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This paper describes a simple method for calculating unstable periodic orbits (UPOs) and
their control in piecewise-linear autonomous systems. The algorithm can be used to obtain any
desired UPO embedded in a chaotic attractor, and the UPO can be stabilized by a simple state
feedback control. A brief stability analysis of the controlled system is also given.

1. Introduction

It is well known that some simple electric cir-
cuits behave chaotically, such as the Chua’s circuit
[Madan, 1993] hysteresis circuits [Saito, 1990], the
Colpitts oscillator [Kennedy, 1994] the buck con-
verter [Yuan et al., 1998] and so on. In these
systems, there exist some switching elements, so
the overall system equation can be described by
piecewise-linear functions.

For piecewise-linear systems since exact solu-
tions are obtained as piecewise functions, many
analytic issues such as the stability of attractors,
bifurcation and existence of chaos can be discussed
in a rigorous way. For example, Andronov stud-
ied the stability of the limit cycle observed from
the piecewise-linear model of a vacuum-tube oscil-
lator. This work is introduced in [Pontryagin, 1962],
where the differential equation includes a step-wise
(binary level) function which is approximated by
some continuous saturation characteristics. Since
this model is a second-order autonomous system,

the stability of its limit cycle can be studied ana-
lytically. However, this particular piecewise-linear
system is probably one of the very few examples
whose dynamical properties can be obtained in an
analytical way. The key point in this analysis is
that the switching time, at which the system equa-
tion changes nonsmoothly, can be exactly evalu-
ated. Unfortunately, calculating a periodic orbit
and analyzing its stability are very difficult because
the conditions on the switching times cannot be
explicitly derived, especially for higher-order sys-
tems [Madan, 1993]. Therefore, one has to resort
to appropriate numerical methods, particularly for
higher-order systems, for this kind of computation
and analysis. And yet, even if an efficient method
is available for calculating periodic orbits, a large
number of UPOs embedded within a chaos attrac-
tor are not able to calculate in general.

An attempt was made by Diakonos et al. [1998]
to develop a systematic computational scheme
for UPOs embedded within a chaotic attractor.
Other efficient techniques to obtain UPOs are also
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available [Lathrop & Kostelich, 1989; Ogorzalek,
1997]. Using a different approach, we present a sim-
ple method in this paper for the same purpose but
only for piecewise-linear systems. This method uti-
lizes the ergodic property of chaos and the charac-
teristic of a wide basin of attraction of the Newton
numerical method. More precisely, we first describe
a simple numerical method for calculating periodic
orbits (points) in piecewise-linear systems, then use
Newton’s method to provide numerical solutions for
variational equations [Parker & Chua, 1986, 1989].
This method requires no normal forms or approxi-
mations by continuous functions. To that end, we
discuss an efficient algorithm for finding UPOs em-
bedded within a specific chaotic attractor. This al-
gorithm utilizes the ergodicity of chaos in addition
to Newton’s numerical method. Finally, we study
a simple control technique that can stabilize these
UPOs by using state feedback [Chen & Dong, 1998,
1993]. Several examples of stabilizing UPOs are
demonstrated, and a brief stability analysis is pro-
vided for completeness of the presentation.

2. Calculating Periodic Orbits of a
Piecewise-Linear System

Consider a system of m autonomous differential
equations:

dx

dt
= fk(x) k = 0, 1, 2, . . . , m− 1 , (1)

where t ∈ R is the time variable, x ∈ Rn is the
state vector. Assume that fk is C∞ in all variables
and parameters and that every equation in (1) has
a unique solution for any finite initial value of xk(0)
such that

xk(t) = ϕk(t, xk(0)), xk ≡ xk(0) = ϕk(0, xk(0)) .

(2)

Assume also that the function changes from fk to
fk+1 when a solution orbit ϕk starting from xk(0)
reaches a section Πk+1 with t = τk, where

Πk+1 = {xk+1 ∈ Rn | qk+1(xk+1) = 0} . (3)

These sections are called break points. Suppose that
a solution of (1) is written as follows:

xk+1(t) = ϕk+1(t, xk+1),

xk+1 = ϕk+1(0, xk+1) = ϕk(τk, xk) . (4)

Then we call this system a piecewise-smooth system
[Bernardo & Chen, 1999], especially if fk are linear,
we call the system a piecewise-linear system.

Clearly, a periodic orbit passing from Π0 to
Πm−1 satisfies

x0 = xm = ϕm−1(τm−1, xm−1) . (5)

Note that a solution of (1), given in the form of (4)
and (5), is continuous but not differentiable on Πk.

To investigate the characteristics of the sys-
tem periodic solutions, we define the following local
mappings:

T0 : Π0 → Π1

x0 7→ x1 = ϕ0(τ0, x0) ,

T1 : Π1 → Π2

x1 7→ x2 = ϕ1(τ1, x1) ,

· · ·
Tm−1 : Πm−1 → Π0

xm−1 7→ x0 = ϕm−1(τm−1, xm−1) .

(6)

The Poincaré map is then defined as a differentiable
map described by

T = T0 ◦ T1 ◦ · · · ◦ Tm−1 . (7)

Thus, the period τ of a limit cycle is given as

τ =
m−1∑
k=0

τk . (8)

The derivative of the Poincaré map with respect
to the initial state is calculated by a production of
the Jacobian matrices obtained at each break point
[Parker & Chua, 1986]:

∂T

∂x0

∣∣∣∣
t=τ

=
m−1∏
k=0

∂Tk
∂xk

∣∣∣∣
t=τk

, (9)

where each Jacobian matrix can be written as

∂Tk
∂xk

∣∣∣∣
t=τk

=
∂ϕk
∂xk

+
∂ϕk
∂t

∂τk
∂xk

=
∂ϕk
∂xk

+ fk
∂τk
∂xk

. (10)

Since the function

qk(xk) = qk(ϕk(τk, xk)) = 0 (11)
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is differentiable, we have

∂qk
∂xk

(
∂ϕk
∂xk

+ fk
∂τk
∂xk

)
= 0 , (12)

where qm = q0. Thus, substituting (12) into (10)
gives

∂Tk
∂xk

=

In − 1
∂qk
∂x
· fk

fk ·
∂qk
∂x

 ∂ϕk∂xk
, (13)

where In is the n×n identity matrix, and ∂ϕk/∂xk
is the fundamental matrix of the following varia-
tional equations:

d

dt

(
∂ϕk
∂xk

)
=
∂fk
∂x

(
∂ϕk
∂xk

)
∂ϕk
∂xk

∣∣∣∣
t=0

= In, k = 0, 1, 2, . . . , m− 1 .

(14)

Note that this equation should be solved from t = 0
to t = τi, where τi is the time at which the orbit
reaches the next section. Since the system is au-
tonomous, we can reset t to 0 at every section in
the computing process. More precise mathematical
treatments of these sections can be found in [Parker
& Chua, 1986].

Next, we define a local coordinate, u ∈
Σ0 ⊂ Rn−1 corresponding to Π0, by using a
projection p along with the associated embedding
map p−1:

p−1 : Σ→ Π, p : Π→ Σ . (15)

Accordingly, the Poincaré map in this local coordi-
nate becomes

T : Σ→ Σ

u 7→ p ◦ T ◦ p−1(u) .
(16)

A fixed point of the Poincaré map is then obtained
by solving the following equation:

T (u)− u = 0 . (17)

Its Jacobian matrix, which is needed in Newton’s

method to be discussed below, is given by

DT (uk) =
∂p

∂x

∂T

∂x0

∂p−1

∂u
(18)

=
m−1∏
k=0

(
∂p

∂x

∂Tk
∂xk

∂p−1

∂u

)
(19)

=
m−1∏
k=0

∂p∂x
In − 1

∂qk
∂x
· fk

fk

·∂qk
∂x

]
∂ϕk
∂xk

∂p−1

∂u

)
. (20)

Finally, the fixed point is computed by using
Newton’s method with the initial condition u(0) =
p(x(0)). The recurrence formula is written as
follows:DF(u(i)) · η(i) = −F(u(i))

u(i+1) = u(i) + η(i),
i = 01, 2, . . . ,

(21)

where

F(u) = T (u)− u = 0 , (22)

DF(u) = DT (u)− In−1 , (23)

and, as usual, η(i) is solved at every iteration. When
‖η(i)‖∞ < ε for a predesired ε > 0, Newton’s
method is terminated.

The multipliers of the fixed point are calculated
by solving the following characteristic equation:∣∣∣∣∣

m−1∏
k=0

∂ϕk
∂xk

∣∣∣∣
t=τk

− µIn
∣∣∣∣∣ = 0 . (24)

The Runge–Kutta integration method is em-
ployed for solving the above variational equations as
well as the original system (1) of differential equa-
tions. The initial step u(0) from (1) is obtained
by combining the Runge–Kutta scheme and the bi-
section method on the corresponding local section
(break point) [Parker & Chua, 1986].

We should emphasize that taking local coordi-
nate u is mandatory. If we take F(x) = T (x)−x =
0 instead of Eq. (22), the variable x should lie on
the section by the condition of the Poincaré sec-
tion q0(x0) = 0. This means x is not independent,
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and this fact affects the convergence of the Newton
method.

3. Computing UPOs Embedded in a
Chaotic Attractor

If one has a good approximation of the periodic
point on the local section, the recurrence formula
Eq. (21) will converge and the accurate location of
the periodic point is identified. It is well known
in numerical simulations on chaotic systems, how-
ever, one can only visualize stable solutions such as
stable periodic orbits, while unstable orbits such as
saddle points are difficult to display or exactly cal-
culated. Thus, to compute an UPO using the above
algorithm, we have to resort to utilize the informa-
tion about the unstable orbits of the system. The
main problem is how to provide the first-guess for
the recurrence formula. We suggest to utilize the
ergodicity of the chaotic dynamics, which are gen-
erally disregarded in numerical computation. In so
doing, we gain quite a lot of first-guess information
for using the recurrence formula.

The algorithm is summarized as follows:

Step 1. Choose the parameter in which the system
behaves chaotically, and set an appropriate initial
condition. Select a number m defined in Eq. (5),
where m indicates how many times the orbit hits
different points on the sections.

Step 2. Calculate the orbit by solving Eq. (1) with
the Runge–Kutta scheme. The Poincaré mapping
point should be calculated by using the bisection
method, and using the map n times.

Step 3. Iterate the recurrence formula Eq. (21)
(then Eqs. (1) and (14) are solved simultaneously).
If the formula converges, print the periodic point
u0; if the formula is not convergent within a few
iterations, stop the iteration of the formula and, re-
gardless of success or failure of the formula, go to
Step 2.

The calculated points must be unstable and
the whole family of UPOs may be produced by the
Runge–Kutta method started from these points.

Compared to the method of Diakonos et al.
[1998], our method is simpler and convenient to use,
which utilizes the ergodicity of chaos, i.e. it is pos-
sible for its orbit to visit the neighborhood of every
UPO. Note that the main advantage is that the sta-

bility issue of the orbit is by-passed, which is usually
quite troublesome. Moreover, Newton’s method has
quadratic convergence, so that we can expect a wide
basin of attraction for the computation in general.

4. Computing UPOs in Chua’s Circuit

4.1. Problem description and
calculation of UPOs

Here, we show an example of obtaining an UPO
embedded within the chaotic attractor of Chua’s
circuit.

The system is described by the following differ-
ential equations:

ẋ1 = α(−x1 + x2 −H(x1)) := f0

ẋ2 = x1 − x2 + x3 := f1

ẋ3 = −βx2 := f2,

(25)

where

H(x) =


ax+ a− b, x ≤ −1

bx, |x| < 1

ax− a+ b, x ≥ 1.

(26)

By using the expression Eq. (1), each fk can be de-
scribed as follows:

f0 =


−α(a+ 1)x1 + αx2 + α(b− a) = f0

0

x1 − x2 + x3 = f1
0

−βx2 = f2
0 ,

f1 =


−α(b+ 1)x1 + αx2 = f0

1

x1 − x2 + x3 = f1
1

−βx2 = f2
1 ,

f2 =


−α(a+ 1)x1 + αx2 + α(a− b) = f0

2

x1 − x2 + x3 = f1
2

−βx2 = f2
2 .

(27)

In view of the characteristics of the nonlinear
term H, it is clear that we must place the local
sections at x1 = ±1. Thus, the state space is seg-
mented into three half-regions in R3.

Γ1{x ∈ R3 |x1 < −1}, Γ2{x ∈ R3 | − 1 ≤ x1 ≤ 1}

and Γ3{x ∈ R3 |x1 > 1} .

In the following, for simplicity we discuss the case
where the intended UPO passes only Γ1 and Γ2.
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Naturally, we can define a local section by the scalar
function

q(x) = q0 = q1 = x+ 1 = 0 (28)

and provide Π0 at which the periodic flow from Γ1

reaches Γ2. Therefore, the associated projection
and the embedding are:

p : R3 → R2

(x1, x2, x3) 7→ (u1, u2) = (x2, x3), (29)

p−1 : R2 → R3

(u1, u2) 7→ (x1, x2, x3) = (−1, u1, u2), (30)

where we always let x1 = −1. The Jacobians for
these maps are

∂p

∂xk
=

(
0 1 0
0 0 1

)
and

∂p−1

∂uk
=

0 0
1 0
0 1

 .
(31)

Similarly,
∂q

∂xk
= (1 0 0) . (32)

Thus, we have

dq

dxk
· fk = f0

k , (33)

and

fk ·
dq

dxk
=

f
0
k 0 0

f1
k 0 0

f2
k 0 0

 . (34)

Consequently,

I3−
1

dq

dxk
· fk
·fk ·

dq

dxk
=

 0 0 0

−f1
k/f

0
k 1 0

−f2
k/f

0
k 0 1

. (35)

The remaining calculation of (20) is the varia-
tions ∂ϕk/∂xk. They are computed from (14) by
using the Runge–Kutta method. Its Jacobian ma-
trix of fk is given by

∂f0
∂x0

=

−α(a+ 1) α 0

1 −1 1

0 −β 0

 , (36)

∂f1
∂x1

=

−α(b+ 1) α 0

1 −1 1

0 −β 0

 . (37)

We fix the parameters as: α = 9.0, β = 100/7
(≈ 14.28571429), a = −5/7(≈ −0.71428571), b =
−8/7(≈ −1.14285714). There is a double scroll at-
tractor using this set of parameter values, as shown
in Fig. 1.

Applying the Newton’s method formulated in
Eq. (21), a pair of UPOs that cross the sections
twice (m = 2) are calculated, as shown in Figs. 2(a)
and 2(b). These orbits are originally stable at α <
8.2, and are calculated by the continuation method
[Parker & Chua, 1989]. We can also calculate them
by using the method discussed in Sec. 3 with m = 2
and ε = 10−12 specified therein. The location of
the fixed point is also shown in Table 1. The
eigenvalues of this fixed point are: (µ1, µ2, µ3) =
(0.999998,−3.219297,−0.004119), and the period is
τ = 2.425509.

Due to the symmetry of the system, these two
attractors are symmetric with respect to the origin
so that if one of them is obtained, the other can be
obtained by simply inverting the sign of each coor-
dinate. Nevertheless, the algorithm can detect both
of them individually.

Figures 2(c) and 2(d) show the orbits with
m = 4 and Figs. 2(e)–2(h) show the orbits with
m = 8, which clearly wanders between two areas.
Figures 2(i)–2(n) show the orbits with m = 8,
which travel through every Γ1–Γ3 area. Moreover,
Figs. 2(o)–2(w) show the orbits with m = 18, and
Fig. 2(x) shows the orbit with m = 20.

In the numerical simulation, these orbits with
the initial condition shown in Table 1 can be seen as
a stable orbit for a while but eventually it collapses
and is absorbed by the chaotic attractor.

The accuracy of the multipliers are sensitive to
the step size h of the Runge–Kutta method. This is

-3 -2 -1 0 1 2 3
x -1

0

1

y
-4
-3
-2
-1
0
1
2
3
4

z

Fig. 1. A double scroll attractor. α = 9, β = 100/7,
a = −5/7, b = −8/7.
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Table 1. A list of unstable periodic points.

No. m Location

(a) 2 (1.0, 0.249220818156,−0.382555213770)

(b) 2 (−1.0, 0.340911528961, 1.413657311515)

(c) 4 (−1.0, 0.254159440024, 1.063931210592)

(d) 4 (1.0, 0.055077194872,−0.138652507702)

(e) 8 (−1.0, 0.359790197110, 1.487480328560)

(f) 8 (1.0,−0.359790196654,−1.487480327354)

(g) 8 (−1.0, 0.374633124347, 1.539840997444)

(h) 8 (1.0,−0.374633124347,−1.539840997444)

(i) 8 (1.0, 0.093582377853,−0.107383838370)

(j) 8 (1.0, 0.127104744082,−0.448588074837)

(k) 8 (−1.0, 0.271242138920, 1.131274519567)

(l) 8 (−1.0, 0.259036328538, 1.084397263536)

(m) 8 (−1.0, 0.389678369333, 1.602575686019)

(n) 8 (−1.0, 0.389847777644, 1.601231613985)

(o) 18 (−1.0, 0.388208969456, 1.594470694615)

(p) 18 (1.0,−0.383448856631,−1.575204563904)

(q) 18 (1.0,−0.240180118818,−1.008823320661)

(r) 18 (1.0,−0.278983608935,−1.161793509221)

(s) 18 (1.0,−0.378707856965,−1.560866384193)

(t) 18 (1.0,−0.375425039983,−1.543004675104)

(u) 18 (−1.0, 0.257982140023, 1.079000894966)

(v) 18 (−1.0, 0.389787554925, 1.602978857083)

(w) 18 (1.0,−0.364528334894,−1.505968657391)

(x) 20 (1.0,−0.229638853919,−0.967268270405)

perhaps a significant feature of the piecewise-linear
systems. In the case of a pure nonlinear system,
very accurate values of multipliers can be obtained
using h = 0.01. If a more accurate solution is de-
sired, a small value of h should be used. However,
there is a lower limit for h in the Runge–Kutta
method. The choice of h is not comparatively af-
fected by the convergence rate of Newton’s method.
If more accurate data or the verification of the exis-
tence for UPOs are needed, the interval in Newton’s
method is good to use [Galias, 1998].

4.2. Control of UPOs

Chen and Dong [1993] proposed a method for sta-
bilizing UPOs by a unified canonical feedback.
Bernardo and Chen [1999] also investigated ap-
plications of such feedback control technique for
piecewise-smooth systems. In this approach, the

controlled system is written as

dx

dt
= fk(x) + K(x̂− x)

k = 0, 1, 2, . . . , m− 1, (38)

where x̂ is the target UPO. By using this feedback,
one can stabilize any UPO calculated by the previ-
ously described algorithm. If one provides a signal
generator which can store the data of several UPOs,
the controlled system can stabilize a specified UPO
from the chaotic region. Although some detailed
stability analyses have already been given in [Chen
& Dong, 1993; Bernardo & Chen, 1999], we show
another analysis in this section. The stability of
the feedback is confirmed only by the characteristic
equations, a Lyapunov function or relevant criterion
are not necessary. Note that the Poincaré mapping
must be required to calculate UPOs, however, it is
not needed in the control process.

Now we discuss a simple sufficient condition for
this control strategy. For convenience, we consider
a UPO crossing two half-regions:

ẋ(t) = A0x(t) + P if x ∈ Γ1,

Γ1 : {x ∈ R3 |x1 < −1}

ẋ(t) = A1x(t) if x ∈ Γ2,

Γ2 : {x ∈ R3 | − 1 < x1 < 1} , (39)

where, x = (x1, x2, x3)> and

A0 =

−α(a+ 1) α 0
1 −1 1
0 −β 0

 , (40)

A1 =

−α(b+ 1) α 0
1 −1 1
0 −β 0

 , (41)

P =

α(b− a)
0
0

 , (42)

where α, β, a, b are constants. Both A0 and A1 have
a pair of stable complex eigenvalues and a real but
unstable eigenvalue. Also, x0(t) and x1(t) are solu-
tions of Eq. (39) satisfying

x0(t) = ϕ0(t, x0(0)),

x1(0) = x0(τ0) = ϕ0(τ0, x0(0)) .
(43)

x1(t) = ϕ1(t, x1(0)),

x0(0) = x1(τ1) = ϕ1(τ1, x1(0)) .
(44)
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Fig. 2. Unstable periodic orbits in the double scroll attractor. α = 9, β = 100/7, a = −5/7, b = −8/7.
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Each of ϕ0(t) and ϕ1(t) forms a periodic orbit. We
rewrite these piecewise orbits as x̂0(t) and x̂1(t).

Now we assume that x̂0(t) and x̂1(t) form an

unstable periodic solution under appropriate pa-
rameter values. We try to stabilize this orbit by
using the following state feedback:

ẋ(t) = A0x(t) + P + K(x̂0(t)− x(t)) if x1 < −1, x̂1 < −1

ẋ(t) = A1x(t) + K(x̂0(t)− x(t)) if x1 > −1, x̂1 < −1

ẋ(t) = A1x(t) + K(x̂1(t)− x(t)) if x1 > −1, x̂1 > −1

ẋ(t) = A0x(t) + P + K(x̂1(t)− x(t)) if x1 < −1, x̂1 > −1,

(45)

where we use

K = diag{K11, K22, K33} . (46)

Firstly we consider the first and the third cases
of Eqs. (45):

ẋ0(t) = A0x0(t) + P + K(x̂0(t)− x0(t)) ,

ẋ1(t) = A1x1(t)K(x̂1(t)− x1(t))
(47)

where x̂0 and x̂1 satisfy Eqs. (39) within each Γi,
i = 1, 2; therefore,

˙̂x0(t) = A0x̂0(t) + P

˙̂x1(t) = A1x̂1(t)
(48)

Since the system is piecewise linear, the varia-
tion around the periodic solution at any instant t is
written as

x0(t) = x̂0(t) + ξ(t) ,

x1(t) = x̂1(t) + ζ(t) .
(49)

Substituting these equation into Eqs. (47) and then
removing the relationship Eqs. (48) from the result,
we have

ξ̇(t) = (A0 −K)ξ(t) ,

ζ̇(t) = (A1 −K)ζ(t) .
(50)

Suppose, in a simple design, that K11 = K22 =
K33 = K. Then the characteristic equations for
Eqs. (50) become

det[A0 − (µ+K)I] = 0 ,

det[A1 − (µ+K)I] = 0 .
(51)

If we take a sufficiently large positive value for K,
then all eigenvalues of the matrices A0 − K and
A1 −K become negative real parts since all coef-
ficients of the characteristic equations can be regu-
lated by K.

Similarly, we have the following equations from
the second and the fourth cases of Eqs. (45):

ξ̇(t) = (A0 −K)ξ(t) + K(x̂1(t)− x̂0(t))

ζ̇(t) = (A1 −K)ζ(t) + K(x̂0(t)− x̂1(t)) .
(52)

The remainders x̂1(t) − x̂0(t) and x̂0(t) − x̂1(t)
are bounded for all t, because x̂0(t) and x̂1(t) are
part of a periodic solution. Here, solutions of the
variational equations (52) are bounded. Thus the
control goal is achieved by choosing a sufficiently
large value for K. For the cases of other UPOs
passing through every half-region with appropriate
order, the stability analysis can be considered in
the same way.
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Fig. 3. Simulation results of the controlled Chua’s circuit.
(a) m = 10, the initial point is (1, 1, 1)>, (b) m = 20, the
initial point is (1, 1, 2)>. The dashed and solid lines show
the transient trajectory and the stabilized UPO, respectively.
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Fig. 4. Time response of errors according to Figs. 3(a) and
3(b).

As illustrated examples of the control strategy de-
scribed by Eq. (38), we show a couple of simulations
for UPOs calculated at Sec. 2. Figures 3(a) and 3(b)
show simulation results of chaos stabilization for
UPOs with m = 10 and 20, respectively. We chose
a gain matrix as K = diag{2, 2, 2}. The initial
point is (1, 1, 1)> and (1, 1, 2)>, respectively. The
reference UPO signals were sampled 30,000 points
per cycle.

Xu and Bishop proposed a self-locating control
of UPOs [Xu & Bishop, 1996]. It is a stabilizing
method based on the OGY method with Newton’s
algorithm. In contrast to this, our method provides
automatic detection of UPOs by utilizing ergodicity
of chaos and Newton’s algorithm. Any parameter
value is not be perturbed.

5. Conclusions

We have proposed a simple yet efficient algorithm
for calculating periodic orbits of piecewise-linear

systems, particularly the unstable periodic orbits
embedded within a chaotic attractor. As an appli-
cation, we have also discussed the stabilization of a
calculated UPO from a chaotic region by designing
a state feedback controller, along with some brief
stability analysis on the controlled system.
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