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Abstract

Phase synchronization is shown to occur between opposite cells of a ring con-

sisting of chaotic Lorenz oscillators coupled unidirectionally through driving.

As the coupling strength is diminished, full phase synchronization cannot be

achieved due to random generation of phase jumps. The brownian dynamics

underlying this process is studied in terms of a stochastic diffusion model of

a particle in a one-dimensional medium.
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I. INTRODUCTION

Phase synchronization phenomena in coupled chaotic systems have been extensively stud-

ied during the last few years in the context of non-identical chaotic systems (Rosenblum et

al., 1996; Osipov et al., 1997), ecological systems (Earn et al., 1998; Blasius et al., 1999),

physiological systems (Schäfer et al., 1998), chaotic systems forced by an external periodic

or noisy signal (Pikovsky et al., 1997a, 1997b), an ensemble of coupled chaotic oscillators

(Pikovsky et al., 1997c; Osipov et al., 1997), and with an electronic model of two Rössler

oscillators (Parlitz et al., 1996). This effect owes its name from the classical definition of

synchronization of periodic oscillators which is described in terms of locking or entrainment

of the phases, while the amplitudes can be quite different. Hence, synchronization of chaotic

oscillators can be defined in the most general case, as the locking between the phases of two

coupled systems, while the amplitudes remain chaotically varying in time (Rosenblum et al.,

1996).

For chaotic oscillators, there is no unique definition of phase. An approach to determine

the amplitude A and phase φ of a narrow-band signal s(t) is based on the analytic signal

concept that considers an analytical signal ψ(t) as a complex function of time, ψ(t) =

s(t) + ıs̃(t) = A(t)eıφ(t) and s̃(t) is the Hilbert transform of s(t) (Rosenblum et al., 1996).

However, in other cases phase and amplitude can be defined as a function of the natural

variables of the oscillator. For example, for the Rössler attractor φ = arctan(y/x) (Pikovsky

et al., 1997d) or φ = arctan(y/
√
x2 + y2) (Rosa et al., 1998), and for the Lorenz model φ =

arctan
[

(
√
x2 + y2 − u0)/(z − z0)

]

(Pikovsky et al., 1997b), where u0 and z0 are constants.

In this paper, we focus our interest in the phenomenon of phase synchronization between

chaotic Lorenz systems coupled unidirectionally through driving in a ring geometry. It

has been shown, that for an appropriate set of parameters, a ring of N coupled Lorenz

systems shows a Periodic Rotating Wave (PRW) where neighboring oscillators exhibit a

phase difference of 2π/N and the amplitude varies with time sinusoidally (Mariño et al.,

1998). This system, with a different set of parameters also exhibits Chaotic Rotating Waves

(CRW) defined as well by a phase difference between neighboring cells of 2π/N but the

amplitude remains chaotic (Sánchez and Mat́ıas, 1999). In this structure there exists a

superposition of Fourier modes k = 0 and k = 1. Here we will show a transition from a
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PRW with a phase difference of 2π/N to a CRW with a phase difference of 4π/N , where

opposite cells are phase synchronized (N even). Depending on the unidirectional coupling

strength, random/brownian 2π-phase slips develop during the mentioned transition.

II. MODEL

We shall consider rings of Lorenz attractors coupled in such a way that the dynamical

behavior (Güémez and Mat́ıas, 1995) is defined by,

ẋj = σ(yj − xj)

ẏj = R (β xj−1 + (1− β) xj)− yj − xj zj (1)

żj = xj yj − b zj

with σ, R and b positive parameters. Usual parameters values are σ = 10, b = 8
3
and R = 28.

In Eq. (1), β accounts for the coupling strength, j runs from 1 to N (number of cells in the

array), and for j = 1, x0 = xN .

For β = 1, it was observed (Mat́ıas et al., 1997; Mariño et al., 1998) that the synchronized

chaotic state is stable if the size of the ring is small enough N = 2, while for a certain

critical number Nc = 3 in the case of the Lorenz model, an instability associated to the

first Fourier mode k = 1 destroys the uniform chaotic state, leading to a PRW. As the

size of the ring is increased, new Fourier modes become unstable and for N = 6 a second

instability (k = 2) develops that could lead to a Chaotic Rotating Wave (CRW) where

neighboring oscillators exhibit a phase difference of 4π/N as it is shown in Fig. 1(a), that is,

Fourier modes k = 1 and k = 2 compete in a nonlinear way. Thus, opposite cells are phase

synchronized while amplitudes remain chaotic and are, in general, uncorrelated. Figure 1(b)

shows the uncorrelated values of the amplitudes of xj+N/2(t) as a function of xj(t). Since the

second Fourier mode plays an important role for phase synchronization, we will focus our

study in a ring consisiting of N = 6 Lorenz cells described by Eq. (1) as β is varied. This

phase synchronization describes the onset of long-range correlations in chaotic oscillations

(suppression of phase diffusion), and thus also corresponds to the appearance of certain

order inside chaos that here is shown as a CRW with certain similarities to a quasiperiodic

motion.
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To study phase synchronization of coupled chaotic systems, we calculate the phases of the

oscillators and then check whether the weak locking condition ∆φ = |nφj−mφj+N/2| < const

is satisfied. In this paper, we restrict ourselves to the case of m = n = 1. The definition of

the phase for a given oscillator may be a problematic task as soon as there is not a center

of rotation. Fig. 2 shows the (x, y) projection of an oscillator phase space for two β values,

β = 1.0 and β = 0.85. At β = 1.0 a center of rotation can be clearly distinguished at

(x, y) = (0, 0). Then a Poincaré surface of section y = x, x > 0 allows us to define the phase

as (Pikovsky et al., 1997b)

φ(t) = n+
t− tn

tn+1 − tn
(2)

where tn is the nth crossing of the surface. Note that the phase has beeen normalized by a

factor 2π. We see that with the surface chosen in Fig. 2(a) crossings are equal to maxima of

the variable x(t). Therefore, we can know at what times the phase is an integer just looking

at the time evolution of the variable x, this criterion has been used before (Blasius et al.,

1999). As long as β decreases unproper rotations become more frequent, (see Fig. 2(b)).

However it is clear the existence of a ”rotation axis”, unlike the funnel Rössler attractor

case (see e.g. Pikovsky et al., 1997b) where an independent center of rotations emerges at

one side of the attractor. In consequence phase is increased in one unit (i.e. 2π radians)

when an unproper rotation occurs. As it will be later discussed the time difference of two

consecutive maxima does not depend on the own nature of each rotation. So it seems that

our definition provides a ”good” period. The instantaneous phase φ(t) will be determined

through linear interpolation after calculating the instants of time at which maxima appear

in the x(t) series.

III. RESULTS

The main effect of varying β is shown in Fig. 3. As shown above, for β = 1 opposite

oscillators within the ring are phase synchronized. As β decreases, opposite cells still remain

phase synchronized, except for some phase jumps. These events are defined as the non-

occurrence of a maxima at its due time in one of the x(t) signals corresponding to cells j or

j+N/2. In other words, we will assume that a phase jump occurs if ∆φ(t) = φj(t)−φj+N/2(t)
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changes by approximately ±1 for two consecutive maxima of x(t). Note for example for

β = 0.76 and β = 0.85 two jumps are encircled in Fig. 3. Unproper rotations are signaled,

it is clear that they do not produce phase slips, although both phenomena appear when the

signal turns more chaotic. Further decreasing the coupling strength β finally leads to the

formation of a PRW with a phase difference of 1/6 (mod 1) between neighboring cells. The

transition between PRWs and phase synchronization with jumps occurs for a critical value

of βc ≈ 0.75.

The distribution of phase jumps is shown in the sequence of figures at the rightside of

Fig. 3 where the periods of time T between consecutive maxima of x(t) are shown for two

opposite cells within the ring. As β is decreased, the map Tj+N/2 as a function of Tj shows a

greater dispersion from the mean value (located in the center of the figures) until the critical

value βc is reached. For high values of β, a small deviation of periods around the mean value

appears according to the way the phase synchronization has been defined (|φ1−φ4| < const

< 1/2). As the value of β decreases, the dispersion around the mean value increases at the

same time that two independent accumulation regions responsible for the phase slips appear

(see circles at the rightside of Fig. 3). Notice that these phase slips are not related to the

unproper rotations which are represented by maxima (minima) peaks of the temporal serie

that do not take a positive (negative) value (see arrows in the leftside of Fig. 3). The process

of phase jumps formation is as follows; consecutive x(t) maxima of one cell remains phase

synchronized with the opposite cell within the ring, until a phase jump occurs spontaneously,

which corresponds to jumps from arms numbered (2) and (3) in Fig. 3 to the encircled zones.

That is, phase slips are characterized by the sequences 2 → 1 → 2 and 3 → 4 → 3. At the

same time, fluctuations in ∆φ (i.e. no perfect synchronization between maxima) leads to

jumps between zones (2) and (3). Besides, it must be pointed out that as β is decreased

the concept of phase synchronization defined above and used here becomes less restrictive

as the dispersion around the mean value increases (const → 1/2).

The number of phase slips occurring at a given interval of time decreases as β is increased.

Then, when opposite cells within the ring are phase synchronized the phase difference |∆φ(t)|
is, on average, constant in time. But, if phase slips occur for βc < β < 1, then one would

expect that forM different initial conditions, the averaged square phase difference dynamics
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will be generally diffusive, so for large t,

〈|∆φ(t)|2〉 = 2D t (3)

where D is the diffusion constant. Figure 4 shows the linear dependence found for the root

mean square of the phase difference 〈|∆φ(t)|2〉1/2 as a function of time, in a log-log plot for

M = 14 different random initial conditions for the Lorenz cells within the ring and for four

different values of β. The four graphs fit to a straight line with slope S ≈ 1/2 as expected

from Eq. (3) (see Table I for the fitted values).

The distribution of temporal periods τ between two consecutive phase jumps is shown

in Fig. 5 for two different values of β. Note the occurrence of longer periods of time τ for

higher values of β. These distributions show an exponential decay with τ as a consequence

of the intrinsic random/brownian nature of the dynamical process underlying the formation

of phase slips. Moreover, neither the phase jumps occur simultaneously for all couples of

opposite cells within the array, nor the phase jumps are correlated in space, which is in

agreement with the random dynamics of phase slip formation.

IV. DISCUSSION

From Fig. 5 a mean value of the period 〈τ〉 for each value of β can be defined. Now,

by using a simple model of stochastic diffusion of a particle in a one-dimensional medium

(random discrete walk), the averaged quadratic dispersion from the phase synchronized state

(∆φ ≈ 0) is given by the following equation,

〈|∆φ(t)|2〉 = t

〈τ〉 (4)

where t/〈τ〉 is the number of phase jumps that have appeared for t ≫ 〈τ〉. Consequently,

comparing Eqs. (3) and (4), it is possible to calculate a theoretical value for the diffusion

coefficient Dth = (2〈τ〉)−1. A comparison between the diffusion coefficient Dexp obtained

after fitting the log-log plots given in Fig. 4 and Dth is shown in Table I. Note the good

agreement between both coefficients for large values of β as expected for a typical brownian

dynamics. It must be noted that 〈τ〉 increases dramatically with β (see Fig. 5 and the values

of Dth in Table I) in such a way that it is not possible to assure the existence of an upper
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limit of β above it no jumps appear. For β → βc we have found small values of 〈τ〉 of

the order of the mean period between two consecutive maxima of x(t). Thus, jumps occur

frequently in time and a random, uncorrelated in time, sequence cannot be assured (the

system shows a tendence to display +1, −1, +1, . . . slips series). Then, the obtained values

of the diffusion Dexp are smaller than those predicted Dth using 〈τ〉.
The transition between periodic rotating waves and phase synchronized chaotic rotating

waves has been shown to occur as the coupling strength β is increased. For values of β > βc,

phase slips develop randomly in time following a diffusive process given by Eq. (3). Note that

the dynamics of the phase defined for a single chaotic oscillator is generally diffusive as well

(Pikovsky et al., 1997b) and in this case, D determines the phase coherence of the chaotic

oscillations which is inversely proportional to the width of the spectral peak of the chaotic

attractor. On the other hand, for coupled unsynchronized nonidentical chaotic oscillators

the average phase difference grows linearly with time (Blasius et al., 1999). Nevertheless, we

have shown a different behavior where the root mean square of the phase difference grows

with t1/2 as a consequence of phase slips random formation.
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tion effects in a lattice of nonidentical Rössler oscillators”. Phys. Rev E 55, 2353-2361.

Parlitz, U., Junge, L., Lauterborn, W. and Kocarev, L. [1996] ”Experimental observation

of phase synchronization”. Phys. Rev. E 54, 2115-2117.

Pikovsky, A., Osipov, G., Rosenblum, M., Zaks, M. and Kurths, J. [1997a] ”Attractor-

repeller collision and eyelet intermittency at the transition to phase synchronization”.

Phys. Rev. Lett. 79, 47-50.

Pikovsky, A., Rosenblum, M., Osipov, G., and Kurths, J. [1997b] ”Phase synchronization

of chaotic oscillators by external driving”. Physica D 104, 219-238.

Pikovsky, A., Rosenblum, M.G. and Kurths, J. [1997c] ”Synchronization in a population

of globally coupled chaotic oscillators”. Europhys. Lett. 34, 165-170.

Pikovsky, A., Zaks, M., Rosenblum, M., Osipov, G. and Kurths, J. [1997d] ”Phase syn-

chronization of chaotic oscillations in terms of periodic orbits”. Chaos 7, 680-687.

Rosa, E., Ott, E. and Hess, M.H. [1998] ”Transition to phase synchronization of chaos”.

Phys. Rev. Lett. 80, 1642-1645.

Rosenblum, M.G., Pikovsky, A.S. and Kurths, J. [1996] ”Phase synchronization of chaotic

oscillators”. Phys. Rev. Lett. 76, 1804-1807.

Sánchez, E., Mat́ıas, M.A. [1999] ”Transition to rotating chaotic waves in arrays of coupled

Lorenz oscillators”. Int. J. of Bif. and Chaos 9 (in press).
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FIGURES

FIG. 1. Temporal evolution of the variable x of three contiguous Lorenz cells coupled unidi-

rectionally through driving within a ring of N = 6 oscillators and β = 1 (a). The figure shows a

Chaotic Rotating Wave (CRW) with approximate phase relationship of 4π/N . Variables xj and

xj+N/2 (j = 1) are then phase correlated although their amplitudes remain chaotic, and uncorre-

lated (b).

FIG. 2. Projections onto the x− y plane of the trajectory followed by a chaotic oscillator when

considering an array of six identical cells coupled with different values of the coupling parameter:

(a) β = 1.0 and (b) β = 0.85. In (a) the straight line indicates the Poincaré surface of section

y = x, x > 0, while in (b) it represents the ”rotation axis”, since now a rotation center is not

properly defined.

FIG. 3. Temporal evolution of the variables x1 and x4, corresponding to two opposite cells

within a ring of N = 6 Lorenz oscillators, (leftside) and temporal period T4 between maxima of

x4(t) as a function of T1 (rightside) for four different values of β. Note in the leftside of the figure

that the phase slips are encircled. For β = 0.90 the arrows indicate the time intervals where the

phase is not properly defined (here the local minima are positive). Note that these positive minima

are not related to the encircled phase slips. At the rightside, circles mark those accumulation regions

where the periods are greater than the average value, signalling then the occurrence of a phase

jump. See text for an explanation of the sequence of numbers: 1 → 4. For β = 0.75 the arrow

indicates the position of a single dot corresponding to the value of T1 = T4 = 0.36 t.u.

FIG. 4. Log–log plot of the root mean square of the phase difference 〈|∆φ|2〉1/2 as a function

of time for four different values of the coupling strength β. Lines correspond to a linear fitting.

FIG. 5. Distribution of temporal periods τ between two phase jumps for two different values of

β. Note the different time scales between both graphs. Fitting lines correspond to an exponential

decay (first order in time).
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β S Dexp × 10−3 (t.u.−1) Dth × 10−3 (t.u.−1)

0.85 0.51± 0.02 3.53± 2.35 4.41± 0.05

0.86 0.47± 0.01 2.98± 1.09 2.32± 0.03

0.87 0.48± 0.02 1.55± 1.02 0.73± 0.02

0.88 0.52± 0.01 0.050± 0.018 0.055± 0.001

0.89 0.48± 0.01 0.006± 0.002 0.004± 0.001

TABLE I: Values of the slope S, and Dexp obtained from the linear fitting of Fig. 4 and

Eq. (3). Dth = (2〈τ〉)−1 is calculated from the mean values of τ .
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