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In this paper a new family of scroll grid attractors is presented. These families are classified into
three called 1D-, 2D- and 3D-grid scroll attractors depending on the location of the equilibrium
points in state space. The scrolls generated from 1D-, 2D- and 3D-grid scroll attractors are
located around the equilibrium points on a line, on a plane or in 3D, respectively. Due to the
generalization of the nonlinear characteristics, it is possible to increase the number of scrolls
in all state variable directions. A number of strange attractors from the scroll grid attractor
families are presented. They have been experimentally verified using current feedback opamps.
Also Lur’e representations are given for the scroll grid attractor families.

1. Introduction

Since the discovery of Chua’s circuit [Chua et al.,
1986; Madan, 1993; Chua, 1994] many scientists
from different disciplines have been studying the
double scroll family. Chua’s circuit is a simple
third-order piecewise-linear (PWL) system which
has become a paradigm for chaos. The realization
of chaotic systems brought chaotic signals into en-
gineering applications. Presently, many researchers
investigate the applications of chaotic signals to
communication systems [Kolumban et al., 1998;
Hasler, 1994]. One open question is how one can
systematically increase the complexity of behavior
while keeping the systems as simple as possible.
The new circuits presented in this paper give an
affirmative answer to that question. Amongst the

many generalizations of Chua’s circuit, a more com-
plicated double scroll family of so-called n-double
scroll attractors has been proposed by Suykens and
Vandewalle [1993] by introducing additional break-
points in the nonlinearity. A more complete fam-
ily of n-scroll instead of n-double scroll attractors
has been obtained from a generalized Chua’s circuit
reported in [Suykens et al., 1997]. Experimental
confirmations of 2-double scroll and 5-scroll attrac-
tors have been given in [Arena et al., 1996] and
[Yalçın et al., 2000a], respectively. The basic idea
of generalizing the chaos generators with PWL non-
linearities is to introduce additional breakpoints in
the nonlinearity. These breakpoints create equilib-
rium points which are located on a line in state
space. Here, we will consider a new chaos genera-
tor which has a simple circuit implementation. The
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strange attractor families generated from the new
chaos generators will be called scroll grid attractors.
For these families it is possible to cover the whole
state space with scrolls. The new attractor families
are classified into three subfamilies according to the
location of the equilibrium points:

• 1D-grid scroll attractor family: This is also known
as n-scroll attractors [Suykens et al., 1997]. The
equilibrium points of this family are located on
a line and the scrolls generated from the gener-
alized nonlinearity are located around that line
along the x state variable direction in state space.
Furthermore, the x state variable is also the vari-
able on which the nonlinearity operates.

• 2D-grid scroll attractor family: In this family, the
system consists of two nonlinear functions oper-
ating on the x and y state variables. The equilib-
rium points are located in the x − y plane. The
scrolls generated from the generalized nonlineari-
ties can be increased in the x and y state variable
directions.

• 3D-grid scroll attractor family: This is the most
complete class of the presented scroll grid attrac-
tor families. The equilibrium points are located in
3D and the system has three nonlinear functions.
Due to the generalization of each nonlinearity,
the scrolls can be generated in all state variable
directions.

In this paper, the main contribution is to show the
possibility of generating the equilibrium points on
a plane or in 3D instead of on a line. As a re-
sult, it is possible to increase the number of scrolls
into all state variable directions. In the literature, a
quad screw attractor [Kataoka & Saito, 2000] from
a 4D chaotic oscillator with hysteresis [Saito, 1990]
is comparable with a 2 × 2-scroll grid attractor,
which is a member of the 2D-grid scroll attractor
family. However, it should be noted that the sys-
tem presented here is simpler than the other one.
Moreover, the 2× 2-scroll grid attractor is only one
member of the scroll grid attractor family. It will be
shown that this family can be extended by adding
a simple nonlinearity. Another comparable attrac-
tor family are n-double scroll hypercubes [Suykens
& Chua, 1997] which occur in weak unidirectional
or diffusive coupling of n-double scroll cells within
one-dimensional Cellular Neural Networks [Chua &
Roska, 1993]. However, this family produces hy-
perchaotic behavior and the order of the system is
much higher than the third-order circuit proposed
in this paper. From a system and control theo-

retical point of view, the proposed system can be
represented as a Lur’e system. Hence, many results
concerning stability and synchronization are appli-
cable to it [Vidyasagar, 1993; Khalil, 1993; Suykens
et al., 1999]. From a circuit design point of view, the
new circuit is easily realized by using simple com-
parators. Moreover, it is possible to systematically
increase the complexity of the circuit, by simply
using additional core nonlinearities. From an appli-
cation point of view, this system can produce more
complicated signals. Hence it is promising in many
applications for chaotic systems as communications
and cryptosystems.

This paper is organized as follows. In Sec. 2 we
present a generalized chaos generator which pro-
duces 1D-grid scroll attractors. 2D- and 3D-grid
scroll attractors are presented in Secs. 3 and 4, re-
spectively. In Sec. 5 Lur’e representations for the
systems are given. Finally, in Sec. 6 the realization
of some of 1D-, 2D- and 3D-grid scroll attractors is
given.

2. A New Family of n-Scroll
Attractors

A simple chaos generator model has been recently
proposed by Elwakil et al. [2000] which is described
by

ẋ = Ax + BΦ(x) (1)

with

A =

 0 1 0

0 0 1

−a −a −a

 , B =

0 0 0

0 0 0

0 0 a

 ,

Φ =

 0

0

f1(x)


where

f1(ζ) =

{
1, ζ ≥ 0

−1, ζ < 0 ,
(2)

and x = [x; y; z] ∈ R3, ζ ∈ R. In [Elwakil
et al., 2000], it has been reported that the model is
extremely simple and produces a double scroll-like
attractor for a = 0.8. A generalization of this origi-
nal model for generating n-scrolls has been recently
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Fig. 1. Double scroll attractor; f1(x)− g0.5(x), x0 − [0.4565; 0.0185; 0.8214].
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Fig. 2. 1D-grid scroll attractors: the equilibrium points (brown box) are shown at the intersection of x (red solid) and f(x)
(blue solid).
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given by Yalçın et al. [2000c]. Here, we consider
a minor modification of the latter model by taking
the nonlinearity

f1(x) =
Mx∑
i=1

g
(−2i+1)

2

(x) +
Nx∑
i=1

g
(2i−1)

2

(x) (3)

where

gθ(ζ) =


1, ζ ≥ θ θ > 0

0, ζ < θ θ > 0

0, ζ ≥ θ θ < 0

−1, ζ < θ θ < 0 .

(4)

A computer simulation for the double scroll attrac-
tor is shown in Fig. 1 corresponding to Mx = 0,

Nx = 1 and a = 0.8. A generalization of the system
Eq. (1) can be systematically obtained by introduc-
ing additional breakpoints in the nonlinearity where
each breakpoint can be implemented by Eq. (4).
Therefore, we call Eq. (4) the core function. The
equilibrium points can be found from the following
set of equations


x = f1(x)

y = 0

z = 0.

The equilibrium points are located at the intersec-
tion of the nonlinear function f1(x) and x drawn in
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Fig. 3. (a) M = 1, N = 1, 3-scroll attractor, x0 = [0.30460; 18970; 1934]; (b) M = 0, N = 4, 5-scroll attractor, x0 =
[0.3529; 0.8132; 0.0099]; (c) M = 4, N = 5, 10-scroll attractor, x0 = [0.6721; 0.8381; 0.0196].
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Fig. 4. Bifurcations related to 5-scroll attractors with respect to parameter value a: (a) a = 0.1, for five different initial
conditions which are close to the equilibrium points; (b) a = 0.23; (c) a = 0.34; (d) a = 0.37; (e) a = 0.41; (f) a = 0.47;
(g) a = 0.5; (h) a = 0.61; (i) a = 0.7; (j) a = 0.81, for five different initial conditions which are close to the equilibrium points;
(k) a = 1; (1) a = 2.
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Fig. 2 for the general case. The set of equilibrium
points is

Veq ={[i; 0; 0]|i = −Mx,−Mx + 1, . . . ,Nx−1,Nx}

which are located on the x-axis in state space
[Fig. 8(a)]. Due to the location of the equilibrium
points, this strange attractor family is called 1D-
grid scroll attractors. In the attractors, the scrolls
are located around the equilibrium points. There-
fore, the number of scrolls equals the number of
equilibrium points. The number of scrolls gener-
ated from the generalized nonlinearity is equal to
Mx + Nx + 1. In Fig. 3, 3-, 5- and 10-scroll at-
tractors are shown by using the generic model for
a = 0.4 and for (Mx = 1, Nx = 1), (Mx = 0,
Nx = 4), (Mx = 4, Nx = 5), respectively. Figure 4
shows the bifurcation phenomenon with respect to
the parameter value a related to a 5-scroll attractor.

3. 2D-Grid Scroll Attractors

Now we show that it is also possible to increase the
number of scrolls in the y state variable direction.
We start from the same system (1), but with

A =

 0 1 0

0 0 1

−a −a −a

 , B =

−1 0 0

0 0 0

0 0 a

 ,

Φ =

 f1(y)

0

f2(x)


with

f1(y) =

My∑
i=1

g
(−2i+1)

2

(y) +

Ny∑
i=1

g
(2i−1)

2

(y) (5)

and additional nonlinearity

f2(x) =
m−1∑
i=1

βgpi(x) (6)

where

pi = My + 0.5 + (i− 1)(My +Ny + 1)

β = My +Ny + 1 .

The equilibrium points follow from
x+ y = f2(x)

y = f1(y)

z = 0 .

(7)

The solutions of the second equation of (7) have al-
ready been indicated in the previous section, which
was given by

ueq,y = [−My; . . . ;−1; 0; 1; . . . Ny] .

The points for the x state variable corresponding to
each ueq,y

j are determined in a graphyical way from
the first equation of (7). The set of equilibrium
points becomes

Veq = {[(i− 1)(My +Ny + 1) + j,−j; 0]

|i = 1, 2, . . . ,m; j = −Ny, . . . ,−1, 0, 1, . . . ,My}

It should be noted that the locations of the equilib-
rium points are located in the x−y plane [Fig. 8(b)]
and the system has a number of m(My + Ny + 1)
equilibrium points. For this reason, we will call this
strange attractor family m × (My + Ny + 1)-scroll
grid attractors. Some resulting 2D-grid scroll at-
tractors and their corresponding nonlinearities are
given by:

• 2 × 2-grid scroll attractor (My = 0, Ny = 1,
m = 2) (Fig. 5)

f1(y) = g0.5(y)

f2(x) = 2g0.5(x)

• 2 × 3-grid scroll attractor (My = 0, Ny = 2,
m = 2) (Fig. 6)

f1(y) = g0.5(y) + g1.5(y)

f2(x) = 3g0.5(x)

• 3 × 3-grid scroll attractor (My = 0, Ny = 2,
m = 3) [Fig. 7(a)]

f1(y) = g0.5(y) + g1.5(y)

f2(x) = 3(g0.5(x) + g3.5(x))

• 4 × 4-grid scroll attractor (My = 0, Ny = 3,
m = 4) [Fig. 7(b)]

f1(y) = g0.5(y) + g1.5(y) + g2.5(y)

f2(x) = 4(g0.5(x) + g4.5(x) + g8.5(x))

• 4 × 5-grid scroll attractor (My = 0, Ny = 4,
m = 4) [Fig. 7(c)]

f1(y) = g0.5(y) + g1.5(y) + g2.5(y) + g3.5(y)

f2(x) = 5(g0.5(x) + g5.5(x) + g10.5(x))
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Fig. 5. 2 × 2-grid scroll attractor. Projection onto (a) the
(x, y) and (b) the (y, z) planes, (c) view on 3D-state space.
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Fig. 6. 2× 3-grid scroll attractor.
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(a)
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(c)

Fig. 7. Projection onto the (x, y) plane of (a) 3×3-, (b) 4×4-
and (c) 4× 5-grid scroll attractor.

4. 3D-Grid Scroll Attractors

The following additional nonlinearity f1(z) is intro-
duced now to the system (1) with

A =

 0 1 0

0 0 1

−a −a −a

 , B =

−1 0 0

0 −1 0

0 0 a

 ,

Φ =

 f1(y)

f1(z)

f3(x)


where

f1(z) =
Mz∑
i=1

g
(−2i+1)

2

(z) +
Nz∑
i=1

g
(2i−1)

2

(z) , (8)

and

f3(x) =
k−1∑
l=1

γgnl(x) (9)

where

nl = ρ+ 0.5 + (l − 1)(ρ+ ς + 1)

γ = ρ+ ς + 1

with

ρ =

∣∣∣∣min
i,j
{ueq,y

i + ueq,z
j }

∣∣∣∣ ,
ς =

∣∣∣∣max
i,j
{ueq,y

i + ueq,z
j }

∣∣∣∣
and ueq,y and ueq,z are the vectors for the y and
z variables related to the equilibrium points. The
equilibrium points follow from

x+ y + z = f3(x)

y = f1(y)

z = f1(z)

where the points for the y, z variables are given by

ueq,y = [−My; . . . ;−1; 0; 1; . . . ; Ny] ,

ueq,z = [−Mz; . . . ;−1; 0; 1; . . . ;Nz] .

With these nonlinearities the system produces k ×
(My+Ny+1)×(Mz +Nz+1)-scroll grid attractors.
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All the scrolls are located around the equilibrium
points which are given

Veq = {[(l − 1)(ς + 1 + ρ)− ueq,y
i

− ueq,z
j ;ueq,y

i ;ueq,z
j ]}

with i = 1, 2, . . . ,My + Ny + 1, j = 1, 2, . . . ,Mz +
Nz + 1 and l = 1, 2, . . . , k. The location of the
equilibrium points in 3D is shown in Fig. 8(c).
Here, some examples of 3D-grid scroll attractors are
given:

• 2 × 2 × 2-grid scroll attractor (My = 0, Ny = 1,
Mz = 0, Nz = 1, k = 2) (Fig. 9)

f3(x) = 3g0.5(x)

f1(y) = g0.5(y)

f1(z) = g0.5(z)

• 4 × 2 × 2-grid scroll attractor (My = 0, Ny = 1,
Mz = 0, Nz = 1, k = 4) (Fig. 10)

f3(x) = 3(g0.5(x) + g3.5(x) + g6.5(x))

f1(y) = g0.5(y)

f1(z) = g0.5(z)

• 4 × 3 × 2-grid scroll attractor (My = 1, Ny = 1,
Mz = 0, Nz = 1, k = 4) (Fig. 11)

f3(x) = 4(g1.5(x) + g5.5(x) + g9.5(x))

f1(y) = g−0.5(y) + g0.5(y)

f1(z) = g0.5(z)

5. Lur’e Representation

The new circuits from which the scroll grid attractor
families are generated can be represented as Lur’e
systems, i.e. as a linear system interconnected by
feedback to a static nonlinearity that satisfies a sec-
tor condition

ẋ = Ax + Bσ(Cx)

with

A =

 0 1 0

0 0 1

−a −a −a

 , B =

 by 0 0

0 bz 0

0 0 a

 ,

C =

0 1 0

0 0 1

1 0 0

 .
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Fig. 8. The equilibrium points are located on (a) x axis for
1D-grid scroll attractor, (b) (x, y) plane for 2D-grid scroll at-
tractor (equilibrium points are shown for 3×3-grid attractor)
(c) in a 3D body for 3D-grid scroll attractors (equilibrium
points are shown for a 2× 2× 2-scroll grid attractor).
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Fig. 9. 2×2×2-grid scroll attractor. Projection onto (a) the
(y, x) and (b) the (y, z) planes, (c) view on 3D state space.
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Fig. 10. 4× 2× 2-grid scroll attractor.
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Fig. 11. 4× 3× 2-grid scroll attractor.

One obtains the following for the different cases:

• 1D-scroll grid attractors (n-scroll attractor):
by = 0, bz = 0

σ(·) =


0

0

f1(·)


where f1(·) is given by Eq. (3), which belongs to
sector [0, 2].

• 2D-scroll grid attractors:
by = −1, bz = 0

σ(·) =

f1(·)
0

f2(·)


where f2(·) is given by Eq. (6), which belongs to
sector [0, (My +Ny + 1)/(My + 0.5)].

• 3D-grid scroll attractors:
by = −1, bz = −1

σ(·) =

f1(·)
f1(·)
f3(·)


where f3(·) is given by Eq. (9), which belongs to
sector [0, (ς + ρ+ 1)/(ρ+ 0.5)].

6. Circuit Realizations

In this section, the realizations of some of the 1D-,
2D- and 3D-grid scroll attractors discussed above
are given. For this purpose, a circuit using con-
ventional voltage opamps could be employed. How-
ever, a number of research results, which illustrate
the advantages of current feedback opamps (CFOA)
over conventional voltage opamps, have been pre-
sented in the literature, e.g. [Toumazou et al., 1990;
Fabre, 1993; Toumazou & Lidgey, 1994]. From
these works, it is known that CFOA is almost free
from slew-rate limitations as opposed to voltage
opamp. It is capable of operating at much higher
frequencies and offers design flexibility which allows
the derivation of relatively simpler circuits. Con-
sidering these facts, researchers have attempted to
use CFOAs in the implementation of chaotic oscil-
lators in order to have an improved high-frequency
performance, e.g. [Senani & Gupta, 1998; Elwakil
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Fig. 12. Possible circuit diagram realizing the proposed system.

& Kennedy, 1998, 2000]. In the same way, we have
also used a possible CFOA-based circuit in order
to realize and observe some of the scroll grid at-
tractors described in the previous sections. The
circuit we have used for this purpose is given in
Fig. 12. The CFOAs implemented using AD8441

from Analog Devices and the required nonlineari-
ties in Eqs. (5), (8) and (9) are realized using the
subcircuits drawn within the dashed lines. The
comparators (cmps.) involved in these subcircuits
are of LM311 type comparators. The subcircuits
within the dashed lines colored in green, red and
blue are used to increase the number of scrolls in
the x, y and z state variable directions, respec-
tively. Since each of these subcircuits includes two

LM311 comparators, a 3× 3 × 3-grid scroll attrac-
tor or 3D-grid scroll attractor can be observed using
this circuit. Obviously, by appropriately inserting
additional comparators in the corresponding sub-
circuit, the number of scrolls can be systematically
increased in all directions. Also, by appropriately
removing these subcircuits, new circuits allowing
the observation of any 1D- and 2D-grid scroll at-
tractors can readily be obtained.

For C1 = C2 = C3 = C, R1 = R, R2 =
R4 = R/a, Vx = ax, Vy = ay, Vz = z and us-
ing the normalized quantity tn = t/RC, it can
be verified that the circuit realizes the system in
Eq. (1). Also, as explained above, the nonlineari-
ties in Eqs. (5), (8) and (9) are realized using the

1Analog Devices [1990] Linear Products Data Book, Norwood, MA, USA.
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subcircuits in red, blue and green, respectively,
where the parameters θ of the core functions, gθ(·)
in Eq. (4) are adjusted through the controlling volt-
ages at the inverting/noninverting inputs of the
comparators. It should be noted that all three
states are available at the buffered output termi-
nals of the CFOAs, a property which is expected
to simplify the realizations of various chaotic com-
munication systems based on the proposed circuit.
Also, the fact that all the capacitors are grounded
simplifies the IC integration of the circuit. In all
the experiments given in this section, CFOAs and
LM311 type comparators are supplied under ±15 V
DC and the passive component values are taken as
C1 = C2 = C3 = 1 nF , R1 = 5.1 kΩ. For all
experiments, different values have been assigned to
the other passive components. Also, the controlling
voltages at the inverting and noninverting inputs of
the comparators are taken as adjustable.

First, we have implemented a 5-scroll attrac-
tor or 1D-grid scroll attractor from the circuit in
Fig. 12. In order to obtain a 5-scroll attractor in
the x state variable direction, we have removed the
subcircuits in red and blue and added two more

comparators to the subcircuit in green. The passive
component values are taken as R2 = R4 = 8 kΩ,
Rx1 = Rx2 = Rx3 = Rx4 = 70 kΩ. The observed
(Vx, Vy) trajectory is given in Fig. 13(c). These
passive component values correspond to a = 0.64.
Also, by changing the values of the resistors R2 and
R4, the circuit is tested for different values of a, and
the corresponding results are given in Figs. 13(a)–
13(d). These results also verify the dynamic behav-
ior of the circuit with respect to parameter value a,
which was shown on the simulations of Fig. 4.

Second, we have implemented 2×2-, 3×2- and
3 × 3-grid scroll attractors from 2D-grid scroll at-
tractor family. In order to have a 2×2-grid scroll at-
tractor, we have removed the subcircuit in blue, the
comparators cmpx2, cmpy2 and the resistors Rx2,
Ry2, from the circuit in Fig. 12. The passive com-
ponents values are taken as R2 = R4 = 9.7 kΩ,
Rx1 = 37 kΩ, Ry1 = 77 kΩ. The controlling volt-
ages, i.e. Vx1, Vy1 are taken identical. The observed
phase space corresponding to the (Vx, Vy) trajec-
tory is given in Fig. 14. A 3×2-grid scroll attractor
is realized by adding a comparator, cmpy2 and a
resistor Ry2 to the circuit above which was used to

(a)

Fig. 13. 5-scroll attractor from a 1D-grid scroll attractor. Experimental results shown are for (a) a = 0.26 (R4 = 20 kΩ),
(b) a = 0.34 (R4 = 15 kΩ), (c) a = 0.64 (R4 = 8 kΩ), (d) a = 1 (R4 = 5.1 kΩ), (Vx, Vy) trajectory x = 0.5 V/div,
y = 0.5 V/div.
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(b)

(c)

Fig. 13. (Continued)
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(d)

Fig. 13. (Continued)

Fig. 14. 2× 2-grid scroll attractor. Experimental result shown is (Vx, Vy) trajectory. x = 0.5 V/div, y = 0.5 V/div.
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Fig. 15. 2× 3-grid scroll attractor. Experimental result shown is (Vx, Vy) trajectory. x = 1 V/div, y = 0.5 V/div.

Fig. 16. 3× 3-grid scroll attractor. Experimental result shown in (Vx, Vy) trajectory. x = 1 V/div, y = 0.5 V/div.
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(a)

(b)

Fig. 17. 2 × 2 × 2-grid scroll attractor. Experimental results shown are (a) (Vy, Vx) trajectory. x = 1 V/div, y = 2 V/div,
(b) (Vz, Vx) trajectory. x = 1 V/div, y = 2 V/div, (c) (Vy, Vz) trajectory. x = 1 V/div, y = 2 V/div.
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(c)

Fig. 17. (Continued)

realize a 2 × 2-grid scroll attractor. The passive
component values are taken as R2 = R4 = 11 kΩ,
Rx1 = 27 kΩ, Ry1 = 88 kΩ, Ry2 = 75 kΩ. The
controlling voltages Vx1, Vy1 are taken to be iden-
tical. The observed (Vx, Vy) trajectory shown in
Fig. 15 verifies the theory. As a final example of
the 2D-grid attractor family, we have realized a
3 × 3-grid attractor by increasing the number of
comparators in the subcircuit in green by one. In
this case, the passive component values are chosen
as R2 = R4 = 12 kΩ, Rx1 = 28 kΩ, Rx2 = 30 kΩ,
Ry1 = 90 kΩ, Ry2 = 80 kΩ. Again, the measured
(Vx, Vy) trajectory is given in Fig. 16.

Finally, a 2 × 2 × 2-grid attractor from the
3D-grid attractor family is realized using the cir-
cuit in Fig. 12. In order to have a 2 × 2 × 2-grid
scroll attractor with My = 0, Ny = 1, Mz = 0,
Nz = 1 and k = 2, we have removed the com-
parators cmpx2, cmpy2 and cmpz2 in the subcircuits
within the dashed lines and the passive component
values are taken as R2 = R4 = 8.3 kΩ, Rx1 = 19 kΩ,
Ry1 = 47 kΩ, Rz1 = 50 kΩ. The controlling volt-
ages at the comparator inputs are taken as identi-
cal. The experimental results corresponding to the
(Vy, Vx), (Vz, Vx) and (Vy, Vz) trajectories are given
in Fig. 17.

7. Conclusions

Since the introduction of Chua’s circuit, several
multi scroll-based chaotic attractors have been pre-
sented in the literature. However, up till now it was
not possible to generate the scrolls in different di-
rections. In this paper, we have shown that it is
possible to create strange attractors whose scrolls
can be located in any state variable direction. Fol-
lowing the ideas outlined in this paper, the design
of new attractors depends on the designer’s imagi-
nation, as the presented attractors are just samples
derived from the new proposed family which might
be further extended in the future. The proposed
system presented in this work is expected to yield
new chaotic signal generators which can be useful
in many chaos-based applications.
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