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1 TIntroduction

Binary oxcillations have been observed, both numerically and analytically, in
certuin discretisations of systems of nonlinesr hyperbolic conserwation laws;
wee [LL9S]. More specifically, we consider systems of hyperbolic balance laws
of the form

(1.1) w + flu)s = g(u).

Semnidiscretization of z € IR with step size /2 > 0 can, for example, be
performed by a central difference scheme

{1.2) dp + e fluppr) — flu)) = glea)

Az a cantioning remark we hasten to add that we do not recommend this par-
ticular discretisation for munerical purposes. Rather, it is our goal to mves-
tigate peculiar short range oscillation phenomena of systen {1.2). Rescaling
time, we obtain the equivalent system

1.3 ap = egfee) — fluea) + flee-a)

Note how this system decouples iuto a direct product fow, if 2, = »;, for
all £ € Z. Indeed, any solution wu(t) of 4y = egley) gives rize to a solution
of {1.3) satisfying

2 (2)

ﬂu{f +X]
ayft),  forall &

(1.4)

apya(t)
for any fixed choice of ¥ € R.
It ix the poal of our present paper to investigate lom of stability of thix
deconpling phenomenon. In general, vy and vy can define consistently
amooth, but different profiles z — ¢{t,z). We consider only the simplest
caxe

(1.5) k (mod4)
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of vy defining the corners of a square. In this case, decoupling phenomena
ax sbove have been discovered by [AAS6] in the dightly different context of
periodic orbits of linearly coupled oscillators. For more intricate, nonplanar
graphs of coupled ozcillators supporting such decoupling effects zee [AFS9].

For simplicity, we consider systemns of two balance laws, »; € R¥. To facilitate

our calculations further, we impose an §7 equivariance condition

f{Rye] = R.f(a),

1.6
oo oB) = Rfe)
under all rotution matrices
0 ol Sdd |
MO COoNi
Denoting the Fuclidean norm by [u|, we can therefore write
flz) = of|zf)e
1.8
a8 gle) = ¥fe|*)e.

where the walues of g, 5 are scalar multiples of rotation matrices.

We assume that the decoupled vector field ¢ = g(e) of the reaction term
alone possesses an exponentially stable periodic orbit. Amming

9 b{juP) = ( T ) ,

we normalize the periodic orbit to [¢| = 1, its frequency to 3, and s ex-
ponential rate of atbtraction to —2. Oun the sow time scale ¢ = egfu] these
latter values become e and —2¢e, of course.

QOu the square (1.3}, {1.5) decoupling produces an invariant 2-torus foliated
by these periodic orbits; see {1.4). Normalicing the time shift ¥, these solu-



tions are given explicitly by

ap{t] = Huue
s ml) = w7 = Rel)
1.0 T
¢ ) aft] = uyt)

w(t] 1= wm(t] = H(l)
Heae x € §' = R/2rZ, due to §'-equivariance, and e; € IR* denotes the
first unit vector. (hor investigation of binary osdllations will focus on the
detailed dynamics near the decoupled 2-torus (1.10).
Ohur amumnption (1.6) on §'-equivariance allows us to elininate one varable
from our eight-dimensional vector field (1.3), (1.5). Indeed, the flow of {1.3),
{1.5) maps §*-orbits onto §*-orbits, by equivariance under the §*-action

(111] (Rpll],' = Rq_,‘l'.!,'

ou U = (ey,...,vs) € IRE The mduced flow on the space of group orbits
can be oomputed in explict coordinates, representing a cros section to the
group orbits; see (1.12) below. For specfic calculations, we will we polar
coordinates [:'r'g,(pgj for vy € RB; zee sections 3 and 4.

Relatiug back to dynamnie:, consider the Poincaré return map to any Poincaré
arose section X through auy of the periodic orbits on our 2-torus 7%, In
particular, the section X ix also tramsverse to the §'-action (1.11) which i=
free near the 2-torus. We can therefore rewrite the Poincaré map as the time
t = 2r(eQ)™! wap of a suitable associated fow

(1.12) &= F(z)

representing the induced flow ou the seven-dimensonal Poincaré cros section
X. The fixed Poincaré return time can in fact be achieved by mcorporating a
scalar Buler multiplier into the imduced flow on X. We will make an explicit
choice for X later, based on polar coordinates,
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In the coordinates z € X the periodic 2-toras T2 from 1[1.10] becomes a one
dimensional curve of equilibria. Tndeed, time action and §'-action comcide
on 7%, Therefore the fixed points of the Poincaré return map given by T#NX
ooincide with equilibria of the induced flow £ = Fi(z) on X. In other words,
the relative equilibria on 7%, relative to the $%-action, become equilibria on
the local space X of 5%-orbits.

Az long ax the curve of equilibria remains pormally hyperbolic, the local
dynamics hax been clarified by [ShoT5], [Fen?7], [HPS77), aud otherms; see
also [Shu87), [Wig94]. Locally, the dynamics s fibered into imvariant leaves
over each equilibrinm, with dynamics in each leaf governed by hyperbolic
linearization.

Bifurcations from lines of equilibria in abzence of parameter have been in-
vestigated n [FLA9S] from a theoretical view poiut. We briefly recall the
pertinent result, for convenience. As in (1.12), now consider general C° vec-
tor fields £ = F{z) with z € X = R”. We amume a one parameter curve of
equilibria

(1.13) 0= Fax))

tangeut to z"[:xU] 75 0at x = xn zl[xU] =z At ¥y = xp, we msume

the Jacobi matrix F'{z") to be hyperbolic, except for a trivial kernel vector
along the direction of z'(xy) aud a cowplex conjugate pair of simple purely
imaginary eigenvalues p{x],m arozzing the lmaginary axis transversely ax
x imcreasex through y = yy:

plxa] =, i > 0
Rep'(xo] # 0

Let B be the two-dimemwdonal real agenspace of FY{z") assodated to diun.

(1.14)

Coordinates in B are chosen as coefficients of the real and imaginary parts of
the complex eigenvector aszociated to fwuy. Note that the linearization acts
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ax a rotation with respect to these not necessarily orthogonal coordinates,
Let Py be the one-dimensonal eigenprojection onto the trivial kernel slong
the direction z'{yy). Our final nondegeneracy assumption then reads

(1.15) ApPyF(z") £ 0.

Here the Laplacian Agp is evaluated with respect to the above eigenvector
ooordinates in the eigenspace E of déuwy,. Fixing positive y-orentation, we
can consider Agpup(:l:u] as a real muoober. Dep(::udiug on the sSign

(1.16) 7 = sign(Rep'(x0)) - sign(A gPLF ("))

we call the “bifurcation” point =z = zU elfiptic if 7 = —1, and hyperbolic for
n= 41

The followng rexult from [FLASS] investigates the qualitative bebavior of
solutions in & normally hyperbolic three-dimenszional center manifold to z =
z".

Theorem 1.1

Let vaswinptions (1.18)-(1.15) hold for the CF vector field £ = Fz) olong
the curve z{x) of equilibric. Then the following holds true in o neighborhoad

U afz = z" within o three-disnensiono! center maomnifold to z = 29,

In the hyperbolic cose, ¢ = 41, ol nonequilibrivi frojectories leove the
neighborhood [7 in positive or negutive tine direction (possibly both). The
stalle and unsteble sets of 2 = 2, respectively, form cones sround the pos-
itive/negutive dirsction of ='(yn), with vaymnptoticolly elfiptic cross section
rear their tips ot z = zg. These cones seperote regions with different con-
vergence behovior. See fiy. f.fa).

In the elbptic cose, p = —1, olf noneguibfibrivm trogectories storting i U5
wre heteraclinic between eyuilibrie o = z(x.) on opposite sides of ¥ = xy.

b






aosdng of siinple, purely imaginary eigervalues, The nondegeneracy condi-
tion {1.15) iz verified in section 4, completing the proof of theorem 2.1,
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2 Result

Setting up for our main result, theorem 2.1, we further spedfy our square
binary oscillation system
1) s = egfe) + Flun) — Flasn),  Hlmodd),

In the §'-equivariant formulation (1.8), we have already completely spedfied

. — |af® 0
) ofw) = K(el)u = (1 o 1_|u|..;)u;

zee {1.9]. To avoid formula overkill by chain and product roles, we specify
the derivative
(2-3) Afw) = f{e) = (a{[u[}e)
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at v =g = {1,0] to be given by the symmetric indefinite matrix

(2.4) Aley) = ( —C1 —01 )

In terms of af|af*); thiz choice corresponds to

25) am=(‘i’ ‘01), a’m=(i jc)

To ensure tramsverse rosdng {1.14] of purely imaginary eigenvalues in the

Limit £ 0y we assume |¢| < 1 is nonzero:
2.6 <1, <#0

The noudegeneracy condition {1.15) on Ag By F{() will hold due to the same
aznmnption (2.6).

Theorem 2.1

Consider the syuere binery oscillution system (8.1) with specific nonlineari-
ties (8.8)-(2.6). Then, for 0 < € < & snell enough, Hopf points of elliptic
type scour ot the periodic solution frough v = eix) yiven by vy = w2 = &y,
o, =y = Rx(g)sl.

Heve x = x(e) € (0,7 /4) sofisfies

3¢

24 ¥

(2.7) oos(2y(e)) =

More precisely, the induced flow = = Fiz) on the spuce of §'-arbits, rep-
resented by o Poincoré cross section X to the shove periadic orlit, sotisfies
wesumptions srd conclwions of theovem 1.1 for the hyperbofic / elfiptic types
n =&l in o negborhosd 7 = U, of v = v(x{e]). The type determining sign
n is given by

(2.8) g=-1

)



independently of the choice of ¢ in (8.6). In porticuler the stolifity vegpion
of decovupling into seperoate, phose-reloted periodic solutions on odd-lobeled /
even-lubeled discretisution points inchides o full neighborhood T of v(x{e))
with o grefered sign ¥ — x{e] for the phose shift ¥ of decowpling periodic
solutions u(x).

The proof of this theoremn comsists of checking the tramsverse croming as-
sumnption {1.14) and the nondegeneracy condition (1.15] of theoremn 1.1, Tn
the lmit £ 0, these two conditions are checked in zections 3 and 4, respec-
tively.

3 Eigenvalue crossing

In this section we provide the Lnear apalysis for Hopf poimts of purely
imaginary eipemvalues slong the 2-torus 7% of decoupled periodic orbits
o(t) = (ao(t)y ) givem by

ayft] = wuplt) Houe

wft) = w,t] = Ragt)

] (1.10]. Paszing to polar coordinates

(3.1)

{3.2) vy = ref e
we explicitly factor out the §'—action
(3.3) (R =reR o1

Thiz explictly converts the 2-torus T into & line of equilibria z(x) of
= Fl[z] in 1 Poincard cross section X see (1.12], {3.9]. We compute the
linearigation along the equilibria z(x) and determine the location of Hopf
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puints at x = x{e), in the limit e N 0. We then determine an explicit expres-
gion for the aossng direction

{3.4) Re p'(x{e])

of the Hopf eigenvalues. For later use, we alko detennine e—expamdons for
the Hopf eigenvalues g = plx{e)] = iw(e) and the Hopf eigenvectors v = »{e].
Calculations in thix and the following zection were performed with Mathe
matica and Maple; auy other symbolic caloulation package should also do.
We begin with tramsformation to polar coordinates (3.2). In variables
fre,on ), A{modd), equations {2.1) for binary osdllations mod 4 read

A= enll—r) ol )oman —a Bl
—plree ) wos(oen — g + e,
B @ g )sintie -+ $(ne))
—rg p{ren ) sin{p — on + @)
Hexe the new nonlinearities pfr),9{v) are related to the flux function f{a) =
afe|*)e by a{v*) = v p(r)Rppy. In fact assuoptions (2.5) on al),a'(1)
tranzlate as

{3.6)

(1) LA = -y
H1) = % WY = -

The 2turus {3.1) of decoupled binary osdllations becomes

VL = 1,
[3 TJ '] = o +x,
Prtzr = Pk

in polar coordinates, with flow
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Note that the right hand side of (3.8) i proportional to the infinitesimal
generator of the §-action {3.3). We choose an orthogonal section
(9 X = {{t@)llpnt tm=0} =<ent

m coordinates ¥ = {ro,.avs); @ = (o, 00 9m), e = (0,..,0,1,...,1). The
vector field

{3.10 z = Fz)

of the induced flow on §'-orbits, represented by z € X, is then given by
arthogonal projection of {3.5) omto the section X. In particular, the term 0
disappears in thiz projection aud the line of equilibria i= given by

(.11) 2 me=l, g (-1
To simplify our caloulations, we restrict the time shift ¥ to the interval
{3.12) x € [0, %TT].

Thiz can be done without los of generality due to the By—symmetry of the
square ring couphing of our system {1.3),(1.5). Indeed, the Dy—symmetry is
generated by the rotation o and reflection 8

a : (0,1,2,3 - (1,230

l|g : {01 1]21 3) H (21110] 3)

of the indices. This leads to an equivariance of the system (1.3),{1.5) under

(3.13)

(3.14) @ @ up e,k (modd)

8 1 wor —wy, up ——wg, T, Us T,

when we recall that f and g are odd by (1.6). In tenns of the tine shift x

these transformations are

o oy — 2rm—yx and

3.15
@.19) 8 x = x+m
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Thiz immediately gives the fundamental domain {3.12).

The linearization of F' at z(x] = given by restriction and projection of the
8 x 8 linearization L{x) of the original polar coordinate vector field {3.5)
at the relative equilibriuin 2(x). Rather than writing L{x) out expliaty, we
recall equivariance of (3.5) and fnvariance of z{x) woder the action & — & +2
of shifting indices & by 2. The four-dimensdonal representation subspaces V=
under thix action are given by

{3.18) VE o= [y = 71, P = T}

By equivariance, these are invariant subspaces of the linearisation Ly ). Due

to decoupling, V7 iz in fact also juvariant under the nonlinear flow.
Let Z¥(y) demote the respective restrictions of L{y); explictly

—e 0
a0 0
£+ = 2 )
x) e o
o 0
{3.17 .
—E 0 —comEy —ElLY COSY
. 0 0 —cEluy +cosy m=Eny
Iix) = 2 .
coosy — sy —CosX —E 0
—cElny —OCOEY sy 0 U]

with respect to coordivates (ro, o, v1,01) In Ve,
Obviously only L-{x) can carry purely imaginary eigenvalues. In the follow-
ing, we therefore restrict our attention to V=, The characteristic polynomial
pof I7(x) on V™ is given by

0 = plp.eq) =

Bt dep® + (¢ + 4)y + ¢ 4267 )p"
+1leyp + 8{2+ {y - 1))

{3.18)
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with the sbbreviation

{3.19 v = cos(Zy).

Decomposing into real and imaginary parts, we immediately see that imagi-
nary eigemvalues p = fw satisfy

{3.20 w? =4y =0

aud only ocour for e, v satisfying

2 ¢

21 — e = 2T

(3.21) 7= =3 T

Thix proves {2.7) of theoren 2.1, Before computing the assodated dgemspace,

we addres: the transverse crossing condition (3.4) for the eigemvalues p =
g, 7] near Hopf points. Note that

(3.22) Re p'(x) = —2y/1 —7*Re 8,ps(e, )

at v = (e}, by (3.19) and the chain rule. At e = 0,7 = {0, p = w(0) we
have
(3.23) Bup = 8V (4 + A2+ &) £ 0

Hence the implict function theorem applies:

(3.24) Byple ) = —dpfBup
At £ = 0 we obtain
{3.25) Ap = B AR T

with vauishing real part. Totally differentinting {3.24) with respect to £ along
the path £ > 0, v = +{e), p = iw(e), we obtain

d _ _ [c* 427
(3.26) | e = —0(8p/dup) = —4m-

=0
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This yields the expansion

@3.27) Re 4'(x) = sw,;;%wﬁ o).
Tn particular

(3.59) sign Re /() = +1

for suwall & > 0.

Fur Later use, we also provide an expausion

(3.29) o(d = ¥ + e’ + O(e)

for the complex eigenvestor v(e) associated to the imaginary eigenvalue
(3.30) p = iw(e) = iuwn + O[).

Normaligation of o{e) will not be necessary. We decompose

(3.31) LD(x(e)) = Bu+ €Ly + ...

where i fact Ly = E5(x(0)), el = L*. Comparing coefficients of €, ¢! in
(3.32) (Eo4eli 4.0 "+ e’ + ) = (fum 4 {0 + et +.0)

we immediately zee
{ Ly — twn)w”
(Lo — tun)et

With the abbreviation & := +/¢* + 4 and some substitutions & = 7 — 4,

0,

— Lo

{3.33)
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explicit snlutions are given by

—‘.El[czé'-l- c|r_:|]
—il[csE-l- ot —2|c|]

o= |c|f:' + 2¢

A+ 3)
—Ele| 4 338 — Gefe| + 67E — 20c* || + 8ed — 16¢|
v — e = 3| — 224 + 6l + el
VTR {3 |e]E + 3¢ + 4|l + 10! + Scfe|E + 8¢F)

WP |c|e 4 ¢t e|f — 4 — Gelelf — 4 — Bleff + 16¢)
3.34)
Note that +°; ¢' are complex orthogonal.

4 Nondegeneracy
Iu this section we check the nondegeneracy condition
{4.1) ApBR(z) #0

in the limit £ % 05 see [1.15). Here the Hopf point z = =z, given in polar
coordinates l['r'i,(pi], L in the section X = {g)J‘ = {\’SU +.oo s = O]» and
satisfies

g =1
(4.2) wio= -1

- 2
7= eyt = 3

=e (3.9), (3.11), (3.21). The projection B is the dgenprojection onto the
one-dimnensional kernel of the linearization in X, By our V¥ — decom position
(3.18), (3.17), the full huearisation L{x") posesses kernel only in V. Indeed,
the characteristic polynomial p = p{p, e, 1) on ¥V~ does not possess sero
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eigenvalues; see (3.18). The two-dimensional kernel of L4H(x") in ¥+ is given
by

(4.3) m=0 pu=

for small £ > 0; see (3.17) agaim. By restriction and orthogonal projection to
X, we see that FF{z) is given by

—1/2
1/2
—1/2
1/2

1
s PoF(s) = (- Ff + Ff — B + Bf).

Here we bave written the polar coordinate components of the orginal vector
field (3.5] in the form

ws) =B

Note that the unit vector in {4.4] points along the o-components of the line
z(x) of equilibria in positive x-direction. Moreover By does not depend on
e We can therefore conzider A pPy F{z) to be given by the real mumber

1
(4.6) A% 1= ZApd—FS 4 FY - Ff + F)(&),

with ouly the Hopf poiut z* and the Hopf dgenspace E* depending ou e
Equivariance with respect to index change & — & + 2 further simplifies ex-
preion (48] for A* Indeed B* C V-, because the Hopf eigenspace B
results from L {x*); see (3.17). Restricted to V™, the quadratic Hemsian
foros of FY¥ and FY, at z° coincide. Therefore (4.8) simplifies to

(4.7) At = Ap{—FF + FT)(z")
Expanding A® to including first order termns in e, we mmediately notice that
(4.8 At = Ap(—Ff + FF)(=") + O()
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Indeed z* = 2{x*) depends only to second order ou e, ax does x* itself; see
{3.19), {3.21). Therdore we only have to consder dependence of the Hopf
eigenspace

(4.9 E* = span {Re v{e),Im v}

on g, to first order. We recall that a first order expansion
{4.107 vle) = o ter' 4 ...

of complex dgenvectors v{e) to the sinple eigenvalue p{e) = tw{e) near w0)
was derived in zection 3; zee (3.34). Alzo recall that v(e) are not normalized.
Denoting second derivatives by 0¥, we abbreviate the Hessdan by

(4.11) H, = —D*F3(z") + D*Fr{z")

and expand

A = Hy[e(e), #e]] + O)

(4.12) Hy[tn, 8] + 2 Re { Hylo, @] e + Ofe)

It iz worth noting here that indesd Age has to be evaluated with respect to
the eigenbuasiz Re v(e], Iin vfe) of £ and not with respect to an orthonormnal
basiz, This follows from the proof of theorem 1.1 in [FLASS]. Iudeed, the
term A* arises in the normal form provess after a huear transfromation of
the linearizmtion to pure rotation in the Hopf eigenspace. The length of «(e)
is irrelevaut in that analys= only the dgn of A enters into the final reslt.

After these preparations we find
(4.13) Hu[vn, 5] =10

The term of order € can be considerably simplified to

(4.14) 2Re(Hulor,@0]] = —8F((c* + LW + 4f¢| — 2) < 0.
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From {4.12) - (4.14] we finally obtain
{4.15) sign A = —1,

for small £ = 0.

Proof of theorem 2.1:

Theoremn 2.1 follows from theoremn 1.1, proved in [FLA98]. The location
1[2.7] of Hopf points was derived in 1[3.21]. Transverse crossing (1.16] of
purely lnaginary eigeuvalues hax been establizhed in (3.2?], {328] with

(4.18) signRe p'(x) = +1,

for =mall e 3> (. Nondegeneracy condition (1.15) has been verified in {4.15)
with

{4.17) sign ApP7F(z") =sign A* = -1,

again for mnall e » (. We therefore have shown that the assmnptions of
theorem 1.1 and the conclusions of theorem 2.1 hold with elliptic type =
determined by

{4.18) q=—1

This completes the proof of theoream 2.1, B

Az a conduding remark, we note that the existence of hyperbolic Hopf points
in central difference schemes (1.2) has not been established yet. Further iu-
vestigations of more general nonlinearities are necessary to darify the possi-
bility of such bifurcation poiuts.
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