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For a system to display bistable behavior (or hysteresis), it is well known that there needs
to be a nonlinear component and a feedback mechanism. In the Chua circuit, nonlinearity is
supplied by the Chua diode (nonlinear resistor) and in the physical medium, feedback would be
inherently present, however, with standard computer models this feedback is omitted. Using
Poincaré first return maps, bifurcations for a varying parameter in the Chua circuit equations
are investigated for both increasing and decreasing parameter values. Evidence for the existence
of a small bistable region is shown and numerical methods are applied to determine the behavior
of the solutions within this bistable region.

1. Introduction

One important area of study in the field of nonlin-
ear dynamics that attracts much interest from both
mathematicians and scientists of varying disciplines
is the study of bistability. It is possible for certain
physical and mathematical systems to display mul-
tistable behavior, where one of a possible number
of steady-states can be attained depending upon
the initial conditions chosen. Of special interest
are bistable regions, where for a given set of pa-
rameter values there exist two distinct stable so-
lution outcomes. In order for a system to show
bistable phenomena it must contain both nonlinear
and feedback processes; the steady-state reached
in the bistable region is then dependent upon the
history of the system. The maximum number of
steady-states possible for certain continuous sys-
tems is considered in [Christopher & Lynch, 1999],
and multistability and bistability are discussed in
some detail in [Lynch, 2000, 2001].

Bistable behavior, though not often easy to
locate, has been proven to exist in numerous
physical forms. It is present in mechanical
systems [Lynch & Christopher, 1999], electro-
magnetism [Szczyglowski, 2001], chemical kinetics

[Scott, 1994], astrochemical cloud models [Nejad,
1999] and nonlinear optics [Lynch & Steele, 2000;
Lynch et al., 1998; Steele et al., 1997], where op-
tical bistability has potential applications in high
speed all-optical signal processing and all-optical
computing.

A general introduction to Chua’s circuit is
discussed in some detail in [Madan, 1993]. Re-
cently, Kal’yanov [1998] proposed the existence of
hysteresis in a system similar to the original Chua’s
equations by identifying the characteristic “step”
in bifurcation maps using maximal radius anal-
ysis for a varying parameter. In this paper, a
feedback mechanism is applied to demonstrate hys-
teresis in computer models of the original Chua’s
circuit equations. Poincaré first-return maps are
used along with a feedback process where a pa-
rameter is ramped up and then ramped down.
Bifurcation diagrams are plotted which clearly show
the bistable behavior. Chua’s circuit and the gov-
erning coupled differential equations are well docu-
mented and can be described in various forms. In
this paper, only the simplest of scaling transforma-
tions will be used to allow for greater transparency
and ease of calculations.
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Fig. 1. Chua circuit simulation for a = 0.57, b = 0.1, c = 0.5, d = −0.5, e = −0.8 showing the double scroll attractor,
generated using MATLAB. A Poincaré section (P) is also shown.

It is a characteristic of Chua’s circuit that
wildly varying qualitative behavior can be obtained
from only minor adjustments to the circuit, this
leads to the possibility that bistable regions will
have been overlooked in experimentation as the re-
gion of bistability is very small. Also, as suggested
by Elgar et al. [1998] numerical approximations to
the actual circuit may have a tendency to retain
harmonics which may be damped in electronics due
to the physical medium.

It is the aforementioned variety in possible
types of behavior that lead to major problems in
analyzing the Chua system. The solutions can vary
from periodic limit cycle behavior, to quasi-periodic
motion around a torus, to chaotic movement around
the now familiar double scroll attractor (Fig. 1).
Calculating a Poincaré section, as shown in Fig. 1,
through this three-dimensional system, will inher-
ently involve lengthy computer runs and some trial
and error with the numerical procedures to obtain
accurate and useful results.

2. Chua Circuit Equations and
Parameter Values

The transformed Chua circuit (in dimensionless

form) can have describing equations as follows:

ẋ = a(y − x)− f(x)

ẏ = b(a(x− y) + z)

ż = −cy ,

where f(x) represents the piecewise-linear function

f(x) = dx+
1

2
(e− d)(|x+ 1| − |x− 1|) ,

characterizing the nonlinear resistance.
In order to analyze any bistable behavior of a

system it is only necessary to vary one parameter
of the governing equations. Through experimenta-
tion it has been found that varying the parameter
a, the resistance in the circuit, and fixing the other
parameters as follows yields successful results:

b = 0.1, c = 0.5, d = −0.5

and

e = −0.8 .

In all further analysis the parameters b, c, d and
e will be as above.
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3. Bifurcation Diagram by
Generation of First Poincaré
Returns

A bifurcation map (Fig. 2) for varying a in the in-
terval 0.535 ≤ a ≤ 0.575, was produced using a
fourth-order Runge–Kutta scheme with a varying
step length h. To guarantee the accuracy of the
first returns a value of h = 0.001 was used where
the trajectory was suitably close to the plane P (see
Fig. 1), here using π/8 < arctan(y/x) < 3π/8. The
radius of the trajectory at P was estimated by av-
eraging the solution values from the two discrete
points on either side of this plane. Where the tra-
jectory moved away from the plane P, a step length
of h = 0.05 was used to increase the speed at which
the bifurcation map was generated. In addition,
only those points where the trajectory crossed the
plane to the right of the center of the double scroll
were recorded in order to prevent trajectories being
included where the solution had not moved through
a full cycle.

With the generation of each first return, the
value of a was increased by 0.001 and the system in-

tegrated forwards until the trajectory again crossed
P, when a was once again increased. This scheme
(an iterative method for Poincaré returns — see
[Lynch, 2000]) closely simulates the attributes of
the physical model. This method was applied by
linearly increasing a and then linearly decreasing
a, continually feeding back the previous results as
the initial conditions of the system. The results of
ramping up and then ramping down the parameter
value a are shown in Fig. 2. In physical applica-
tions this would correspond to increasing and then
decreasing a resistance in the circuit. There is a
small region of bistability in the approximate range,
0.542 < a < 0.548. As the parameter a is increased,
the steady-state remains on the lower branch until
there is a step up to the upper branch, and as a is
increased further the circuit enters a chaotic regime
through a quasi-periodic route to chaos. As the pa-
rameter a is decreased, the system passes through
the chaotic, quasi-periodic and periodic regions to
join the upper branch of the bistable cycle. As a is
decreased further there is still a slight ringing in the
bistable cycle as the solution overshoots before re-
turning once more to the steady-state at a ≈ 0.542.

Fig. 2. Bifurcation map for Chua’s circuit, with feedback included. There is an isolated counterclockwise bistable region.
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Fig. 3. Bifurcation diagram showing a quasi-periodic route to chaotic behavior.

(a) (b)

Fig. 4. Power spectra for Chua circuit simulations: (a) a = 0.544, (b) a = 0.546, (c) a = 0.548 and (d) a = 0.55.
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(c) (d)

Fig. 4. (Continued)

Fig. 5. Multistable behavior for Chua’s circuit a = 0.54809. The solution trajectory obtained depends on the history of the
system.

In addition, a more detailed bifurcation dia-
gram (Fig. 3), for linearly increasing a, 0.5472 <
a < 0.5492, was produced using the method de-
scribed above. As can be seen, there is a quasi-
periodic route to chaos as established by Newhouse
et al. [1978]. That is, a periodic solution degener-
ates into a quasi-periodic torus that then bifurcates
to a two torus, bifurcates again to a three-torus and
then rapidly becomes chaotic. This has also been

verified using Floquet’s theorem to test for subhar-
monic instability within this bistable region.

Examining the power spectra for solutions ob-
tained within the bistable region further illustrates
their qualitative behavior. Figures 4(a)–4(d) show
the power spectra obtained for solutions on the
lower branch of the bifurcation map as the value of
a is increased. As the value a varies and increases
through the bistable region there is a gradual
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Fig. 6. Power spectra for Chua circuit simulation, a =
0.54809. The qualitative nature of the solution depends on
the history of the system.

descent into chaos via the route described by New-
house et al. [1978]. As the solutions exhibit more
unstable behavior the higher frequencies become
more significant until at a = 0.55, for example, the
solution produced can be said to be truly chaotic.

In order to demonstrate more fully what is actu-
ally occurring inside the bistable region, trajectories
for a = 0.54809, were produced. The first (Fig. 5
— solution a) was generated using initial conditions
(x = 1, y = 1, z = −1), a step length h = 0.1, and
allowing the first 1000 iterates to be discarded to al-
low the trajectory to settle onto the attractor. The
second (Fig. 5 — solution b) was generated using
a similar step length, however, the initial value for
a was set at 0.54809, and gradually increased by
0.001 every 1000 iterates until a = 0.56 (ramping
up) and then again ramping down to a = 0.54809.
Both plots were created using increasing numbers
of steps until there was no discernible difference in
the plots produced, the final computer runs being
continued for over 50,000 points. Both sets were
then plotted on the same diagram to allow for easier
comparison of the solution sets. The power spectra
(Fig. 6) for both solution sets are also included.

4. Conclusions

The method of Poincaré first returns has been ap-
plied to produce a bifurcation diagram for the Chua
system. By increasing and then decreasing one of
the parameter values it has been possible to gen-
erate a small isolated counterclockwise hysteresis
loop. Within this bistable region the phase trajec-

tories can follow quasi-periodic movement around
a torus. In physical applications it is possible that
the bistable nature would be missed or the quasi-
periodic movement interpreted as steady-state be-
havior due to the nature of the solutions.

Phase trajectories within this bistable region
have been plotted in order to demonstrate the be-
havior of the system within this region. As far as
the authors are aware this is the first time an iso-
lated bistable region for Chua’s original equations
has been demonstrated.
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