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Abstract

We present and discuss certain global bifurcations involving the interaction of
one- and two-dimensional invariant manifolds of steady and periodic solutions
of the Kuramoto-Sivashinsky equation. Numerical bifurcation calculations, di-
mensionality reduction using approzimate inertial manifolds/forms, as well as
approximation and visualization of invariant manifolds are combined in order
to characterize what we term the “Oseberg transition”.

1 Introduction

The one-dimensional Kuramoto-Sivashinsky equation (KSE) with periodic bound-
ary conditions can be written in the following form:

ur + 4ua:zzz + o [uzz + uu:}:] = 07 (1)
u(t,z) = u(t,z+2m). (2)

It arises in several physical contexts as an amplitude equation for spatiotem-
poral growth of instabilities (flame fronts [32], reaction-diffusion problems [25]
as well as thin film flow down an inclined plane [5]). Pioneering computational
work in the early 1980s [16] established it as a model equation for spatiotemporal
pattern formation, and breakthroughs in the theory of inertial manifolds [10], as
well the first numerical efforts at their implementation as approximate inertial
manifolds [9] also employed it as their par excellence example. The discovery
of persistent heteroclinic cycles for the KSE [23] made it also a representative
example for the study of bifurcations with symmetry ([1], [22], [7], [3]).
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This combination of physical motivation, rich spatiotemporal behavior, the
importance of symmetries and the existence of inertial manifolds have estab-
lished the KSE as a workhorse example for the study of complex dynamics in
dissipative partial differential equations (PDEs). A lot is known about its de-
tailed “low «” bifurcation diagrams (e.g. [23, 31, 4, 3]) and extensive research is
carried out in trying to understand the nature and scalings of the spatiotemporal
chaos it exhibits at large values of « [6, 36]

In this paper we will describe a particular global bifurcation exhibited by the
KSE. This transition involves both one- and two-dimensional invariant manifolds
of steady as well as periodic solutions of the PDE; bifurcation calculations as
well as invariant manifold approximation and visualization are crucial in the
presentation and the understanding of what occurs. The low-dimensionality of
the dynamics is vital in this exposition, in order to make the low-codimension
stable manifolds of saddle-type steady states and limit cycles visible in infinite
dimensional Hilbert spaces. This is accomplished using an approximate inertial
form and restricting to invariant subspace of odd functions to reduce the long-
term dynamics of the PDE to those of a system of three ordinary differential
equations, for which the stable manifolds of interest are of dimension one and
two.

A partial exploration of the bifurcation we study has appeared in a recent
paper by Ponce-Dawson and Mancho [7]. In their study of heteroclinic cycles in
the KSE with periodic boundary conditions, using an approximate inertial form
similar to the one used here, they noticed and analyzed many of the phenomena
constituting the transition picture we will see here. The ability to approximate
and visualize two-dimensional invariant manifolds allows us, in this paper, to
show elements of the transition which were correctly deduced from simulations
but not actually seen in [7], along with additional phase space/parameter space
structures completing the bifurcation picture.

The paper is organized as follows: In section 2 we give concise numerical
evidence (using a sufficiently converged discretization of the PDE) suggestive
of the phenomenon we will proceed to analyze. An informal pictorial terminol-
ogy of the elements involved is also introduced at this stage. There follows, in
Section 3, a brief discussion of the reduction of the PDE to a three-dimensional
approximate inertial form, a step which is essential for the visualization of the
relevant global bifurcations; the development (through bifurcation calculations
and continuation) of the basic “players” in the transition is presented here. The
main results are in Section 4, which contains a sequence of numerical experi-
ments exploring the bifurcation as well as what we consider our best attempts
at its visualization. We conclude with a brief discussion of the results.

2 The Oseberg Transition

We first describe the global transition in question in a relatively high-dimensional
phase space, representative of the full PDE. We restrict our exploration to the
invariant subspace of odd functions, in which case the solutions may be repre-
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sented by the Fourier sine series

o o

ut,z) = Y wi(t)e = 3 by(0)sin(j), 3)

j=—00 =1

where the reality and oddness conditions on u give
u_; =u; and wu; = —ib;/2.

An eight-mode Galerkin truncation of the PDE is sufficiently converged to be
qualitatively and quantitatively accurate in the parameter regime we study [23].

Figure 1 shows the dramatic qualitative change the global attractor un-
dergoes as the bifurcation parameter o passes through a certain critical value
ao = 32.9. Figure la is taken “before” (a < ao), and Figure 1b “after” the
global bifurcation.

To describe this transition further, it is useful to first examine in Figure
1c a “skeleton” of the global attractor consisting of five steady states, certain
one-dimensional unstable manifolds and a limit cycle (which we refer to as
YHopf)- The axes in this figure are the first (horizontal, sin 1z), second (vertical,
sin 2z) and third (into the plane of the picture, sin3z) Fourier coefficients of
the solution. These steady states, for reasons that will be explained below,
carry the shorthand characterizations the origin (at the origin of the plotting
coordinates), the top and bottom bimodals (on the upper and lower part of the
vertical axis respectively) and the two mized mode bi-tris, off-axis.

For the parameter value corresponding to this figure (and the nearby pa-
rameter range), the hyperbolic steady states maintain a constant stability type
(the origin: saddle, two (real) unstable eigenvalues; top bimodal: stable; the
two bi-tris: saddles, one unstable eigenvalue; bottom bimodal: two (complex)
unstable eigenvalues). Using the figure as a visual guide, we term “upward-”
and “downward-pointing” the two sides of the one-dimensional unstable man-
ifolds of the bi-tri states. The upward-pointing sides of both bi-tri unstable
manifolds asymptotically approach the top bimodal. The asymptotic fate of
the downward-pointing sides of these two manifolds is, as we will see, sensitive
to changes in the parameter. In this figure one of these two manifolds is only
partially plotted, so as not obscure the picture; the other one can be obtained
through symmetry. These one-dimensional manifolds form part of the boundary
of the two-dimensional unstable manifold of the origin, the majority of which
is rendered in yellow in Figures 1a,b. In Figure la the two-dimensional unsta-
ble manifold of the bottom bimodal (in red) is topologically an open disk, the
boundary of which is the limit cycle yrops-

There are two attractors in this picture: the top bimodal, and the stable
limit cycle ymops. The basin boundary separating their corresponding basins
of attraction cannot be visualized in this eight-dimensional phase space; it is a
codimension-one manifold (a pair of them, really), the stable manifold(s) of the
bi-tri state(s). Notice that in Figure 1b, the red manifold (the two-dimensional
unstable manifold of the bottom bimodal, which before the critical value ap
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approached asymptotically the ymops limit cycle) has “burst through” this in-
visible basin boundary and now approaches asymptotically both yrops and the
top bimodal. The pair of codimension-one bi-tri stable manifolds, which play a
vital role in the transition we are witnessing, cannot be visualized in this three-
dimensional projection of the eight-dimensional phase space. Indeed, the com-
putation of a manifold of such high dimension is beyond the current state of the
art. These two two-dimensional unstable manifolds (of the origin, in yellow, and
of the bottom bimodal, in red), along with all other two-dimensional (un)stable
manifolds we will follow in this work, were computed as in [18]. Briefly this
method evolves a discrete (and adaptive) collection of points, initially taken to
lie on the unstable eigenspace of the steady state in question, into a skeleton of
the approximation to the manifold. For alternative, more recent approaches to
computation of two-dimensional (un)stable manifolds, see [24].

In what follows we will need to make repeated references to many of the
particular phase space elements described above. The standard terminology
(for example, “two-dimensional stable manifold of steady state A”, and “upward
pointing side of the one-dimensional unstable manifold of steady state B”), make
the description, in our opinion, awkward. On a slightly playful note, we decided
that our global attractor bears an uncanny resemblance to a sailboat (indeed
when we first saw the transition between Figures 1 a and b, we began to refer to
it as the “cup-boat transition”). In Figure la, the attractor is much like a dinghy,
i.e. a small, deckless sailboat, and in Figure 1b, it has been transformed into
a Viking ship, in particular, one like that recovered in the archaeological dig in
Oseberg, Norway in 1903 [2],[15] (see Figure 2). We will therefore take advantage
of this similarity, and borrow a bit of nautical terminology. Henceforth, we will
refer to the two-dimensional unstable manifold of the bottom bimodal as the
hull, the two-dimensional unstable manifold of the origin as the sail, the segment
of the invariant sin(2z)-axis between the two bimodals as the mast, and the one-
dimensional unstable manifolds of the bi-tris as the ropes. In fact these ropes
lie in the boundary of the sail, due to transversality and the A-lemma [28],[17].
We believe this imagery makes the narrative more succinct; we hope our readers
will not bristle at the informality, and adopt our naming this bifurcation “the
Oseberg transition”.

3 Dimensionality Reduction

Reduction of the dimension of the phase space is essential for visualizing and,
hopefully, understanding the geometry of the global bifurcations witnessed above.
A first step in the reduction (halving the dimension) has already been accom-
plished through restriction of our observations to the invariant subspace of odd
functions. We carry the next, crucial reduction step, by means of an approxi-
mate inertial manifold (AIM). The existence of exact inertial manifolds (along
with estimates of their dimensions) has been well established for the KSE [10],
[35],(29],[21]. In addition, the effectiveness of three-dimensional AIMs in cap-
turing the “correct” long-term dynamics over the parameter range of interest
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here, is also well-documented, at least as far as the local bifurcations, leading
to the skeleton of the global attractor described above [9, 19] is concerned. The
restriction of the flow to such a three-dimensional manifold is described by a
system of three ordinary differential equations (an epprozimate inertial form, or
ATF). It is the dynamic behavior of this system that we study in detail in the
sections that follow.

To describe the AIM we express the KSE as an evolutionary equation

Z—?—FAu—}—R(u)zO, u€H (4)
where H is an appropriate Hilbert space (see [34]). The linear operator A may
be taken to be that given by Au = 44,4, along with periodic, odd boundary con-
ditions. The remaining terms are then collected in R. The infinite-dimensional
phase space H is split into low- and high-wavenumber modes by means of the
projectors

P : H — span{sin(z), sin(2z), sin(3z)}, Q=I-P

The particular AIM used here can be found as the second iterate of a contraction
mapping indicated by the sequence of explicit functions

Bj1(p) = —AT'QR(p+%;(p), j=01,... (5)
@o(p) 0, pePH. (6)

The associated approximate inertial form studied here is

%+Ap+PR(p+‘I’2 () =0. (7)

In contrast, the standard Galerkin approximation can be expressed as

%+Ap+PR(p) =0. (8)
An explicit formulation of both the ATF 7 and the Galerkin approximation can
be found in the appendix in [19)].

There is considerable theoretical justification for using ®» as an AIM. The
graph of the limit ®, (an implicit relation) of the sequence in (6) is a manifold
containing all steady states of the PDE. Early estimates showed that the dis-
tance from the attractor to the manifold given by the second iterate graph(®2),
is of the same order as to that given by ®,, and that in both cases this distance
is smaller than that of the trivial (flat) manifold described by ®¢ [19]. Subse-
quent work has revealed however, that this advantage for the AIMs amounts to
an algebraic improvement on top of an error which decays exponentially with
the dimension of the manifold, due to Gevrey regularity of the solutions [26].
Thus the fact that, in computations, the 3-mode AIF (7) seems to capture the
correct long-term dynamics while the 3-mode Galerkin approximation does not,
can be explained by the low dimension at which the comparison is made. We
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should emphasize that the choice for the dimension (three) is based on the desire
to visualize global interactions in phase space, and that this choice is to some
extent, vindicated by computational evidence. Ponce-Dawson and Mancho [7]
used a slightly modified version of this AIF, in which the highest order terms
were dropped. While qualitatively similar, their bifurcations are slightly shifted
in parameter and phase space from ours.

We do not, in fact, know that an exact, three-dimensional inertial manifold
exists for the KSE over the parameter range of interest here. Roughly speaking,
the existence of an inertial manifold can be established if a gap in the spectrum
of A dominates, in a specific way, the Lipschitz constant of the nonlinear term.
This requires that the equation be prepared; the nonlinear term is truncated
beyond a ball in phase space. If the ball of truncation is absorbing, then it
contains the attractor of the PDE, and as far as the dynamical behavior is
concerned, such a preparation is simply a mathematical device. It is shown in
[21] that for all @ < 36, truncating at a rigorous absorbing ball yields an inertial
manifold for the KSE of dimension under 200. It is also shown in [21] however,
that truncating at a smaller ball, yet one which still contains the attractor as
we know it from computational evidence, provides a five-dimensional inertial
manifold for all a < 36, for this (perhaps) “overly-prepared” version of the
KSE. So the latter estimate, which could not a priori have been expected to be
so sharp, actually comes quite close to justifying the use of a three-dimensional
system over the parameter range of interest here.

Symmetries and invariant subspaces

A brief discussion of certain symmetry elements of the PDE may be of assis-
tance in the description of the solutions involved in our transition and their
interactions. Consider the KSE PDE with periodic boundary conditions (not
just odd), with the corresponding change of H in (4). Any spatial translation
of a solution Ty : u(t,z) — u(t,x + 6) is also a solution, as is the result of the
transformation S : u(t,z) — —u(t, —z). These two actions generate the group
0O(2). The fact that Tp and S commute with the nonlinear term R for the KSE,
implies that the Galerkin approximation in (8), and the AIF in (7) also enjoy
0O(2) symmetry.

Let G be a subgroup of O(2) and let Fix(G) denote the subspace of H (or
PH) consisting of elements left fixed by G. Then Fix(QG) is an invariant subspace
[13],[14] for the PDE (or its finite-dimensional approximations (8), (7)). In
particular, the subspaces consisting of 27 /k—periodic functions are invariant
for each integer k, since these are precisely the functions left unchanged by
actions of Ty, /5. Note also that Fix(S) is the subspace of odd functions.

Though the restriction to the invariant subspace of odd functions destroys
the O(2)—symmetry, the intersection of Fix(Ty,/;) with the odd subspace is
still invariant. Since in terms of Fourier coefficients

. ij2w [k
T27r/k Uy — e¥ / uj,

it is easy to see that the sin(2x)—axis and the sin(3x)—axis are also invariant for
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the AIF (7) since we use only the first three modes u1, us, uz. Finally, we remark
that the T symmetry for our three-dimensional reduced system corresponds to
the transformation

g : (b1, b2,b3) — (=by, b2, —b3), 9)

a symmetry which is identical to that found in the Lorenz equations [27].

4 Observed phenomena

4.1 Setting the stage

We start with a brief description of how the basic “players” in the global at-
tractor in Figure 1 arose through the now well-established sequence of low-a
bifurcations of the KSE. This serves not only to set the transition we are study-
ing in the context of other known KSE bifurcations, but also to reiterate the
number of unstable eigenvalues (and therefore invariant manifold dimensions
and codimensions) for each of the “players”.

Figure 3 shows the bifurcation diagram, with respect to «, of the approxi-
mate inertial form (7). This is in good qualitative (and reasonable quantitative)
agreement with the corresponding diagram for the PDE (obtained through large
converged truncations [19],[23]). The trivial solution is stable (three negative
real eigenvalues) for o < 4 and loses one stable eigenvalue in each of three
successive bifurcations as « increases. The first bifurcation (a pitchfork in the
subspace we study) to nonuniform steady states occurs at & = 4. The resulting
steady states have been termed wunimodal as they initially possess one spatial
hump; the eigenvector of the critical eigenvalue is (1,0,0), and they are there-
fore born “in the sin(x)-direction”. Due to symmetry, both unimodal branches
appear superposed in the diagram. Two replicas [31] of this bifurcation also ap-
pear in the diagram (one for bimodal solutions at @ = 16, and one for trimodal
solutions at a = 36).

One of the two bimodal branches undergoes (at a = ap; ~ 22.0) a pitchfork
bifurcation to a pair of bi-tri branches, and subsequently (at & = ag =~ 30.2) a
Hopf bifurcation to a limit cycle, ymopr, Wwhich possesses a particular spatiotem-
poral symmetry. In terms of the PDE this symmetry is described by

u(t,z) = u(t+7/2,2 +7),
and in terms of the three-dimensional states we are dealing with here
(b1,b2,b3) — (=b1,ba, —b3) and t—t+T,

where 7 is the period in each case. Specifically, the limit cycle, as a set, is
invariant under the action of the symmetry g (as defined in (9)).

Throughout the parameter regime of interest, the bi-tri steady states possess
one unstable and two stable eigenvalues. The upward-pointing sides of the bi-tri
unstable manifolds (ropes in our nautical terminology) asymptotically approach
the top bimodal. The downward-pointing ropes, for values of a sufficiently close
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to (and larger than) apt, asymptotically approach the bottom bimodal or (later,
after ay) the limit cycle yuops. For larger values of o the long-time fate of the
downward ropes can become, as we will see, quite sensitive to the parameter.
We provide in Figure 4 a sequence of phase portraits at several values of a.

For values of 16 < a < 36, between the bimodal and trimodal bifurcations,
the origin has a two-dimensional unstable manifold (the sail). The bi-tri stable
manifolds (the tent!) are also two-dimensional and are observed to intersect the
sail transversely throughout the parameter regime we study. The term tent is
perhaps more justified in Figure 5, which shows two distinct views of these two,
two-dimensional stable manifolds: the blowup, close to the origin, of the two
manifold segments shows a distinct fold similar to the ridge of a pup tent. This
tent corresponds to the pair of codimension-one stable manifolds whose collision
with the hull at @ = ap =~ 32.6, transforming the dinghy into the Viking ship,
constitutes the Oseberg transition for the AIF (7).

The transitions we describe are, we believe, qualitatively correct; the exact
parameter values at which they occur are not so easy to pinpoint through our
numerical procedures. Indeed, invariant manifold approximations may be (in
the neighborhood of global bifurcations) particularly sensitive to the parame-
ter values, to the size of initial local manifold approximations, as well as the
time step size and accuracy of the numerical integrator used to evolve the man-
ifold approximation. These errors in the actual critical parameter value are,
however, not qualitatively important (they are subsumed by the approximation
made using an AIF as opposed to a converged discretization of the PDE). Sim-
ilar phenomena occur (at nearby parameter values) for different AIFs, different
manifold approximations, and different integrators; in that sense, we believe
that the Oseberg transition is robust.

Before continuing the study of this transition, we describe the phase space
in further detail for o smaller than ao. The hull of the dinghy is initially (just
after ay) composed of trajectories which are asymptotically attracted to the
limit cycle yrope; this limit cycle acts as this hull’s rim (as was already suggested
in Figure 1a). Near the Hopf bifurcation the two stable Floquet multipliers of
the limit cycle are real, and the rim of the hull is much like that of a bowl. As
« increases, the multipliers collide (o &~ 31.5) become complex, travel around
zero inside the unit circle, and eventually coalesce and split on the positive real
axis. When the multipliers of yuopr are complex, the hull spirals around its rim.
Since the symmetry g composed with itself gives the identity (g% = I), it is
not surprising that the multipliers do not split following their collision on the
negative real axis [33]. After the multipliers collide on the positive real axis and
split, they remain real as a changes, and one of them passes through the unit
circle at +1 in a symmetry-breaking bifurcation at a =~ 32.7 giving rise to a pair
of linked asymmetric stable periodic solutions (each is the image of the other
under the symmetry g). As a pair of curves, these asymmetric limit cycles have
linking number [11] equal to one, as does the combination of either asymmetric

Interestingly, a number of tents were also found at the archeological dig which uncovered
the fully intact Oseberg Viking ship.
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limit cycle with the Hopf orbit.

It is interesting to consider the shape of the hull as it approaches its rim after
the multipliers have split and become real again (it still spirals) and after the
symmetry breaking bifurcation giving rise to the two asymmetric limit cycles
(it both spirals and asymptotically approaches these two new “rims”). Figure
7 shows the Moebius band that constitutes both sides of the two-dimensional
unstable manifold of yheps after the symmetry breaking bifurcation. The inter-
action of this band with the hull close to the rim will not be further pursued
here; other, more dramatic phenomena affect the hull.

Numerical continuation of both the symmetric and the asymmetric limit cy-
cle branches is known to result in a multitude of homoclinic and heteroclinic
scenarios [4], [7]. Figure 6 shows two views (one of them a blowup) of these sce-
narios, along with representative shapes of the hetero/homoclinic orbits which
they asymptotically approach. These scenaria, however, occur at values of a
considerably larger than ao (see captions in Figures 6 and 14). We will provide
evidence below indicating that edditional homoclinic and heteroclinic connec-
tions are implied by the Oseberg global transition, and identify some of the
(different) families of limit cycles associated with these additional connections.

4.2 Silnikov orbits

The ropes alone give an indication of a global bifurcation. In Figure 8, the ropes
approach the rim of the hull as t — oo, for a = 32.62666, while at a = 32.62667,
after an excursion near the rim of the hull, they pass near the bi-tri en route to
the stable bimodal state. This is suggestive of a Silnikov (double) heteroclinic
connecting orbit. A similar (double) heteroclinic connection was reported in [7]
around what corresponds to a = 32.56. We recall that the highest order terms
were dropped in the AIF used in [7], which most probably explains this discrep-
ancy. We expect that, in phasexparameter space, branches of limit cycles will
asymptotically approach these connections (as their periods tend to infinity).
One may expect both symmetric limit cycle branches (asymptotically approach-
ing double heteroclinic connections) as well as asymmetric limit cycle branches
(asymptotically approaching homoclinic connections between each bi-tri and it-
self). One can further classify these closed curves (both the “infinite period”
ones and the limit cycle branches which asymptote to them in phasex parameter
space) by the number of times they wrap about the sin(2z)-axis, an invariant
line which cannot be crossed. A period-k orbit would be one which wraps around
this invariant line k& times. This classification is of significance since a period-
2m . k limit cycle can be born only from a limit cycle of period 2™ - k, for
certain combination of integers n; and ns; similarly, an infinite-period connect-
ing orbit must have this same “signature” as the finite-period limit cycles that
asymptotically approach it.

We found it particularly intriguing that this Silnikov orbit occurs close (in
parameter space) to our best estimate of the Oseberg transition critical value,
ao. The remainder of this paper is devoted to describing a mechanism which
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links these two seemingly independent global bifurcations: the heteroclinic con-
nections between the bi-tris, and the escape of the hull towards the top bimodal.

A close examination of a cross-section of the hull reveals the transformations
it undergoes as we approach the Oseberg transition. We compute such a cross-
section by taking a large number of initial conditions on the linear approximation
(near the bottom bimodal) to the hull and then iterating the return map defined
on the Poincaré section b; = 0. In Figure 9(b-i), the hull becomes increasingly
complicated as higher-period structures emerge within its rim. The result of
following the flow of such a set of initial conditions in the full phase space
at o = 32.58 indicates the presence of an attracting period-3 limit cycle (see
Figure 9(a)); this solution coexists with the symmetric limit cycle Yaops, and,
as a matter of fact, the hull asymptotically approaches both of them.

Where do these new periodic solutions (also found in [7]) originate? Lineariz-
ing at the bi-tri steady states, we find numerically that the (real) unstable eigen-
value is over three times the magnitude of the real part of the stable eigenvalue
conjugate pair over the range 32 < a < 33. In a situation such as this, where the
rate of repulsion exceeds that of attraction, the existence of a Silnikov orbit im-
plies that at the critical parameter value, there is a sequence of limit cycles with
longer and longer periods which approaches the Silnikov orbit in phase space
[12]. Such limit cycles typically lie on a single branch in parameter x phase space
which undergoes an infinite number of saddle-node bifurcations as it switches
back and forth from left to right in a bifurcation diagram (see Figures 3, 6)
An even closer look at the Poincaré cross-section of the hull at in Figure 10(a)
indeed shows the result of such a period-3 saddle-node bifurcation: a period-3
saddle limit cycle along with its unstable manifold. One side of the (in section,
one-dimensional, in the full phase space, two-dimensional) unstable manifold
of this saddle limit cycle approaches our familiar, still stable, symmetric Yhopt.
The other side of this unstable manifold, on the Poincaré map, approaches a
stable period-3 limit cycle, which was born in the same saddle-node bifurcation
as the saddle period-3, and which, in Figure 10(a), is visually indistinguishable
from the saddle at this magnification and value of a. Also shown in Figure
10(a) are both branches of the stable manifold of the period-3 saddle limit cy-
cle (again, two-dimensional in the full phase space but one-dimensional in the
Poincaré section).

Figure 10(b) is our most important computational result. It shows the same
elements, but with the cross-section of the hull superposed. It is clear that the
stable manifold of the period-3 saddle intersects the hull transversely, implying
the existence of structurally stable connecting orbits between the bottom bi-
modal and the saddle period-3, even upon the inception of the saddle-period-3
at a saddle-node bifurcation. We provide in Figure 11 a schematic version of
a wedge of the hull together with the stable manifolds of the period-3 orbits.
Figure 10(c) shows the same objects but at a slightly larger value of a along
with yet another periodic orbit arising in a saddle-node bifurcation: a period-5
saddle limit cycle located near the “tips” that the hull section develops. A small
portion of the stable manifold (looking much like a slash through each triangle)
of the saddle period-5 is also shown in Figure 10(c) indicating transversality in
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this case as well. Figure 12 shows the results of numerical continuation of var-
ious such periodic solutions, which appear and often disappear in saddle-node
bifurcations, using AUTO [8]. In Figure 12(a), the period-3 solutions as well as
the yrops are shown to eventually asymptotically approach Silnikov orbits. In
[7] the period-3 solutions were found to undergo a period doubling sequence of
bifurcations to apparently chaotic dynamics. A closer look at the period-5 and
associated period-10 branches in Figures 12(c-d) does not indicate a Silnikov bi-
furcation, yet this continuation is by no means exhaustive. While none of these
branches of periodic orbits seem to approach the Silnikov connecting orbit at
a =~ 32.63 (refer back to Figure 8), we expect that there exist additional isolated
branches of periodic orbits which do.

In summary: periodic solutions, born at saddle-node bifurcations, are found
(as expected) close to the value of a at which a (double) heteroclinic connec-
tion develops between the two bi-tri states. We do find several families of such
periodic solutions close to the value of a at which the double heteroclinic con-
nection between the two bi-tri steady states occurs. The parameter dependence
of many of these periodic solutions is strongly suggestive of their participation
in a Silnikov type connection scenario.

The important element is that all these solutions are “born” with their sta-
ble manifolds already tangled with the two-dimensional unstable manifold of the
bottom bimodal (the hull). It is therefore not surprising that, as these periodic so-
lutions approach a (double) heteroclinic orbit -in other words, as they approach
the ropes and the tent, the stable manifold of the bi-tri states-, the hull, which
contains orbits asymptoting to them, also approaches the heteroclinic orbit -and
thus the tent, the two-dimensional stable manifold of the bi-tri states-. It then
makes sense that even before (in parameter space) the basic double heteroclinic
orbit connecting the two bi-tri states occurs, the two-dimensional unstable man-
ifold of the bottom bimodal interacts with the two-dimensional stable manifold
of the bi-tris, in the heteroclinic explosion that creates the Oseberg ship.

We review the sequence of connections: the hull is tangled with saddle pe-
riodic orbits; periodic orbits asymptote to the ropes; the ropes coincide with
the tent at the heteroclinic value. We therefore expect that the hull approaches
the tent (and interacts with it) before (in parameter space) any given periodic
branch asymptotes to the (double) heteroclinic connection.

5 Conclusion

We presented a computer-assisted study of a particular global transition, in-
volving invariant manifolds of several steady states and limit cycles; these man-
ifolds have dimension (or codimension) one and/or two in our study. Model
reduction allowed the visualization of the low codimension invariant manifolds.
Through this study we were able to link two distinct global bifurcations: a
double heteroclinic connection between two symmetric steady states, and the
Oseberg transition, the intersection of the stable manifold of these states with
the two-dimensional unstable manifold of a third, unstable steady state. The
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missing link was provided by limit cycle families, related with the Silnikov dou-
ble heteroclinic connection, but who are also (through their stable and unstable
manifolds) tangled with the two-dimensional unstable manifold in question. The
connection of these two, in principle unrelated, events justifies the numerical ob-
servation of structurally stable heteroclinic cycles in the full (periodic, non-odd)
PDE close to the parameter value at which the double heteroclinic connection
of the bi-tri states occurs [7]. The picture is certainly far from complete; all this
is just the onset of the complex, gradual interaction of the unstable manifold of
the bottom bimodal with the bi-tri steady states, the various primary (Yaops,
asymmetric) and secondary (period-3, -5, -10 and more) limit cycles and their
stable manifolds. Hopefully the information presented here will motivate the
study of the dynamics in the neighborhood of the bi-tri steady states close to
this transition.

There is no guarantee that the mechanism behind the Oseberg transition
described here by the use of a three-dimensional AIF, is in fact consistent with
the way the transition takes place for the PDE, or for that matter, the eight-
mode Galerkin approximation used to produce Figure 1. The reduction to a
three-dimensional system was, however, essential for the visualization of stable
manifolds of low codimension. The AIM used in (7) is only a rough approxi-
mation to the global attractor, (and to an exact inertial manifold, should one
of such low dimension exist). Since the computations for this paper have been
carried out, a new algorithm for computing inertial manifolds to arbitrary accu-
racy has been developed in [30]. The manifold produced by the latter algorithm
was demonstrated in [20] to be considerably more accurate than the AIM in (7),
when tested at a small sampling of points on the global attractor of the KSE.
Further confirmation that the mechanism described here is as for the PDE,
could thus, in principle, be obtained by repeating the visualization study pre-
sented here, but using a more accurate approximation to an inertial manifold.
We believe, however, that the computations presented here, as well as compu-
tations of low-dimension (as opposed to low-codimension) invariant manifolds,
like the hull, in large PDE truncations, provide convincing evidence the essential
phenomenology we present is still valid in the PDE.
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bottom bimodal

Figure 1: Elements of the global attractor for an eight-mode Galerkin approx-
imation to the KSE. Shown in (a) and (b) are the two-dimensional unstable
manifold of the origin (yellow), that of the bottom bimodal steady state (red)
and the one-dimensional unstable manifolds of the bi-tris (blue), at two different
values of the parameter: (a) @ = 32.0 and (b) a = 33.0. (For an explanation of
the steady state terminology see text). In (c), a skeleton of the global attractor
is presented.
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Figure 2: Separated at birth? The two-dimensional unstable manifold of the
bottom bimodal (top: side view; bottom: top view) at o = 33.0 (see Figure 1)
— the Oseberg ship.
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Figure 3: A view of the AIF bifurcation diagram showing various steady state
branches as well as the onset of a relevant branch of oscillatory solutions. The
insets illustrate the solution spatial profiles between zero and 2w. Representative
phase portraits can be seen in Figure 4.
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Figure 4: Representative phase portraits with unstable manifold of the origin
in yellow, and one-dimensional unstable manifolds in white. The blue manifold
is the two-dimensional stable manifold of, successively, the origin (o = 12, in
(a)), the bottom bimodal steady state (o = 20, in (b)) and of the pair of bi-tri
states (a = 25, in (c)).
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Figure 5: The tent (in blue) and the sail (in yellow) at a = 27.0.
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Figure 6: Limit cycle bifurcation diagram for the yg,,¢ branch (see text). The
representative phase plots illustrate the approach of the branch to the Silnikov
homoclinic and heteroclinic connections involving the bi-tri steady states (for
relatively large values of o). The Hopf branch terminates in a Silnikov connect-
ing orbit at a ~ 36.12785 (upper right); the asymmetric branch also terminates
at a ~ 34.90108 (upper left). The lower left frame shows a large-period, nearly

homoclinic, asymmetric limit cycle at o = 34.901079384; the lower right shows
a symmetric limit cycle near to a heteroclinic cycle at a = 36.127432153.
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Figure 7: The two-dimensional unstable manifold of ymops after the symme-
try breaking bifurcation, one side in red, the other in blue. The green line is
the sin(2z) axis. The symmetric limit cycle lies at the boundary between the
two sides (red and blue) of its unstable manifold; the asymmetric limit cycles
constitute the edges of these two sides.
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Figure 8: Two views (top: side view; bottom: top view) of the downward ropes
(one-dimensional unstable manifolds of the bi-tri steady states); they are taken
before (left) an after (right) a double heteroclinic connection.
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0.0

Figure 9: The hull lies in multiple basins of attraction at & = 32.58 (a); A one-
parameter family of initial conditions on it (a circle of ICs close to the bottom
bimodal) evolves (see the cloud of sampled transient points) in part to the
symmetric Ygops and in part to a symmetric period-3 solution. The complexity
of the hull increases with the parameter a. We illustrate this through cross-
section slices of the hull at various setting of «, as follows: (b) 32.000, (c)
32.200, (d) 32.400, (e) 32.500, (f) 32.573, (g) 32.584, (h) 32.596, (i) 32.604.
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Figure 10: Within the Poincafe section by = 0, the three components of the
stable manifold of the period-3 saddle limit cycle are plotted in blue, bronze,
and green. In (a) and (b) the period-3 saddle is near its inception around
a = 32.57, and labeled with A, while yuops is labeled with V. The cross-section
of the hull is shown in red in both (b) and (c). In (c), for slightly larger «, a
period-5 saddle, denoted by A, is present near the tips of the hull. The period-3
saddle and node in (c) are labeled by a square and a diamond respectively. The
black curves are respectively, the unstable manifold of the period-3, in (a) and
(b), and a small portion of that for the period-5 in (c). See text for discussion.
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Figure 11: A schematic version of a portion of the hull, along with the stable
manifolds of the period-3 saddle limit cycle, as they might appear trapped be-
tween two Poincaré sections. The colors are meant to be consistent with those
in Figure 10
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Figure 12: Bifurcation diagrams. (a) bi-tri steady state (solid with dots), period-
3 (bold, solid), Hopf (- - -) and symmetric period-5 (- - - - - ), (b) blow-up showing
only symmetric period-5 from (a) along with asymmetric period-5, (c) same
as (b) with a asymmetric period-10 branch, superposed, (d) period-10 branch

alone on same scale. In ga) the period-3 branch ends in an Silnikov connection
at =~ 33.5903, the other Silnikov connections are at 34.9028 and 36.1263.
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Figure 13: Representative phase portraits of the period-3 and period-5 limit
cycles in the bifurcation diagrams in Figure 12 (in each case, top: side view;
bottom: top view).
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Figure 14: The Oseberg transition for the AIF (7) viewed from afar. The top two
pictures are of phase space at a = 32.0 and the bottom two are from o = 32.8.
The hull is in red, the tent in blue; one rope is yellow, the other blue. See text
for detailed description.
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Figure 15: Schematic versions of the hull and tent near the bi-tri steady state
are shown in (a) the dinghy regime, (b) the Oseberg ship regime; the small
square represents the bi-tri state, and the small triangle, the bottom bimodal.
Computational versions of the same transition follow in (c—). In (¢) a portion
of the hull (red) and one side of the tent (blue) are constructed for a = 32.0,
while in (e) a closeup of the rim of the hull is shown at the same parameter
value. Two views of the Oseberg ship near a bi-tri state for a = 32.8 are
shown in (d) and (f). The intersection of the two two-dimensional manifolds
is a stable heteroclinic connection between the bottom bimodal and the bi-tri
steady states.



