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1. INTRODUCTION 

In recent years a growing interest was observed 
in the problem of synchronizing chaotic systems 
[Afrai=ovich et. al., 1987; Pecora & Carroil, 1990; 
Cuomo et. al., 1993; Blekhman et. al., 1995; Ni­
jmeijer & Mareels, 1997; Pogromsky & Nijmeijer. 
1999}. It was motivated not only by scientific 
interest in the problem, but also by practical 
applications in different fields [Blekh=an, 1988; 
Lindsey, 1972], particularly in telecommunications 
[Kocarevet. al., 1992; Cuomo et. al., 1993; Dedieu 
et. al., 1993]. However most design methods were 
suggested and justified under conditions that all 
the system parameters are known and states are 
available for =easurement. Also, some methods 
apply only to low dimensional systems. 

1 This work was performed while the author W813 visit­
ing the Faculty of Mathematical Sciences, University of 
Twente, Enschede, The Netherlands. 
2 Also at Faculty of Mechanical Engineering, Technical 
University of Eindhoven, The Netherlands. 
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Of practical interest is the problem of synchro­
nizing two or more systems when not only initial 
state but also some parameters are not known to 
the designer of the receiver. This more compli­
cated problem, which may correspond to the case 
where parameter modulation is used for message 
transmission, is referred to as adaptive synchro­
nization [Fradkov, 1994, 1995; Wu et. al., 1996; 
Markov & Fradkov, 1997J . Control theory opens 
new horizons in the synchronization problem and 
allows to give general framework for its study 
[Blekhman et. al., 1997J. 

This paper is devoted to design of an adaptive 
observer oriented to the synchronization for the 
purpose of communications. A simple design of 
an adaptive observer for estimating the unknown 
para meters of the transmitter is proposed based 
on the design of the Lyapunov function for error 
system. It provides necessary and sufficient con­
ditions for the existence of a quadratic Lyapunov 
function for the error system. The results are illus­
trated by an example of information transmission 
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via adaptive synchronization with a pair of Chua 
circuits. 

2. PROBLEM SETTING 

We consider a transmitter described as: 

{ Xd = AXd + 'PO(Yd) + B ;~ (JiIPi(Yd), (1) 

Yd = CXd 

where Xd E ]Rn is the transmitter state vector, 
Yd E RI is the vector of outputs (transmitted 
signals), (J = col (01 , ... ,em) is the vector of 
transmitter parameters (possibly representing a 
message). It is assumed that the nonlinearities 
'P.(.), i = 0,1, ... , m, matrices A, C and vector 
B are known. 

The receiver will be designed as another dynam­
ical system which provides estimates e., i = 
1, ... ,m of the transmitter para.meters based on 
the observations of the transmitted signal Yd(t). 
The problem is to design receiver equations 

z = F(z, Yd), 

{j = h(z, Yd) 

ensuring convergence 

Hm [B(t) - e] = o. 
t-HX> 

(2) 

(3) 

(4) 

where B(t) col (01 (t), . .. , Om(t») is the vector 

of parameter estimates. 

The proposed receiver is a kind of adaptive ob­
server. Its simplest version for the case when 
A, B, C are known is as follows: 

:i; = Aa: + 'PO(Yd) + B [t 8i 'Pi(Yd) + 80 G(Yd - Y)] , 

y=Ox, (5) 

8. = Wi(Yd, y), i = 0, 1, ... , m, (6) 

where x E ]Rn, Yd E JRl , 90 E lR. and G E )RI is the 
vector of weights. The adaptation algorithm (6) 
~ill be 1ete!m~ned la~r. Thus t~e state of r~iver 
IS Z = x, 00 , (h, ... , em], the nght-hand sIdes of 

(2) are determined from (5), (6). 

Since the structure of (5) is similar to (1), a 
natural secondary goal might be 

Hm e(t) = 0, 
t ..... oo 

(7) 

where e(t) = x(t) - Xd(t) is the observation error. 
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Although (7) is not necessary in order to provide 
(4), it may give a hint how to choose a Lyapunov 
function for a proper design of an adaptation 
algorithm (6). 

To solve the problem we write down the error 
equation: 

{ e. = Ae + B [i~ Bi'Pi(Yd) + BoGY], (8) 

fj = Ce 

where Bi = ei - Bi , i = 1, ... , m are the parameter 
errors. The adaptation algorithm is provided by 
standard gradient - or speed-gradient - techniques 
as follows: 

(10) 

3. MAIN RESULT 

In order to formulate the conditions required for 
a successful applicability of the proposed scheme 
we need some definitions and auxiliary results. 

Definition 1 ([Fradkov, 1990]). The system :i; = 
Ax + Bu, y = Cx with transfer matrix W(>..) = 
G(M - A)-lB, where u, Y E JRI and A E C 
is called hyper-minimum-phase if it is minimum­
phase (Le. the polynomial tpC>") = det(>..J­
..4) det W(>.) is Hurwitz ), and the matrix CB = 
Iim,\ ...... = >'W(>..) is symmetric and positive definite. 

Note that for l = 1 the system of order n is hyper­
minimum-phase if the numerator of its transfer 
function is a Hurwitz polynomial of degree n - 1 
with positive coefficients. 

Definition 2([Yuan & Wonham, 1977]). A vector­
function f : [0,00) -4 JRm is called persistently 
exciting (PE) on [0, (0) , if it is measurable and 
bounded on [0,00) and there exist a > 0, T > 0 
such that 

t+T J f(s)f(s)T ds ~ crI (11) 
t 

for all t ~ o. 
Lemma 1. [Fradkov,1976]. Let matrices.4, B, C, G 
of sizes n x n, n x m, l x n, m x l be given. Assume 
rank(B) = m. Then there exist a positive definite 
n x n matrix P = pT > 0 and a l x m matrix e ~ 
such that 

PA*+A!P < 0, PB = (jTGT , A". = A+BB ... GC 

if and only if the system x = Ax + Bu, y = GCx 
is hyper-minimum-phase. 
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Lemma 1 establishes conditions of existence of 
feedback u = (J*y + v making the closed loop sys­
t€m with input v and output Gy strictly passive. 
It is closely related to the Kalman-Yakubovich 
lemma and can be called a "Feedback Kalman­
Yakubovich lemma", see [Andrievsky et al, 1996J. 

Lemma 2([Yuan &_ Wonham, 1977]). Consider 
vector-functions f,6 : (0,00) ....... R,"'. Assume that 

B(t) is continuously differentiable, 8(t) --> 0 as 
t ....... 00 and f is PE. Then BCt) ....... 0 as t ....... 00 

provided that 9(t)T J(t) ....... 0 as t ....... 00. 

Theorem 1. Assume that all the trajectories 
of the transmitter Cl) are bounded and the lin­
ear systems with the transfer function W(A) = 
GC(AI - A)-l B be hyper-minimum-phase. Then 
all the trajectories ofthe receiver (5), (9), (IQ) are 
bounded and the relation (7) holds. If, in addition, 
the vector-function ['Pi (Yd), .. . ,'P.", (Yd)] satisfies 
the PE condition, then also (4) holds. 

Proof of Theorem 1. To prove the theorem con­
sider the Lyapunov function candidate 

~ ~ IT 1~ ~ 2 
Vex, eo, 6, t) ="2e Pe + 2" ~ 1111. - Bdl hi 

i=O 
, 2 

+1160 - 0*011 ho (12) 

where a matrix P = pT > 0 and a number 6"0 
are to be determined. Calculation of V gives that 
V < Q for e i- 0 if and only if the following 
conditions are valid: 

(13) 

Using Lemma 1 we obtain that V < Q for e =l=­
Q if and only if the adaptation algorithm has 
the form (9), (10) and the system x = Ax + 
Bu, y = Cx is hyper-minimum-phase. There­
fore, under the given conditions the function 
Vet) = V(x(t}, Oo(t), B(t), t) is bounded. Since 
'Pi (Yd(t)) , i = 1, ... , m are bounded, the functions 
e(t), ~i(t) are bounded too. Equations (13) imply 
that V = eT(PA~ + A~P)e ::; -l1l1e(t)112 for some 
J,t > O. Integration of the last inequality over the 
interval (0, tJ gives: V(t)-V(O) ::; -J,t J~ lIe(s)1I 2 ds. 
Taking into consideration that V > 0 we obtain: 
V(O) ;:::- J,tJ; Ile(s}1I 2ds. This yields the inequality 

= f Ile(t)1I 2dt < 00. (14) 

o 

Since IPi(Yc1), i = 1, ... ,m are bounded, e(t) is also 
bounded in view of (8). From (14) and Barbalat's 
lemma we obtain that the goal (7) is achieved. 

Copyright 1999 IF AC 

14th World Congress oflFAC 

To prove (4) we first note that (j(t) ---. 0 as 
t ....... 00 from (9) and (7). Differentiating (8), from 
boundedness of functions e, e, 'Pd, fj, 00 and their 
time-derivatives we conclude that e(t) is bounded. 
Barba.lat's lemma then implies that e(t) ....... 0 as 
t ....... 00 . This and (9) yield (j(t)T'Pd(t) ....... 0 as 
t ....... 00. Hence (4) follows from the PE condition 
and Lemma 2 .• 

Remark. Theorem 1 in fact gives necessary and 
sufficient conditions for the existence of a Lya­
punov function of the form (12) with the proper­
ties 

{ l:'(x, ~o,~, t) > 0 for e =I=- 0, (15) 
Vex, Bo, B, t) < 0 for e =I=- O. 

It means that it is not possible to find another 
adaptation algorithm based on the Lyapunov 
function (12) with the properties (15) . 

As an example we consider the problem of syn­
chronizing two Chua circuits with unknown pa­
rameters and incomplete measurements. 

4. SIGNAL TRANSMISSION AND 
RECONSTRUCTION 

In recent years much attention has been devoted 
to methods for secure communications utilizing 
chaos (Kocarev et. al., 1992; Cuomo et. al., 1993; 
Dedieu et. al., 1993]. Various methods for trans­
mitting signals via chaotic synchronization were 
proposed like chaotic signal masking (Kocarev et. 
al., 1992; Cuomo et. al., 19931, chaotic binary 
communications [Dedieu et. al., 1993; Cuomo et. 
al., 1993], etc. 

A possible application of the synchronization 
scheme proposed in Section 2 to chaotic binary 
communications algorithms goes as follows. and 
is based on the dependence of the synchrOniza­
tion effect on the matching of the correspond­
ing parameters of the systems. The transmitter 
and receiver have identical structure as in the 
previous section. The basic idea is to modulate 
this coefficient with an information-bearing bi­
nary waveform and transmit the chaotic signal. 
At the receiver side the coefficient modulation 
will produce a synchronization error between the 
received signal and the corresponding transmitter 
reconstructed signal: if the coefficients of trans­
mitter and receiver are identical the signals will 
synchronize, otherwise synchronization fails. Us­
ing the synchronization error the modulation can 
be detected. Security of communications is possi­
bly enhanced by a set of other transmitter param­
eters. 

Consider as an example of information transmis­
sion where both transmitter and receiver system 
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are implemented as a Chua circuit, similarly to 
[Dedieu et. al., 1993]. The transmitter model in 
dimensionless form is given as: 

Xd l = P[Xd2 ~ Xd1 + f(Xd1) + s/t(xdJl 
Xd2 = Xdl - Xd2 + Xd3 

Xda = -qxd~ 
(16) 

where fez) = Moz + 0.5(MI - Mo)h(z), h(z) = 
Iz + 11 - (z - 11, Mo, M1,p,q are the transmitter 
parameters, s = sCt) is the signal to be recon­
structed in the receiver. Assume that the trans­
mitted signal is Yd(t) = Xd l (t), and the values of 
the parameters p, q are known. 

The parameters Mo, Ml are assumed to be a 
priori unknown which motivates the use of an 
adaptation for the receiver design. The receiver 
designed according to the results of Section 2 is 
modeled as 

Xl = P[X2 - Xl + !(Yd) + clh(Yd) + CO(XI - Vd)], 

XZ = Xl - Xz + X3, (17) 

X3 = -QX2, 

where Co, Cl are the adjustable parameters. The 
adaptation algorithm (9), (10), takes the form 

Co = -"IO(Yd - Xl)2, 

Cl = -"II(XI - Yd)/1(Yd), 
(18) 

where ')'0, "11 are the adaptation gains. 

First we examine the ability of the system (17), 
(18) to receive and to decode messages. To this 
end we verify the conditions of the Theorem 1 as­
suming that set) = const. Clearly, if set) is a time­
varying binary signal, we can only expect that the 
results of Theorem 1 can be used if the parameter 
estimation is fast enough, at least much faster 
than the actual parameter modulation. Writing 
the error equations yields 

{ 
el = p[e2 - el + (Cl - s)h(Yd) + coel] 
e2 = el - e2 + e3 (19) 
e3 = -qe2, 

where ei = Xi - Xd" i = 1,2,3. The system (19) 
is, obviously in Lur'e form (8), where 

A ~ [? ~d 1 B ~ m c ~ [1 00[, 

81 = Cl, 91 = S, 90 = Co. 

The transfer function of the linear part is 

WC>') _ ),2 + ), + q 
- >,3 + (p + 1),\2 + q,\ + pq 

(20) 

We see that the order of the system is n = 3, while 
the numerator polynomial is Hurwitz and has 
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degree 2 for all q > 0 and all real p. Therefore the 
hyper-minimum-phase condition holds for q > 0 
and any p, Mo, M1' Thus, Theorem 1 yields the 
boundedness of all receiver trajectories x(t) and 
convergence of the observation error: e(t) ---+ o. 
In particular, Yd(t) - Xl(t) ---+ O. Furthermore, to 
be able to reconstruct the signal set) the receiver 
should provide convergence Cl (t) - s ....... 0 for 
constant s. According to Theorem 1, this will be 
the case if the PE condition (see Definition 2) 
holds, which reads as 

to+T I ff(Yd(t») dt ~ a (21) 

to 

for some T > 0, et > 0 and all to :::: O. To verify 
(21), we note that condition (21) basically means 
that the trajectory of the transmitter Xd(t) does 
not converge to the plane Xdl = 0 when t ---+ 00. 

This is not the case, at least when the system 
(16) exhibits chaotic behavior. Indeed, in this case 
the value Xdl (t) leaves the interval (-1,1) (where 
JtCz) is linear). infinitely many times, say at tk , 

k = 1,2, .... The time intervals D..tk = tk+l - tk 
between tk can be overbounded by constant, if the 
trajectory does not converge to the set Xdl = O. 

We may also evaluate a lower bound for a in (21): 

T 

aD = limT->OO~ J l;(Xdl (t)) dt. (22) 
o 

The value of ao characterizes the parameter con­
vergence rate. It follows from the standard con­
vergence rate results (see e.g. [Sastry & Bodson, 
1989]) that if 0'0 > 0, then the convergence Cl(t)­
s ---+ 0 is exponential, with rate "110:'0, at least for 
sufficiently small 1'1 > O. Ergodicity arguments 
suggest that 

(23) 

where X~l is the average value of X~l (t) over the 
attractor n, and j.k = sup \Xdl (t)l. 

"'En 

5. SIMULATION RESULTS 

We carried out simulations for the above scheme. 
Parameter values were selected as p = 9; q = 
14.286; Mo = 5/7; Ml = -6/7. For these param­
eter values the system (16) possesses a chaotic 
attractor, resembling that of the system used in 
[Dedieu et al., 1993) (after some rescaling of space 
and time variables). 

The initial conditions for the transmitter were 
taken as Xd(O) = [0.30.3 0.3J. For the receiver zero 
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Fig. 1. Time history of observation errors during 
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Fig. 2. Time history of parameter estimates during 
tuning 

initial conditions were chosen for the state IO as 
well as for the adjustable parameters co(O), Cl(O). 
In order to eliminate the influence of initial con­
ditions no message was transmitted during the 
first 20 seconds ("tuning" or "calibration" of the 
receiver), i.e. s(t) == 1 for 0 :5 t :5 20 s. The time 
history of observation errors (Fig.l) and parame­
ter estimates (Fig.2) during tuning show that all 
observation errors and parameter estimation error 
Cl(t)-S tend to zero rapidly. The value co(t) tends 
to some constant value. 

After the tuning period the square wave me<>Sage 

(27Tt) set) = So + SI sign sin To • (24) 

where So = 1.005, 82 = 0.005 was sent. Simulation 
results for To = 5.0 s, 1'1 = 1.0 are shown in 
Fig. 3, 4. It is seen that the reconstructed signal 
yet) coincides with the transmitted signal Yd(t) 
with very good accuracy (the error Yd(t) - y(t) is 
shown in Fig.3, solid line). However both observa­
tion errors (Fig. 3) and estimation errors (Fig. 4) 
do not decay completely during the interval when 
s(t) is constant. Nevertheless, a reliable recon­
struction of the signal s(t) is very well possible. 
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Fig. 5. Time history of observation errors for 
1'1 = 10.0 

The accuracy of estimation can be easily improved 
by increasing the adaptation gain 1'1, which is 
confirmed by simulation results for 11 = 10.0 
(Fig.5,6). The achievable information transmis­
sion rate depends on the highe<>t frequencies in 
the carrier spectrum. 

transmission rate. 
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6. CONCLUSIONS 

The proposed adaptive observer-based synchro­
nization scheme demonstrates good signal and 
parameter reconstruction abilities. It allows to 
achieve high information transmission rate. The 
results of the paper demonstrate the fruitfulness 
of modern nonlinear and adaptive control theory 
application to synchronization problems. 

The work was partially supported by the Dutch 
Organization for Pure Research (N\VO) and the 
Russian Foundation for Basic Research (grant 
RFBR 96-01-01151). 
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