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S.A. Billings and O.M. Boaghe

Department of Automatic Control and Systems Engineering, University of
Sheffield, PO.Box-600, Mappin Street, 51 3JD, UK

Abstract

The Response Spectrum Map (RSM) is introduced as a frequency domain
equivalent to the Bifurcation Diagram. The RSM is a map of the energy
distribution of a system in the frequency domain, where subharmonics, su-
perharmonics and chaos generation can be revealed. The RSM is used in this
paper to qualitatively analyse and detect various dynafnical states exhibited

by a nonlinear system.

1 Introduction

Explicit solutions of nonlinear differential equations, such as the Duffing
equation or Chua’s circuit, which describe systems in terms of elementary functions
or Volterra series are not always possible. In spite of this, geometric interpretation of
the differential equations is often undertaken and useful information of a qualitative

character can often be obtained.

The geometrical approach of solving differential equations adopted during the
last two decades provides a useful insight into the realm of nonlinear oscillations.
A dynamical system can have a rich variety of solutions: periodic, quasi-periodic
or chaotic. Chaos is common in many nonlinear mechanical and electrical oscilla-
tors [Duffing,1918], [Ueda,1980], [Chua,1992], and has been observed in geomagnetic
activity, human physiology, economics and fluid turbulence. It is also common in
nonlinear systems to have different coexisting steady-state solutions, or to have sev-
eral periodic and chaotic motions for the same parameter values but with different

initial conditions.

Such a range of behaviour can be reflected in the Poincaré Map or the Bi-
furcation Diagram. As an alternative to the Bifurcation Diagram, and to provide

complementary information in the frequency domain, the Response Spectrum Map
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is introduced in this paper. The Response Spectrum Map is shown to be a power-
ful new tool for the analysis of nonlinear system behaviour. The potential of this
new tool is demonstrated in the analysis of the dynamical regimes detected for the
Duffing equation, Chua’s driven circuit, the Logistic equation and the Henon map.
These are systems that have been used by many authors as a bench test in the study

of nonlinear dynamics.

The paper is organised as follows: the Response Spectrum Map is introduced
in Section 2 where it is compared with the Bifurcation Diagram. In Section 3 simu-
lation results for four different systems are presented. The Response Spectrum Maps
are used to detect strong nonlinear behaviour where subharmonics, superharmonics

or chaotic states are generated.

2 Bifurcation Diagrams and

Response Spectrum Maps

Bifurcation Diagrams are intrinsically related to Poincaré Maps. In the case
of a non-autonomous system, such as the Duffing equation or Chua’s driven circuit
which are considered in the next section, the Poincaré Map is equivalent to sampling
the trajectory of the solution at a rate equal to the forcing frequency [Parker and
Chua, 1989]. Fixed points and closed orbits indicate a periodic solution. A fixed
point of the Poincaré Map corresponds to a period-one solution and a k-periodic

closed orbit corresponds to a kth-order subharmonic.

The Bifurcation Diagram can be seen as a succession of compressed Poincaré
Maps, derived for a certain varying parameter. The point r of a Bifurcation Diagram

for a non-autonomous system driven by Acos(wt) can be defined as [Aguirre and
Billings, 1994]

r={(y,A)eRxI | y=y(t); A= Ao ti=to+ Kss x2rjw} (1)
where I is the interval [ = [A;; Af] C R, 0 < ¢p < 27/w, K, a constant.

In the case of an autonomous system the Bifurcation Diagram is the collec-
tion of all steady state solutions obtained when a parameter is varied. A detailed
description of the Bifurcation Diagram algorithm generation for both autonomous

and non-autonomous cases was given by Parker and Chua [1989].

The bifurcation diagram can reveal bifurcation points, subharmonics, cas-

200597148

VAR




cades to chaos and chaotic states of a system, occurring when a parameter is varied.

Both the Poincare map and the Bifurcation Diagram are based in the time domain,
but since most of the dynamic behaviours noted above can generate particular pat-
terns of energy distribution in the frequency domain there is clearly a need for
complementary analysis techniques which are frequency domain based. It is well
known for example that a limit cycle, as a periodic signal will have a discrete spec-
trum, while a chaotic signal will be described by a continuous spectrum. Limit cycles
can be further classified as subharmonics or superharmonics of a certain order, ac-
cording to the ratio they make with the driving frequency. Harmonic generation in
particular is important for local Volterra series modelling, where the significance of
the order of these harmonics can determine the order of the approximating Volterra
series. A map showing the energy distribution in the frequency domain, similar to
the way time domain effects are represented in a bifurcation diagram, should there-
fore be a concise representation of complex dynamic behaviour and provide more

insight into the operation of a nonlinear system in the frequency domain.

The Response Spectrum Map (RSM) will be defined as the ensemble of re-
sponse power spectra corresponding to a nonlinear system response described and
generated by varying a system parameter. In analogy with the definition of a Bi-
furcation Diagram stated above for a varying parameter A, the Response Spectrum
Map can be defined as

Sy : [0; fn] x [Ai; Ag] = s Sy(f, A) = 5y, (f) (2)

where S, (f) is the power spectrum estimated for the system response y4, when the
varying parameter has the value A € [A;; Af] C IR. The frequency f is varied in the
interval [0; fi], where fy is the Nyquist frequency. The definition is valid not only

for non-autonomous systems but also for the autonomous case.

It is well known that frequency domain analysis based on the conventional
power spectrum has been applied to nonlinear systems showing complex nonlinear
behaviour since the formal interpretation of the cascade to chaos, almost two decades
ago, Feigenbaum [1980], and Cvitanovi¢ and Jensen [1982]. However a response
power spectrum mapping of the type introduced in this paper has never been used
before to the best of our knowledge. The Response Spectrum Map can show the
well known cascade to chaos, but more importantly, the map reveals the evolution
of the frequency domain features of the system associated with the extra-dimension

of the varying parameter and the continuity or discontinuity of these features.

In practice the Response Spectrﬁm Map is very easy to generate. The steady-
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state system response ya is required, for a range of values of the parameter A,

as in the case of the Bifurcation Diagram. The power spectrum of the system
response is then computed for each value of A, using for example the Welch averaged
periodogram method. When this is repeated for each value of A a complete map is
obtained for the set of values A € [A;; Af]. The frequency response map generates a
three dimensional plot of the response power spectrum versus frequency and versus
A. A logarithmic scale emphasises even more the features we are interested in, and
all the examples analysed in this paper use a logarithmic scale. A two dimensional
representation can be obtained if only a plan view or contour plot are considered.
The response spectrum is dependent on both the system characteristics and the

input properties.

The Response Spectrum Map can be seen as a projection of the information
in the Bifurcation Diagram into the frequency domain. Notice that the Bifurcation
Diagram and the Response Spectrum Map can be generated at the same time. While
the former provides information about the intersection point in the time domain of
the flow with a certain plane when a parameter is varied, the latter gives information

about the response power spectrum in the frequency domain.

The Response Spectrum Map can be used to identify the various states of
a system. States showing complex, strongly nonlinear behaviour, such as subhar-
monics and chaos are revealed. Mildly nonlinear behaviour, which corresponds to
the case where Volterra series can be applied, can also be analysed using the Re-
sponse Spectrum Map. Such an application is presented in Billings and Boaghe
[1999]. The main advantage therefore is that the Response Spectrum Map, like the
Bifurcation Diagram, can be applied to all nonlinear systems, both autonomous or
non-autonomous, continuous or discrete. The insight that this new plot provides

will be revealed with examples in the next section.

3 Simulation results

The examples which will be analysed in detail in this section are very pop-
ular in the literature devoted to bifurcation phenomena and chaos. They are given
as nonlinear differential or difference equations which often cannot be solved an-
alytically. A geometrical approach is often more appropriate, and this consists of

identifying equilibrium points and attractors and the system dynamics around these.




Very often the Jacobian matrix is derived and the eigenvalues of this matrix
are evaluated at the equilibrium points. If the real parts of the eigenvalues are
different from zero, the equilibrium points are called hyperbolic, and the behaviour of
the system is qualitatively the same as for the linearised system in a neighbourhood

of the equilibrium, according to the Grobman - Hartman theorem.

A zero eigenvalue is considered a special case in ordinary differential equation
textbooks, and the equilibrium point is called degenerate or non-hyperbolic. The
dynamics near a non-hyperbolic equilibrium point are structurally unstable [Gucken-
heimer, Holmes, 1983]. The stability of a degenerate or non-hyperbolic point cannot
be determined from the eigenvalues (for the autonomous case) or characteristic mul-
tipliers (for a period solution) alone. One possible way of analysing non-hyperbolic

equilibrium points is by studying local bifurcations in parameter regions.

As a consequence, a system steady state solution is often calculated numeri-
cally, based on Poincaré Maps or Bifurcation Diagrams. In the examples below var-
ious nonlinear differential equations will be analysed for different parameter values,
which will produce different dynamics, these will then be analysed using Bifurcation

Diagrams and Response Spectrum Maps.

3.1 Example 1: The Duffing-Holmes Equation

A very well known example of a dynamical system is given by the Duffing-
Holmes equation. Introduced by Holmes [1979], the equation has been used to
model mechanical oscillations arising in two-well potential problems [Moon, 1987].

The non-autonomous case is considered in this example.

i4+ay+Py+y’= Acos(wt) (3)

The Bifurcation Diagram is analysed for the particular case o = 0.15, § = —1
and w = 1 rad/sec, or driving frequency f = 0.16 Hz, which has been analysed
previously in the literature in Aguirre and Billings [1995]

i+ 0.159 — y + y* = Acos(t) (4)

This equation was simulated using a fourth-order Runge-Kutta algorithm
with an integration interval of /15, for an amplitude A varying in the range 0.22 <
A <0.35.

The Bifurcation Diagram is given in Figure 1 (a) for a varying amplitude A.

The Bifurcation Diagram shows a series of flip bifurcations, also referred to as period
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doubling or subharmonic bifurcations [Guckenheimer, Holmes, 1983], identified as
parallel branches in the Bifurcation Diagram. For amplitude values between 0.22 <
A < 0.2460 the Bifurcation Diagram has two branches. It is not clear from the
diagram if this corresponds to a second order subharmonic or to an interleaved map
of a harmonic response. Furthermore the diagram shows a third order flip bifurcation
occurring at A = 0.246. A second flip bifurcation visible in the Bifurcation Diagram
occurs at A = 0.2545, followed by a period doubling cascade towards chaos. For
amplitude values in [0.2585;0.3165] the system response is chaotic, after which the
diagram has a single branch, corresponding to a periodic response with the same

frequency as the driving input.

The Response Spectrum Map given in Figure 1 (b,c) gives a better insight
into the dynamical regimes generated with the varying amplitude A. A detailed
description of the dynamical regimes revealed in the Response Spectrum Map is
given in Table 1. For the initial amplitude variation in [0.220;0.246] the Response
Spectrum Map is not as ambiguous as the Bifurcation Diagram and shows that
when the Bifurcation Diagram has two branches of variation, these correspond to
interleaved response values. The RSM shows that the response has in fact a harmonic

content of integer, even and odd, multiplies of the driving frequency.

In the window of variation [0.246;0.2585] preceding the chaotic regime, the
Response Spectrum Map shows a succession of subharmonic and superharmonic
responses concluded with a period doubling cascade towards chaos. Again the Re-
sponse Spectrum Map gives a very clear representation for this particular interval
of variation, while the Bifurcation Diagram shows only three response branches,

corresponding to the third order subharmonic.

Finally, for amplitude values A in the interval [0.3165;0.3205] the map shows
various dynamical regimes, given in Table 1, including second and fourth order sub-
harmonics, period doubling cascade, chaos and even superharmonics, which are not
visible in the Bifurcation Diagram. For the last interval of variation [0.3205;0.3500]
both Bifurcation Diagram and Response Spectrum Map show a periodic response
with the same period as the driving input. Moreover, the Response Spectrum Map
shows that the response contains only odd multiples of the driving frequency, pos-

sibly as an effect of the third order nonlinearity in the Duffing Holmes equation

(4).




Table 1: Dynamic regimes for the Duffing Holmes equation (4) extracted from the

Response Spectrum Map in Figure 1 (b) and (c)

Parameter A Dynamic regime
[0.2200; 0.2460] | superharmonics: n =k, k=1,2,3
[0.2460; 0.2470] | subharmonics: n = %, k=1,3,517,9

[0.2470; 0.2480] | superharmonics: n =k, k=1,2,3
[0.2480;0.2510] | subharmonics: n= £, k=1,3,5,7,9
[0.2510;0.2515] | superharmonics: n =k, k= 1,2,3
[0.2515; 0.2540]

[0.2540; 0.2545]

[0.2545; 0.2570]

[0.2570; 0.2585]

[0.2585; 0.3165]

[0.3165;0.3175] | subharmonics: n = £, k=1,2,3,4,5,6,7
[ ]

[ ]

[ ]

[ ]

[ ]

subharmonics: n = g, k=1,3,5,7,9

superharmonics: n =k, k=1,2,3
subharmonics: n = %, k=1,2,3,4,5,6,7,8,9

period doubling cascade

chaos

0.3175; 0.3180] | subharmonics: n = %, k=1,2,3,4,5,6,7,8
0.3180; 0.3185] | period doubling cascade

0.3185;0.3195
0.3195; 0.3205
0.3205; 0.3500

superharmonics: n =k, k=1,3

chaos

superharmonics: n =k, k=1,3

3.2 Example 2: - Chua’s Driven Circuit

Chua’s circuit is well known as a classical example of a system showing a
rich variety of complex dynamical behaviour ranging from subharmonic oscillations,
period doubling to chaos generation. The circuit description is given for example in
Chua [1992]. The driven version is considered in this example, similar to the case
analysed by Murali and Lakshmanan [1993], and described by the following system

of nonlinear differential equations

(5)
& = a(y—h(z))
Yy = z—y+z
—By + u(t)

w.
I




where
miz + (mo—my), z>1
h(z) = { moz, lz] <1 (6)

miz — (mg—my), &< —1

and a =17, 8=100/7, mg = —1/7, my = 2/7 and u(t) = Asin(3 x t). This system
of nonlinear differential equations was simulated using a fourth-order Runge-Kutta
algorithm with an integration interval of 7/24, for an amplitude A varying in the
range 0.70 < A < 2.50. The frequency of the driving input in this example was 0.47
Hz. The Bifurcation Diagram and Response Spectrum Maps were generated and
are displayed in Figure 2 for the variable z in equation (5).

Both maps show much more complex dynamics taking place for this system
compared to the previous example. There are about 11 windows of chaotic behaviour
for the input amplitude varying in the interval [0.70;2.50]. A detailed description of
the chaotic regimes detected in the Response Spectrum Map is given in Table 2. As
in the previous example the Bifurcation Diagram is less explanatory and accurate,

compared to the Response Spectrum Map.

The initial succession of dynamic states is visible in both maps. For a val-
ues of amplitude A in the interval [0.70;0.78] the system response has a spectrum
composed of integer multiples of the input 0.47 Hz driving frequency. This interval
is followed by a succession of period doubling towards a chaotic regime starting at
A = 0.95. The Response Spectrum Map shows a reversed period doubling taking
place after the chaotic interval [0.950;1.075], this is not visible in the Bifurcation
Diagram. Again visible in both maps is the 9th-order subharmonic generated in
the interval [1.205;1.281], given in the Bifurcation Diagram as 9 distinct branches.
Visible in the Bifurcation Diagram is the 5th-order subharmonic generated in the
interval [1.4;1.5]. However the Response Spectrum Map shows that in this interval
the dynamical states contain also a period doubling cascade and chaos. The interval
[2.170; 2.270] clearly shows in both diagrams the presence of the 7th-order subhar-
monic, the Bifurcation Diagram showing in this case 7 distinct branches. For the
final interval of variation [2.465; 2.500] the Response Spectrum Map again shows the

presence of superharmonics, similar to the first interval of variation.

Response Spectrum Maps and Bifurcation Diagrams were also generated for
the variable y and 2 in equation (5), and it was found that even if the Bifurcation
Diagrams were not identical in absolute values, the Response Spectrum Maps as
expected showed the same succession of dynamical regimes as for the variable z in

equation (5).




Table 2: Dynamic regimes for the Chua’s driven circuit (5) extracted from the Response

Spectrum Map in Figure 2 (b) and (c)

Parameter A

Dynamic regime

[0.700; 0.780] superharmonics: n =k, k=1,2,...,7

[0.780;0.900] | subharmonics: n = %, R N I

[0.900;0.950] | subharmonics: n = f, &= 18 « vnidl
followed by period doubling cascade

[0.950;1.075] | chaos

[1.075;1.080] | subharmonics: n =% k=1,2,...,31

[1.080;1.090] | subharmonics: n = %, k=1,2,...,15

[1.090;1.205] | chaos

[1.205;1.281] | subharmonics: n = £, k= 1,3,5,...

[1.281;1.285] | subharmonics: n = ;kg, =1,3,5, .o

followed by period doubling cascade

[1.285;1.341] | chaos

[1.341;1.344] | subharmonics: n = £, k=1,2,3,...

[1.344;1.400] | chaos

[1.400;1.440] | subharmonics: n = £, k= 1,3,5,...

[1.440;1.445] | subharmonics: n = %, B=.1.8, B, v

[1.445;1.450] | subharmonics: n = £, k=1,3,5,...
followed by period doubling cascade

[1.450;1.475] | chaos followed by reversed period doubling

[1.475;1.485] | subharmonics: n= £, k=1,3,5,...

[1.485;1.505] | subharmonics: n = %, E=138%,...

[1.505;1.545] | chaos

[1.545;1.550] superharmonics: n = %, = 180, w

[1.545;1.550] | subharmonics: n = %, R=1,8; B, u

[1.550;2.105] | chaos

[2.105;2.130] | subharmonics: n = %, k=125 o

[2.130;2.170] | chaos

[2.170;2.270] | subharmonics: n = %, E=1.3.5;...

[2.270;2.410] | chaos

[2.410; 2.440] reversed period doubling towards subharmonics: n = %, k=1,2,u..

[2.440;2.450] | chaos

[2.450;2.460] | subharmonics: n = %, k=12....

[2.460;2.465] | chaos

[2.465;2.500] | superharmonics: n=k, k=1,2,...




The Bifurcation Diagram was obtained in this example by recording the
steady state response once at every input cycle, for a maximum value of the input
sin(3t). However it is well known that for a different strobing point the Bifurcation
Diagram would have been different. However this is not the case for the Response
Spectrum Map, which depends on the total variation of the system response, and
not only on points collected at every other cycle. The Response Spectrum Map is

therefore an invariant descriptor of the system dynamics.

Finally it should be emphasised that the Response Spectrum Map gives a very
accurate and clear representation of the dynamical regimes taking place in Chua’s
driven equation. The map shows in a simple pictorial way a whole variety of com-
plex behaviour. Subharmonics of order 2, 3, 4, 6, 7, 9, 10, 13, together with period
doubling sequences are visible in the Response Spectrum Map for this example, in
a short interval of amplitude variation. It is this simple interpretation, from the
graphical RSM plots that allows easy identification of sub and superharmonic oscil-
lations that provides valuable and complementary insights into the system behaviour

compared to the Bifurcation Diagram.

3.3 Example 3: The Logistic Equation

Another classical example of a nonlinear system with complex nonlinear

behaviour is the logistic equation

y(k) = A(1 —y(k—1))y(k — 1) (7)

where A is a parameter which when varied produces a range of complex dynamic
behaviour. The logistic equation became popular when Feigenbaum discovered the
period doubling mechanism in 1978 and since then it is widely used as a benchmark

for the study of chaos and bifurcations.

The logistic equation is used in this example as an autonomous system for
which the Bifurcation Diagram and Response Spectrum Map are generated and used
for system analysis. Equation (7) was simulated and the response y(k) recorded
recursively. The Logistic equation is a discrete system for which the sampling step
is one unit, or 1 Hz. The Nyquist frequency in the Response Spectrum Map therefore
will be 0.5 Hz. The initial value was y(1) = 0.65 and the parameter A was varied
in the interval [2.8;3.9].

The Bifurcation Diagram and Response Spectrum Map are shown in Figure

3. The Bifurcation Diagram has a series of period doubling cascades, which corre-
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spond to subharmonic generation visible in the Response Spectrum Map. Table 3
gives a detailed description of the dynamical regimes which take place when A is
varied in the interval [2.8;3.9]. The Bifurcation Diagram starts with a single branch
representation in the interval [2.8;3.0]. Because the system is autonomous, the
meaning of the Bifurcation Diagram representation is slightly different than in the
non-autonomous cases analysed in the previous two examples. The Bifurcation Dia-
gram shows in this case the steady state response after the transients have died out.
Therefore the single branch representation in the Bifurcation Diagram corresponds
to a single valued response, with no cycles. This is confirmed by the Response Spec-
trum Map which shows no frequency components in the interval [2.8; 3.0] except the

spike at 0 Hz, corresponding to the steady state value.

When the amplitude is larger than 3, a period doubling cascade occurs. The
Bifurcation Diagram is represented in the interval [3.00;3.45] by a two-branch plot,
corresponding to a two-points limit cycle, or a period two limit cycle. As expected
the Response Spectrum Map shows two frequency components, at 0 Hz and 0.5
Hz. A further period doubling occurs in the interval [3.45; 3.54] represented in the
Response Spectrum Map by the generation of another frequency component of 0.25
Hz. The period doubling succession is clearly visible in the Response Spectrum Map
in the interval [3.54;3.60], more clearly than in the Bifurcation Diagram, which is
even more opaque in the interval [3.60; 3.83], where only a cloud of points can be seen.
Over this interval the Response Spectrum Map shows various dynamical regimes,
including 3rd, 5th and 6th order subharmonics, together with the corresponding
period doubling cascades, as shown in Table 3. Just before the final window of
chaos a 3 point limit cycle is generated, shown in the Response Spectrum Map by a

frequency component at 0.33 Hz.

Again it can be concluded that the Response Spectrum Map as defined in
Section 2 allows accurate system analysis, and provides additional insight compared
to the Bifurcation Diagram. The Response Spectrum Map is therefore not only
complementary but in cases such as the one analysed here could be used to replace

the Bifurcation Diagram.

3.4 Example 4: The Henon Map

For the final example a system which is both autonomous and multi-variable

was chosen. The Henon map, which is more often discussed in connection with chaos

i |




Table 3: Dynamic regimes for Logistic equation (7) extracted from the Response
Spectrum Map in Figure 3 (b) and (c)

Parameter A | Dynamic regime

[2.800;3.000] | underdamped response

[3.000;3.450] | 2 points limit cycle: f =1 Hz

[3.450;3.540] | 4 points limit cycle: f = £ Hz, k=1,2

[3.540; 3.565] | 8 points limit cycle: f = £ Hz, k=1,2,3,4
[3.565;3.600] | 16 points limit cycle: f = £ Hz, k=1,2,3,4,5,6,7,8

followed by period doubling cascade
[3.600; 3.625] | chaos

[3.625;3.635] | 6 points limit cycle: f= £ Hz, k=1,2,3
followed by period doubling cascade

[3.635;3.662] | chaos

[3.662; 3.664] | 8 points limit cycle: f = -"85 Hiz, B=1,2,3.4
[3.664;3.740] | chaos

[3.740; 3.750] | 5 points limit cycle: f = % Hz, =12

followed by period doubling cascade
[3.750; 3.830] | chaos
[3.830;3.840] | 3 points limit cycle: f = % Hg, k=11
followed by period doubling cascade
[3.840;3.900] | chaos

and fractal dimension, is a system described by the following system of equations

{ z(k) =1+ bz(k— 1?2 +y(k—1) o
y(k) = az(k — 1)

For the present analysis the parameter a was set to @ = 0.3 and b took
values in the interval [—1.4; —1]. As in the previous example the variables z and
y are generated recursively, at every unit time step. The sampling frequency is
therefore 1 Hz, as in the previous example, giving a maximum frequency in the
Response Spectrum Map of 0.5 Hz, which is the Nyquist frequency, above which the
spectrum is symmetrical. The Response Spectrum Map and Bifurcation Diagram
were generated for both subsystems z and y and these are shown in Figure 4 and 5.
Even if the Bifurcation Diagrams are different for the two subsystems, the dynamical

regimes are identical, as seen in the Response Spectrum Maps. A map generated for
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a subsystem is therefore sufficient to identify and describe the dynamic behaviour
generated when the parameter b is varied. The succession of the dynamic regimes

extracted from the Response Spectrum Map is given in Table 4.

For the initial interval of variation [—1.40; —1.31] the response is chaotic, as
seen in both Response Spectrum Map and the Bifurcation Diagram. This interval
is followed by a 14 points limit cycle represented in the Response Spectrum Map by
frequency components at multiples of 0.07 = 11—4 Hz, up the 0.5 Hz Nyquist frequency.
A reversed period doubling precedes the chaotic window at [—1.30; —1.26]. This is
followed by a reversed period doubling clearly seen in the Response Spectrum Map,
starting with a 28 points limit cycle for b = —1.26, and ending with a 7 points limit
cycle at b = —1.1771. In the interval [—1.1771; —1.0560] a chaotic regime can be
distinguished in both maps, with some additional detail revealed by the Response
Spectrum Map, in which 10, 18 and 14 point limit cycles are identified. In the final
interval of variation [—1.056; —1.000] a reversed period doubling takes place, ending

with a 4 point limit cycle.

4 Conclusions

The Response Spectrum Map was introduced in this paper as a frequency
domain counter part to the Bifurcation Diagram. Four examples of systems with
complex nonlinear dynamics were used to illustrate strong nonlinear behaviour in-
cluding limit cycles, subharmonics and chaos. The Response Spectrum Map was
computed for these systems and was shown to provide a pictorial display of the sys-

tem characteristics, in a manner even more accurate than the Bifurcation Diagram.

In particular bifurcation points are seen in a Response Spectrum Map as
abrupt discontinuities and qualitative changes in the response spectrum. Multiple
branches in a Bifurcation Diagram occur not only for subharmonics but also for
interleaved responses, and in such cases the true type of dynamics can only be re-
vealed in the frequency domain. Moreover, the Bifurcation Diagram is not invariant
for a non-autonomous system, but it can change with the position of the strobing
point. This does not happen for the Response Spectrum Map, which is independent
of the strobing point. It has also been noticed that for autonomous systems single
valued system responses which appear as branches in a Bifurcation Diagram, resem-
bling period one limit cycles, reveal their true nature only in the frequency domain.

Finally, the Response Spectrum Map can also be used to quantify the degree in
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Table 4: Dynamic regimes for Henon equation extracted from the Response Spectrum

Map in Figure 4 and 5 (b) and (c)

Parameter b

Dynamic regime

[—1.4000; —1.3100]

chaos

[—1.3100; —1.3000]

=& Hz, k=1,2,3
followed by reversed period doubling

14 points limit cycle: f

[—1.3000; —1.2600]

chaos

[—1.2600; —1.2300]

& He k=113
followed by reversed period doubling

28 points limit cycle: f =

1.2300; —1.1771]

chaos

1.1771; —1.1770

10 points limit cycle: f = Tkﬁ Hz k=1,2.3.4.5

1.1770; —1.1015

chaos

10 points limit cycle: f = & Hz, k=1,2,3,4,5

]
]
1.1015; —1.1002]
1.1002; —1.0960]

chaos

18 points limit cycle: f = i% Hz, k=1,...,9

1.0961; —1.0909

chaos

14 points limit cycle: f = 1"“—4 Hi. k=15 003 T

]
1.0909; —1.0907)
1.0907; —1.0560)
1.0560; —1.0000]

chaos

reversed period doubling towards 4 points limit cycle:
f=%Hz k=12

s
[~
[~
-
=
[—1.0960]
s
[—
[~
-

which a system is chaotic, by displaying a spectrum with a corresponding degree of

continuity.

The examples considered clearly show that a combined analysis and interpre-
tation of both the Bifurcation Diagram and the Response Spectrum Map provides

a very clear insight into the operation of even very complex nonlinear systems.
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equation: (a) bifurcation diagram (b) plan view (c) 3-dimensional view
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circuit: (a) bifurcation diagram (b) plan view (c) 3-dimensional view
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