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Abstract

This paper studies bifurcations in a three node power system when excitation limits are considered. This

is done by approximating the limiter by a smooth function to facilitate bifurcation analysis. Spectacular

qualitative changes in the system behavior induced by the limiter are illustrated by two case studies. Period

doubling bifurcations and multiple attractors are shown to result due to the limiter. Detailed numerical

simulations are presented to verify the results and illustrate the nature of the attractors and solutions

involved.

1 Introduction

Chaos in simple power system models has been studied extensively in recent papers. In Abed et al., [1993], Tan
et al., [1993], bifurcations and chaos in a three node power system with a dynamic load model were studied
using a classical model for the generator. In Rajesh & Padiyar [1999], the authors studied dynamic bifurcations
in a similar system and reported the existence of chaos even with detailed models. However, in Rajesh &
Padiyar [1999], it was observed that the field voltage assumed unrealistic values at the onset of chaos owing to
the unmodeled effect of excitation limits. Though a limiter is fairly easy to model for simulation purposes, the
effect of a limiter on dynamic bifurcations has been poorly understood because bifurcation analysis demands
smoothness of the functions describing the model. Limit induced chaotic behavior in a Single Machine Infinite
Bus system was studied in Ji and Venkatasubramanian [1996] by extensive numerical simulations. In this paper,
we approximate the limiter by a smooth function to facilitate bifurcation analysis and study the changes which
arise on it’s consideration. The rest of the paper is organized as follows. Section 2 deals with the modeling of
the system along with the limiter. Section 3 presents the results of a bifurcation analysis. Section 4 contains
the discussions and Sec. 5, the conclusions.

2 System Modeling

The system as considered in Rajesh & Padiyar [1999] is shown in Fig. 1. By a suitable choice of line impedances,
we might regard the system as one of a generator supplying power to a local load which in turn is connected
to a remote system modeled as an infinite bus. For the general reader’s convenience, a brief explanation of
the terms d-q and D-Q axis is provided here. The modeling and analysis of three phase synchronous machines
is complicated by the fact that the basic machine equations are time varying. This is circumvented by the
use of Park’s transformation which transforms the time varying machine equations in to a time invariant set.
The three phase stator quantities (like voltage, current and flux), when transformed in to Park’s frame yield
the corresponding d-q-o variables. When a generator is described in the d-q frame, then naturally the external
network connected to it should also be described in the same reference frame. However, the non-uniqueness
of Park’s transformation (each generator has it’s own d-q components) prevents us from doing so. In order
to transform the entire network using a single tranformation with reference to a common reference frame, the
Kron’s transformation where the variables are denoted by D-Q-O are used. For a complete , detailed and clear
exposition of these concepts in power system modeling, the reader is refered to Padiyar [1996].
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Figure 1: The System

2.1 Generator Model

Rotor Equations

The rotor mechanical equations for the generator as given by the swing equations are,

δ̇ = ωBsm (1)

˙sm =
−dsm + Pm − Pg

2H
(2)

where d is the damping factor in per unit, ωB is the system frequency in rad/s, Pm is the input power to the
generator and sm, the generator slip defined by

sm =
ω − ωB

ωB

(3)

Two electrical circuits are considered on the rotor, the field winding on the d-axis and one damper winding on
the q-axis. The resulting equations are,

Ė′
q =

−E′
q + (xd − x′

d)id + Efd

T ′
do

(4)

Ė′
d =

−E′
d − (xq − x′

q)iq

T ′
qo

(5)

The power delivered by the generator Pg can be expressed as

Pg = E′
qiq + E′

did + (x′
d − x′

q)idiq (6)

Stator Equations

Neglecting stator transients and the stator resistance, we have the following algebraic equations

E′
q + x′

did = vq (7)

E′
d − x′

qiq = vd (8)

2.2 Excitation System

The excitation system for the generator is represented by a single time constant high gain AVR and the limiter
as shown in Fig. 2.

The equation for this excitation system is given by

Ėfdx =
−Efdx +KA(Vref − Vt)

TA

(9)
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Figure 2: Excitation System

Efd = Efdx if Emin
fd < Efdx < Emax

fd (10)

= Emin
fd if Efdx < Emin

fd

= Emax
fd if Efdx > Emax

fd

The limiter shown in Fig. 2 and defined by Eq. 10 is a soft or windup limiter. This limiter model cannot be
directly used for bifurcation studies. An approximate model where the limiter is described by a smooth function
is given below (see Fig. 3). Here, we consider symmetric limits i.e. |Emax

fd | = |Emin
fd | = Efdl

Efd = flim(Efdx) =
2Efdl

π
tan−1(aEfdx exp(bE2

fdx)) (11)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3: The function representing the limiter

Remarks

Such an approximation amounts to perturbing the vector field slightly and hence the equilibrium structure of
the system will also be slightly perturbed. So in our studies, the focus will be on how the limiter influences
non-stationary solutions and their bifurcations.

2.3 Load Model

A dynamic load model as in Abed [1993] is used along with a constant power load (Pld, Qld) in parallel with it.
Thus, the real and reactive load powers are specified by the following equations.

P = Pld + Po + p1δ̇L + p2V̇L + p3VL (12)

Q = Qld +Qo + q1δ̇L + q2VL + q3V
2
L (13)

2.4 Network Model

With the notation defined in Fig. 1, we can write the network equation in the D-Q reference frame as,

Êb +
î3

Ŷ3

= V̂t (14)
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V̂L +
î1

Ŷ1

= V̂t (15)

Further,

V̂t = (vq + jvd)e
jδ (16)

î = (iq + jid)e
jδ = î1 + î3 (17)

Ŷ = Y 6 φ = Ŷ1 + Ŷ3 (18)

From Eqs., (14) to (18) we can write,

(vq + jvd) =
A1 +B1

Y
(19)

where A1 = EbY3e
−j(δ+φ−φ3) + Y1VLe

j(δL−δ−φ+φ1)

and B1 = (iq + jid)e
−jφ

Defining,

a = EbY3cos(δ + φ− φ3) + Y1VLcos(δL − δ − φ+ φ1) (20)

b = −EbY3sin(δ + φ− φ3) + Y1VLsin(δL − δ − φ+ φ1) (21)

permits us to write,

iqcos(φ) + idsin(φ) = Y vq − a (22)

idcos(φ) − iqsin(φ) = Y vd − b (23)

2.5 Derivation of the System Model

Substituting for vd and vq from the stator algebraic equations (7) and (8), we have,

[

cos(φ) (sin(φ)− Y x′
d)

−(sin(φ)− Y x′
q) cos(φ)

] [

iq
id

]

=

[

Ya

Yb

]

(24)

where Ya = (Y E′
q − a)

and Yb = (Y E′
d − b)

From Eq. (24), we can solve for the currents id, iq and subsequently solve for vd and vq from the stator
algebraic equations. Further, from Eq. (16) we get,

|V̂t| =
√

(v2q + v2d) (25)

θ = δ + tan−1(
vd

vq
) (26)

Defining,

r1 = δL − θ − φ1 (27)

r2 = δL − φ2 (28)

the power balance equation at bus 2 can be written as,

P = VtVLY1cos(r1)− V 2
LY1cos(φ1) + EbVLY2cos(r2)

−V 2
LY2cos(φ2) (29)

Q = VtVLY1sin(r1) + V 2
LY1sin(φ1) + EbVLY2sin(r2)

+V 2
LY2sin(φ2) (30)
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Substituting from Eqs., (25-26), (29-30) in Eqs., (1-5) and (12-13), we get

ẋ = f(x, λ) (31)

where x =
[

δ sm E′
q E′

d Efdx δL VL

]T

and λ is a bifurcation parameter. As a simplification, we
shall also consider the system described the One Axis Model for the generator as the effect of the limiter on this
case is interesting in itself. For this, we neglect the damper winding on the q-axis and in terms of modeling,
this is done by omitting E′

d as a state variable and substituting

E′
d = −(xq − x′

q)iq (32)

in Eqs., (6) and (8). The state space structure remains the same, with the dimension being one less that the

previous system. In this case, we have x =
[

δ sm E′
q Efdx δL VL

]T

.

3 Bifurcations

In this section, we illustrate the qualitative differences which arise on consideration of the limiter by studying
bifurcations in the associated systems with AUTO97 (Doedel [1997]) a continuation and bifurcation software
for ordinary differential equations. The generator input power (Pm) is a very important parameter in practical
power systems operation. This is the parameter which is adjusted or varied by the power system operators
(utility) to track the changes and variations in the system load (power demand) so as to maintain a stable
operating condition. We hence, consider Pm i.e. the input power to the generator as the bifurcation parameter.
To describe the types of bifurcations, we shall use the following notations.
SNB: Saddle Node Bifurcation
HB: Hopf Bifurcation
CFB: Cyclic Fold Bifurcation
TR : Torus Bifurcation
PDB : Period Doubling Bifurcation
In all the bifurcation diagrams the state variable Efdx is plotted against the bifurcation parameter. In the case
of periodic solutions, we use the maximum value of the variable which is indicated by the circles. Filled circles
refer to stable solutions and the unfilled ones, to unstable solutions.

3.1 One Axis Model

Without limiter

From Fig. 4, we note that the stationary solutions undergo four bifurcations labeled as HB1, HB2, HB3 and
SNB4. For λ < λ1, the equilibrium point is stable, but as λ is increased, the stationary point loses its stability
at λ= λ1 through HB1. With a further increase in λ, the stationary point gains stability through HB2, i.e. λ=
λ2. It remains stable until λ= λ3, where stability is lost through HB3. Further, SNB4 does not influence the
stability of the stationary point. Next, we focus on the family of periodic solutions emerging from HB1. Since
HB1 is supercritical, it gives birth to a family of stable periodic solutions indicated by the filled circles. This
periodic solution loses its stability at TR5 and with a further increase in λ, gains it back through TR6 and
remains stable until TR7. Further on, there is no qualitative change in its behavior with TR7, CFB8 and TR9.
Next, we find that the branch emerging on continuation of HB2 is the same as that from HB1. On continuation
of HB3, we find a family of unstable periodic solutions which gain stability through CFB10. This stable periodic
solution encounters a PDB11 on continuation of which, we find a period doubling cascade accumulating at a
critical value of λc =0.931. (which is not shown here) which definitely suggests the onset of chaos. However,
what is of interest here, is the behavior of the system after TR5. It is clear that a torus bifurcation results in
the emergence of quasi-periodic solutions. This is verified by simulation as shown in Fig. 5 which shows the
quasi-periodic attractor. The bifurcation points are summarized in Table 1

With Limiter

From Fig. 6, we observe that the stable operating point loses its stability with HB1, regains it at HB2 and loses
it back at HB3 before encountering SNB4 which is similar to the case without limiter (see Fig. 4). Note that in
Fig. 4, for the static bifurcations HB1 - SNB4, Efdx < Emax

fd and hence we expect that these bifurcations should
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Table 1: Bifurcation Points (see Fig. 4)
Point HB1 HB2 HB3 SNB4 TR5 TR6 TR7 CFB8 TR9 CFB10 PDB11

λ 0.583 1.0746 1.155 1.914 0.812 1.181 1.26 1.293 1.26 0.922 0.9278
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Figure 4: λ = Pm, One Axis Model
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Figure 5: The Quasi-periodic trajectory when Pm = 0.83
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occur at the same values even with the limiter. However, this is not the case as seen from Table 2 because of
the approximation which shifts the equilibrium structure as mentioned before. HB2 and HB3 occur very closely
and hence cannot be distinguished in Fig. 6. On continuation of HB1 which is supercritical, we find that the
stable periodic solutions do not undergo any bifurcation. HB2 is also supercritical and its continuation yields
the same stable periodic set obtained on continuation of HB1. HB3 is sub-critical and its continuation which
yields CFB5 where stability is gained for a while before CFB6 is however, not shown here. Fig. 7 shows the
time domain plot of the load bus voltage for λ = 0.86. The bifurcations are summarized in Table 2.

Table 2: Bifurcation Points (see Fig. 6)
Point HB1 HB2 HB3 SNB4 CFB5 CFB6

λ 0.5145 1.1827 1.1857 1.884 1.1284 1.1311

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Figure 6: λ = Pm , One Axis Model with limiter,continuation of HB1 and HB2
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Figure 7: Sustained oscillations of load bus voltage with time when λ = 0.86 with the approximate limiter

3.2 Two Axis model

Without limiter

We let λ = Pm with reference to Fig. 8. The stationary point undergoes two bifurcations, HB1 where it loses
its stability and SNB2 which does not influence the stability further. HB1 is a supercritical bifurcation and
the family of stable periodic solutions from it undergo a period doubling cascade starting with the PDB1,
accumulating at a critical value of λc = 1.315. The chaotic attractor at λc is shown in Fig. 9 which confirms
the chaotic nature. The bifurcation points are summarized in Table 3
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Table 3: Bifurcation Points (see Fig. 8)
Point HB1 SNB2 PDB3 PDB4

λ 1.2281 1.9607 1.311 1.314
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Figure 8: λ = Pm, Two Axis Model
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Figure 9: The Chaotic trajectory when Pm = 1.315
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With Limiter

From Fig. 10, we observe that the stable operating point loses stability at HB1 and then encounters SNB2

(which is not shown here). On continuation of HB1, which is sub-critical, we find that the unstable periodic
solution stabilizes with CFB3. This stable periodic solution undergoes a period doubling cascade initiated at
PDB4. In Fig. 10,we also show the period doubled solution and its subsequent bifurcation PDB5. By numerical
simulations, considering both the exact and the function approximation of the limiter, we verify that at λ = 1.3,
the system behavior is chaotic. The time domain plots are shown in Figs 11 and 12. The chaotic attractor
subject to limits is shown in Fig 13. The bifurcations are summarized in Table 4.

Table 4: Bifurcation Points (see Fig. 10)
Point HB1 SNB2 CFB3 PDB4 PDB5

λ 1.2729 1.923 1.2557 1.282 1.2912
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Figure 10: λ = Pm, Two Axis Model with limiter
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Figure 11: Chaotic oscillations of load bus voltage with time when λ = 1.3 with the approximate limiter

4 Discussions

The case studies with two different models were considered solely for illustrating the effect of the limiter on
bifurcations in the system which is interesting in it’s own right. The qualitative difference in system dynamics
owing to modeling is however not discussed here (see Rajesh and Padiyar [1999] for a discussion). Another
aspect worth mentioning is the differences in the bifurcation diagrams in this paper from those in the references.
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Figure 12: Chaotic oscillations of load bus voltage with time when λ = 1.3 with the exact limiter
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Abed et al consider a simplified generator model (classical model) in which the excitation system is entirely
absent and use a slightly different system for the bifurcation studies. In Ji and Venkatasubramanian [1996], a
Single Machine Infinite Bus (SMIB) system (which is different from that considered in this paper) wherein the
load model is absent, is studied. This paper however, focusses mainly on studying bifurcations and changes
which arise on the consideration of excitation limits. When the One axis model is considered without the
limiter, we observe stable quasi-periodic trajectories resulting from a TR bifurcation. However, with the limiter,
we do not observe any bifurcations of periodic solutions with the result that the entire branch from HB1 to HB2

in Fig. is stable. When the Two axis model is considered without the limiter, we observe chaotic trajectories
due to PDBs, which, with the limiter still occur. However, we observe in this case that the system has multiple
attractors (see Fig. 10) namely, a stable equilibrium point and a stable periodic solution. Further, we observe
that the PDBs in this case occur very close to the boundary of stable fixed point operation. This means that if
the system operates close to boundary of stable fixed point operation, and suffers a disturbance with the post-
disturbance initial condition belonging to the chaotic region, the system can be easily pushed to the chaotic
region. Another interesting aspect seen by comparing Fig. 8 and Fig. 10 is that stable equilibrium points close
to the boundary of stable fixed point operation are surrounded by unstable limit cycles which suggests that the
region of attraction for the equilibrium points shrinks in the presence of limits.

5 Conclusions

An attempt has been made to analyze bifurcations in the presence of a limiter by approximating the limiter
by a smooth function. It is seen that this methodology provides good insight in to studying bifurcations in a
system with a soft limiter. The observations in the case studies illustrate in general that, the limiter is capable
of inducing spectacular qualitative changes in the system. Developing a formal theory for bifurcations and
analyzing the global system dynamics in the presence of limits in the system would be a challenging task for
further research in this area.
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Appendix A

• Network parameters.
Y1 = 4.9752, Y2 = 1.6584, Y3 = 0, φ1 = φ2 = φ3 = −1.4711, Eb = 1.0

• Generator parameters.
xd = 1.79, xq = 1.71, T ′

do = 4.3, T ′
qo = 0.85, x′

d = 0.169,
x′
q = 0.23, H = 2.894, wb = 377, d = 0.05, Em = 1.0

• Load parameters.
Po = 0.4, , Qo = 0.8 , p1 = 0.24 , q1 = −0.02 , p2 = 1.7 , q2 = −1.866
p3 = 0.2 , q3 = 1.4

• AVR constants
KA = 200 , TA = 0.05

• Limiter constants a = 0.23 , b = 0.1058 , Emax
fd = 5 , Emin

fd = −5
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