 40δ and B∞(δ, µ) =

µ2−5δ. For intermediate values of ǫ, numerical simulations show that the

curves Bǫ(δ, µ) = 0 are localized between B0(δ, µ) = 0 and B∞(δ, µ) = 0

in such a way that if ǫ2 > ǫ1 then Bǫ2(δ, µ) = 0 is between Bǫ1(δ, µ) = 0

and B∞(δ, µ) = 0. These results are in agreement with the earlier works

cited above and let us a better understanding of the behaviour of this

system for all the values of δ and µ.
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(i) ǫ → 0: The amplitudes a± of the limit cycles in this regime are the

positive solutions of the equation β(a) = 0, that is:

a± =
{

1

5

(

3µ±
√

9µ2 − 40δ
)}

1

2

If δ < 0 there is only one limit cycle of amplitude a+. If δ > 0 and

µ < 0 there are no real solutions for a±. If δ > 0 and µ > 0, the sign of

the discriminant B0(δ, µ) = 9µ2−40δ determines the number of periodic

solutions. If 3µ <
√
40 δ

1

2 there is none and if 3µ >
√
40 δ

1

2 the system

has two limit cycles of amplitudes a±. At δ = 0 a limit cycle of small

amplitude bifurcates from the origin after an Andronov-Hopf bifurcation.

For the values (δ, µ) where B0(δ, µ) = 0 the two limit cycles appear or

disappear by a saddle-node bifurcation.

(ii) ǫ → ∞: The positive local maxima of F (x) = x5 − µx3 + δx must

be found. If δ < 0 there is only a positive local maximum at x0 =

−(3µ+∆

10
)
1

2/
√
10 where ∆ =

√
9µ2 − 20δ. We have F (x0) = −(3µ2 +

µ∆− 20δ)x0/25. The amplitude a+ of this limit cycle is:

a+ = F−1





(

3µ2 + µ∆− 20δ

25

)

(

3µ+∆

10

)

1

2



 > 0

If δ > 0 and 3µ <
√
20 δ

1

2 , F (x) has no local maxima and the system

has no periodic solutions. If δ > 0 and 3µ ≥
√
20 δ

1

2 there are two

positive local maxima localized at x+ = −(3µ + ∆)
1

2/
√
10 and x− =

(3µ −∆)
1

2/
√
10. The condition for having two limit cycles is: F (x+) >

F (x−). This follows if µ >
√
5δ

1

2 . The amplitudes a± of the limit cycles

are:

a+ = F−1





(

3µ2 + µ∆− 20δ

25

)

(

3µ+∆

10

)

1

2



 > 0
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a− =

∣

∣

∣

∣

∣

∣

max







F−1





(

−3µ2 + µ∆+ 20δ

25

)

(

3µ−∆

10

)

1

2



 < 0







∣

∣

∣

∣

∣

∣

If µ <
√
5δ

1

2 there are not periodic solutions. Then the bifurcation curve

where the system undergoes the saddle-node bifurcation is defined by

B∞(δ, µ) = µ2 − 5δ.

(iii) 0 ≪ ǫ ≪ ∞: Numerical simulations of this system suggest that the

bifurcation curves Bǫ(δ, µ) = 0 are located between B0(δ, µ) = 0 and

B∞(δ, µ) = 0, in such a way that if ǫ2 > ǫ1 then Bǫ2(δ, µ) = 0 is located

between Bǫ1(δ, µ) = 0 and B∞(δ, µ) = 0. If µ∗(ǫ) is the solution of

Bǫ(δ0, µ) = 0 for a fixed δ0, then
√
40δ0/3 ≤ µ∗(ǫ) ≤

√
5δ0 and µ∗(ǫ2) >

µ∗(ǫ1) if ǫ2 > ǫ1.

As an example we give some values of the amplitudes a± of the periodic

solutions for µ = 1:

δ ǫ = 0 ǫ = 1 a

-1
√
2 1.40990 a+

0.1 1.02334 1.02344 a+
0.1 0.39087 0.39090 a−
0.3 Ø Ø a+
0.3 Ø Ø a−

Example 4: f(x) = 7x6 − 5(29 + b2)x4 + 3(100+ 29b2)x2 − 100b2,

where b is a real parameter (Fig. 4). Giacomini & Neukirch have investi-

gated this system in Ref. [Giacomini & Neukirch, 1997]. They find that

the solutions of the equation F (x, b) = 0 do not give the right qualitative

amplitude-bifurcation diagram, where F (x, b) = x(x2− b2)(x2− 22)(x2−

52). In fact, the plot of the roots of F (x, b) = 0 announce the presence
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of a transtricital bifurcation near b = 2 and b = 5, and an Andronov-

Hopf bifurcation at b = 0. Their method of algebraic approximations to

the bifurcation curves shows that the supposed transcritical bifurcations

are indeed saddle-node bifurcations. They conclude that the system can

have one or three limit cycles. We confirm these results and stablish

the correct amplitude-bifurcation curves aǫi(b), i = 1, 2, 3, for the three

limit cycles, in the weakly, a0i (b), and in the strongly, a∞i (b), nonlinear

regimes. The values of b for which the saddle-node bifurcations occur

are calculated in those regimes. Numerical simulations show that for

intermediate values of ǫ the amplitude-bifurcation aǫi(b) curves and the

values of b for which the saddle-node bifurcations occur are localized in

the regions bounded by the curves a0i (b) and a∞i (b), i = 1, 2, 3. As in the

former examples, the variation of parameter ǫ does not introduce new

qualitative information in the system, and only produces slight pertur-

bations in the amplitude-bifurcation diagrams.

(i) ǫ → 0: Mapple calculations allow us to solve the equation β(a) = 0 for

the amplitudes a0i (b), i = 1, 2, 3. The number of positive real solutions of

that cubic equation in a2 is determined by the the sign of the polynomial

∆(b) = −0.01784 b8 + 1.15301 b6 − 21.65794 b4 + 132.559 b2 − 189.45.

If ∆ < 0 there are three limit cycles and if ∆ > 0 there is only one. If

∆ = 0 a saddle-node bifurcation arises in the system. The positive roots

of ∆(b) are: b01 = 1.42636, b02 = 2.84148, b03 = 4.17545 and b04 = 6.08945.

If 0 < b < b01, b
0
2 < b < b03 or b > b04 then ∆(b) < 0 and there are three

periodic solutions . If b01 < b < b02 or b
0
3 < b < b04 then ∆(b) > 0 and there

is only one. The amplitudes of the limit cycles for a given b̄ are the cuts
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of the line b = b̄ with the curves a01(b), a
0
2(b) and a03(b) (see Fig. 4).

(ii) ǫ → ∞: Numerical calculation of show that the values of b for which

the system undergoes a saddle-node bifurcation are: b∞1 = 1.21, b∞2 =

3.49, b∞3 = 3.95 and b∞4 = 6.40. If 0 < b < b∞1 , b∞2 < b < b∞3 or b > b∞4

the system has three limit cycles, and if b∞1 < b < b∞2 or b∞3 < b < b∞4

there is only one periodic solution (see Fig. 4).

(iii) 0 ≪ ǫ ≪ ∞: Numerical computations show that the amplitude-

curves aǫi(b), i = 1, 2, 3, are localized in the narrow shaded region bounded

by a0i (b) and a∞i (b) (Fig. 4a). Remark that the behaviour of the system

suggests, once more, that the number of limit cycles do not increase when

ǫ increases (Fig. 4b).

4 Conclusions

Limit cycles are isolated periodic solutions of specific nonlinear differen-

tial equations and can model self-sustained oscillations in nature. There

are two difficult and connected problems in relation with limit cycles: the

determination of bifurcation curves of these solutions in the parameter

space and the determination of the maximal number of such solutions.

In this work, we have exploited the possibility of calculating the bifur-

cation curves of the limit cycles of Liénard equation ẍ+ ǫf(x)ẋ+ x = 0

in the weakly (ǫ → 0) and in the strongly (ǫ → ∞) nonlinear regimes

when the viscous term f(x) is even. Firstly, these calculations allow us

to improve the results existing in the literature for different examples in
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these regimes. Secondly, the systems analyzed seem to follow the same

pattern: the number of limit cycles does not increase when the non-

linearity ǫ increases. Moreover, the bifurcation curves for intermediate

(0 ≪ ǫ ≪ ∞) nonlinearity are always located between the bifurcation

curves corresponding to the two extreme regimes. This means that al-

though the variation of the nonlinearity ǫ introduces an important mod-

ification of the time scale and wave form of the oscillation, it perturbs

slightly its amplitude. Only if two limit cycles have a very close ampli-

tude for a given ǫ, there exists the possibility of collapse of those limit

cycles by a saddle-node bifurcation when |ǫ| increases. If the system loses

these two limit cycles it do not recover them for a stronger nonlinearity

ǫ. If the amplitudes of the limit cycles are separated enough for a given

ǫ, the number of periodic motions is conserved when ǫ is varied.

In particular, if we restrict ourselves to even-polynomial viscous forces,

this behaviour suggests that Lins-Melo-Pugh conjecture on the number of

limit cycles of Liénard systems is true. This is so because the conjecture

is true in the weakly nonlinear regime and, according to the behaviour

above explained, it should be true for any other regime.
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López-Ruiz, R. & Pomeau, Y. [1997], Transition between two oscil-

lation modes, Phys. Rev. E 55, R3820.

[Lloyd, 1987]

Lloyd, N.G. [1987], Liénard systems with several limit cycles, Math.

Proc. Camb. Phil. Soc. 102, 565.

[Odani, 1996]

Odani, K. [1996], Existence of exactly N periodic solutions for

Liénard systems, Funkcialaj Ekvacioj 39, 217.

[Rychkov, 1975]

Rychkov, G.S. [1975], The maximum number of limit cycles of the
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Figure Captions

Figure 1: A typical phase portrait of Eq. (3). The limit cycles of

amplitudes ai, i = 1, 2, · · ·, enclose the origin and have the symmetry

(x, y) ↔ (−x,−y). Stable and unstable limit cycles alternate.

Figure 2: Qualitative bifurcation diagram in the parameter plane

(k, ǫ) of system (2) for f(x) given in Example 2. In region I, where k < 0,

there is only one periodic solution; in region II, where 0 < k < k∗(ǫ) or

k > k∗(ǫ), there are two limit cycles, and in region ©, where k∗(ǫ) <

k < k∗(ǫ), there are none. On the line k = 0 the system undergoes an

Andronov-Hopf bifurcation and on the curves k∗(ǫ) and k∗(ǫ) a saddle-

node bifurcation. (Nomenclature in the text: k∗(0) ≡ k0, k
∗(0) ≡ k0,

k∗(∞) ≡ k∞ and k∗(∞) ≡ k∞).

Figure 3: The complete bifurcation diagram of system (2) for f(x)

given in Example 3. The system has no periodic solutions in region ©,

one limit cycle in region I and two limit cycles in region II. On the line

δ = 0 the system undergoes an Andronov-Hopf bifurcation, and on the

curves B0(δ, µ) = 9µ2 − 40δ = 0 and B∞(δ, µ) = µ2 − 5δ = 0 a saddle-

node bifurcation arises for ǫ = 0 and ǫ = ∞, respectively. In region B

are located all the bifurcation curves Bǫ(δ, µ): the curve Bǫ2 is located

between Bǫ1 and B∞ if ǫ1 < ǫ2.
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Figure 4: Bifurcation curves of system (2) for f(x) given in Example

4: (a) Amplitude bifurcation-diagram where a0i (b) correspond to ǫ = 0

and a∞i (b) to ǫ = ∞, i = 1, 2, 3. The amplitude-bifurcation aǫi(b) curves

are located in the interior of the shaded region for every ǫ. The number

and amplitudes of limit cycles for b = b̄ are the number and a-coordinates

of the intersections between the curves aǫi(b) and the line b = b̄. (solid

lines correspond to stable cycles and dashed lines to unstable ones for

ǫ > 0).

(b) Qualitative bifurcation diagram in the parameter plane (b, ǫ). In

region I there is only a periodic solution and in region III there are

three limit cycles.
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