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The local activity principle of the Cellular Nonlinear Network (CNN) introduced by Chua
[1997] has provided a powerful tool for studying the emergence of complex patterns in a ho-
mogeneous lattice formed by coupled cells. This paper presents some analytical criteria for the
local activity of two-port CNN cells with three or four state variables. As a first application,
a coupled excitable cell model (ECM) CNN is introduced, which has cells defined by the Chay
equations representing ionic events in excitable membranes in terms of a Hodgkin–Huxley type
formalism. The bifurcation diagram of the ECM CNN supplies a possible explanation for the
mechanism of arrhythmia (from normal to abnormal until stopping) of excitable cells: the cell
parameter is changed from an active unstable domain to an edge of chaos. The member po-
tentials along fibers are simulated numerically, where oscillatory patterns, chaotic patterns as
well as convergent patterns are observed. As a second application, a smoothed Chua’s circuit
(SCC) CNN with two ports is presented, whose prototype has been introduced by Chua as a
dual-layer two-dimensional reaction–diffusion CNN in order to obtain Turing patterns. The
bifurcation diagrams of the SCC CNN are the same as those with one port, which have only
active unstable domains and edges of chaos. Numerical simulations show that in the active
unstable parameter domains, the evolutions of the patterns of the state variables of the SCC
CNNs can exhibit divergence, periodicity and chaos, where, in the parameter domains located
in the edge of chaos, periodic patterns and divergent patterns are observed. These results
demonstrate once again the effectiveness of the local activity theory in choosing the parameters
for the emergence of complex patterns of CNNs.
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1. Introduction

The study of CNNs is a multi-disciplinary area,
first introduced by Chua and Yang [1988a, 1998b]
after Hopfield proposed his fully-connected neu-
ral networks [Hopfield, 1985]. Hopfield network
grows exponentially with the size of the array,
which cannot be built physically even in a modest

array size. However, CNN can be built by cir-
cuitry, with no electrical interconnections beyond
a prescribed sphere of influence. Consequently,
CNNs have been widely studied on both theoret-
ical foundations [Chua & Yang, 1998a; Chua &
Roska, 1990; Chua & Wu, 1992; Joy & Tavasnoglu,
1993; Gili, 1994; Thiran et al., 1995; Chua, 1997;
Takahashi & Chua, 1997; Min et al., 1999; Lin

931



932 L. Min & N. Yu

& Shi, 1999] and image processing [Chua, 1997;
Special issue, 1992; Special issue, 1993; Werblin
et al., 1994; Werblin et al., 1996; Orzo et al., 1996;
Li & Min, 2000].

It is now known that CNNs can also be
used for the study of complex patterns and struc-
tures, emerging from homogeneous media operating
far from thermodynamic equilibrium [Chua, 1997,
1999]. In particular, some analytical criteria for
local activity of CNNs have been successfully ap-
plied to the study of the dynamics of the CNNs
[Dogaru & Chua, 1998a, 1998b, 1998c; Min et al.
2000a, 2000b; Min & Yu, 2000] related to
the FitzHugh–Nagumo equation, the Brusselator
equation, the Gierer–Meinhart equation, the
Oregonator equation, the Hodgkin–Huxley equa-
tion, and the enzyme reaction equation. Some local
activity criteria for “difference-equation” CNN has
recently been set up, in [Sbitnev, et al., 2001].

In this paper, some analytical criteria for the
local activity of two-port CNN cells with three and
four state variables are introduced in Secs. 1 and
2, respectively. As the first application, the crite-
ria are used to calculate the bifurcation diagram
of the ECM CNN with three state variables and
two ports whose prototype — the three-dimensional
Chay model — can generate chaotic action poten-
tials and intracellular calcium concentrations [Chay,
1985]. The bifurcation diagram of the ECM CNNs
shows that there does not exist a locally passive
domain. Numerical simulations of the dynamics of
the ECM CNNs show that one-period, multi-period,
chaotic, and convergent trajectories can be gener-
ated if the parameters of the corresponding ECM
CNNs vary from locally active and unstable do-
main to the edge of chaos. If the oscillations of
the ECM CNNs are understood as the frequency of
the heartbeat, the following relations are observed
with parameter g∗K,V (the maximum conductance of

voltage-sensitive K+ channel divided by membrane
capacitance) decreasing:

Normal heart rate → Multi-period heart rate
→ Chaotic heart rate → Multi-period heart rate

→ Stop beating.

As the second application of the criteria, we add
a new state variable equation to the piecewise linear
dual-layer two-dimensional reaction–diffusion CNN
[Chua, 1995], and smooth the CNN to a differen-
tiable one, in a way similar to the case of the SCC
CNN with one port [Min et al., 2000b]. Computer
simulations show that the bifurcation diagrams of

the SCC CNNs are the same as those of the SCC
CNNs with one port [Min et al., 2000b]. Numeri-
cal simulations show that the dynamic patterns of
the SCC CNN, whose parameters are located in lo-
cally active domains, bound with complex patterns
— one-period, chaotic and divergent trajectories,
particularly when selected parameters are located
nearby the horizontal or the oblique edges of chaos
in the bifurcation diagrams.

This paper is organized as follows: Section 2
states the basic local activity theory set up by
[Chua, 1997]. Some analytical criteria for the local
activity in two-port CNN cells with three and four
state variables are presented in Secs. 3.1 and 4.1,
respectively. The bifurcation diagrams of the ECM
CNNs and the SCC CNNs are given in Secs. 3.2 and
4.2, respectively. Sections 3.3 and 4.3 demonstrate
the numerical simulations for ECM CNNs and SCC
CNNs. Concluding remarks on the ECM CNNs and
the SCC CNNs are addressed in Secs. 3.4 and 4.4,
respectively.

2. A Main Theorem of Local
Activity

Generally speaking, in a reaction–diffusion CNN,
every C(j, k, l) has n state variables but only m
(≤n) state variables coupled directly to their
nearest neighbors via “reaction–diffusion.” Conse-
quently, each cell C(j, k, l) has the state equations
[Chua, 1997]:

V̇1(j, k, l) = f1(V1, V2, . . . , Vn) +D152V1

V̇2(j, k, l) = f2(V1, V2, . . . , Vn) +D252V2

...

V̇m(j, k, l) = fm(V1, V2, . . . , Vn) +Dm52Vm

V̇m+1(j, k, l) = fm+1(V1, V2, . . . , Vn)

...

V̇n(j, k, l) = fn(V1, V2, . . . , Vn)

j = 1, 2, . . . , Nx

k = 1, 2, . . . , Ny

l = 1, 2, . . . , Nz .

(1)
In a component form, Eq. (1) becomes

{
V̇a = fa(Va, Vb) + Ia

V̇b = fb(Va, Vb)
(2)
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where

Va = [V1, V2, . . . , Vm]T

Vb = [Vm+1, Vm+2, . . . , Vn]
T

fa = [f1(·), f2(·), . . . , fm(·)]T

fb = [fm+1(·), fm+2(·), . . . , fn(·)]T

Ia = Da52Va

= [D152V1, D252V2, . . . , Dm52Vm]T

Da = diag[D1, D2, . . . , Dm] .

The cell equilibrium point Qi = (Va, Vb) (∈ Rn)
of Eq. (2) for the restricted local activity domain
[Dogaru & Chua, 1998a] can be determined, nu-
merically or analytically, via{

fa(Va, Vb) = 0

fb(Va, Vb) = 0 .
(3)

The Jacobian at an equilibrium point Qi, for the
restricted local activity domain, has the following
form:

J(Qi)
∆
= [alk(Qi)]

∆
=

[
Aaa(Qi) Aab(Qi)

Aba(Qi) Abb(Qi)

]
, (4)

where

Aaa(Qi) =


∂f1

∂V1
· · · ∂f1

∂Vm

· · · · · · · · ·
∂fm
∂V1

· · · ∂fm
∂Vm



Aab(Qi) =


∂f1

∂Vm+1
· · · ∂f1

∂Vn

· · · · · · · · ·
∂fm
∂Vm+1

· · · ∂fm
∂Vn



Aba(Qi) =


∂fm+1

∂V1
· · · ∂fm+1

∂Vm

· · · · · · · · ·
∂fn
∂V1

· · · ∂fn
∂Vm



Abb(Qi) =


∂fm+1

∂Vm+1
· · · ∂fm+1

∂Vn
· · · · · · · · ·
∂fn

∂Vm+1
· · · ∂fn

∂Vn

 .

alk(Qi)
′s are called cell parameters.

The local state equations at the cell equilibrium
point Qi are defined via [Chua, 1997]

V̇a = AaaVa + AabVb + Ia (5)

V̇b = AbaVa + AbbVb , (6)

and

YQ(s)
∆
= (sI−Aaa)−Aab(sI−Abb)−1Aba (7)

is called the admittance matrix at Qi.

Main Theorem on the Local Activity of CNN

[Chua, 1997]. A two-port Reaction Diffusion CNN

cell is locally active at a cell equilibrium point Q
∆
=

(Va, Vb, Ia) if, and only if, its cell admittance
YQ(s) at Q satisfies at least one of the following
four conditions:

(1) YQ(s) has a pole in Re[s] > 0.

(2) YH
Q (iω) = Y†Q(iω) + YQ(iω) is not a positive

semi-definite matrix at some ω = ω0, where ω0

is any real number, and Y†Q(s) is constructed

by taking first the transpose of YQ(s), and then
followed by the complex conjugate operation.

(3) YQ(s) has a simple pole s = iωρ on the imagi-
nary axis, where its associated residue matrix

k1
∆
=

lim
s→iωρ

(s− iωρ)YQ(s) , if ωρ <∞

lim
ωρ→∞

YQ(iωρ)/iωρ , if ωρ =∞
(8)

is either not a Hermitian matrix, or else not a
positive semi-definite Hermitian matrix.

(4) YQ(s) has a multiple pole on the imaginary
axis.

Definition 2.1. [Dogaru & Chua, 1998; Min et al.,
2000a]. (Edge of chaos with respect to the equilib-
rium point Qi) A “Reaction–Diffusion” CNN with
one “diffusion coefficient” D1 (resp. two diffusion
coefficients D1 and D2; or three diffusion coeffi-
cients D1, D2 and D3) is said to be operating on
the edge of chaos with respect to an equilibrium
point Qi if, and only if, Qi is both locally active
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and stable when I1 = 0 (resp. I2 = 0 and I3 = 0; or
I1 = 0, I2 = 0 and I3 = 0).

Remark 2.1. Qi is said to be stable if

(i) The real parts of the eigenvalues λ of the
Jacobian matrix J(Qi) (4) are all less than
zero, or

(ii) Real(λi) = 0 ⇒ the multiplicity of λi is equal
to 1.

By arbitrarily choosing parameters of CNNs
within or nearby the edge of chaos domain, complex
dynamic behaviors may become abundant, even
with only a very small perturbations of parameters
[Dogaru & Chua, 1998a–1998c; Min et al., 2000a,
2000b; Min & Yu, 2000].

3. Local Activity Theory of the
CNN with Three State
Variables and Two Ports

In the following subsections, we first introduce a set
of analytical criteria for testing the local activity of
the CNNs with three state variables and two-port
(i.e. with two reaction–diffusion coefficients depend-
ing on the corresponding physical models (CNNs)
described), then propose the ECM CNN and calcu-
late its bifurcation diagrams, and finally simulate
numerically the behaviors of the Chay equations
and the ECM CNNs.

3.1. Theorems

For a two-port CNN cell, the corresponding local
state Eqs. (5) and (6) with “three” state variables
assume the following form:

V̇a = AaaVa + AabVb + Ia (9)

V̇b = AbaVa + AbbVb , (10)

where

Va = [V1, V2]
T , Vb = V3 , Ia = [I1, I2]

T , (11)

Aaa =

[
a11 a12

a21 a22

]
, Abb =

[
a13

a23

]
, (12)

Aba = [a31 a32] , (13)

Abb = a33 . (14)

The corresponding CNN cell admittance YQ(s) is

given by [Chua, 1997]

YQ(s) = (sI−Aaa)−Aab(sI−Abb)−1Aba

=


s− a11 −

a13a31

s− a33
−a12 −

a13a32

s− a33

−a21 −
a23a31

s− a33
s− a22 −

a23a32

s− a33

 .
(15)

Now, we introduce a set of theorems for testing the
local activity of the CNNs with three state variables
and two ports (see [Min & Yu, 2000] for complete
proofs).

Theorem 3.1. YQ(s) has a pole in Re[s] > 0 if,
and only if, a33 > 0, and max{|a13a31|, |a13a32|,
|a23a31|, |a23a32|} 6= 0.

Theorem 3.2. Let b = a13a31a33, c = a13a32a33 +
a23a31a33, d = a13a32−a23a31, e = a23a32a33. Then,
YQ(s) satisfies condition 2 in the Main Theorem if,
and only if, at least one of the following conditions
holds:

1. (a11 + a22) > 0.
2. (a11 + a22) ≤ 0, a33 6= 0, and (a11 + a22) −

(a13a31 + a23a32)/a33 > 0.
3. 4a11a22 − (a12 + a21)

2 < 0.
4. 4(ba22 + ea11)− 2c(a12 + a21) + d2 6= 0,

ω2 =
2a2

33d
2+8be−2c2

4(ba22+ea11)−2c(a12+a21)+d2
−a2

33>0 ,

4

[
a11a22 −

ba22 + ea11

a2
33 + ω2

+
be

(a2
33 + ω2)2

]

−
(
a12 + a21 −

c

a2
33 + ω2

)2

− ω2d2

(a2
33 + ω2)2

< 0 .

5. a33 6= 0, and 4(a11a
2
33 − b)(a22a

2
33 − e) − [(a12 +

a21)a
2
33 − c]2 < 0.

6. a33 = 0 and 4be− c2 < 0.

Theorem 3.3. YQ(s) satisfies condition 3 in the
Main Theorem if, and only if, at least one of the
following conditions holds:

1. If a33 = 0, max{|a13a31|, |a13a32|, |a23a31|,
|a23a32|} 6= 0, and a13a32 6= a23a31.
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2. If a33 = 0, max{|a13a31|, |a13a32|, |a23a31|,
|a23a32|} 6= 0, a13a32 = a23a31 and

(a) a13a31 + a23a32 > 0 or
(b) a13a31a23a32 − a2

13a
2
32 < 0.

Theorem 3.4. YQ(s) does not have a multiple pole
on the imaginary axis.

3.2. ECM CNN and bifurcation
diagram

The prototype ECM CNN used here is taken from
[Chay, 1985], which has three variables, V , C, n:

V̇i = g∗Im
3
∞h∞(VI − Vi) + g∗K,V n

4
i (VK − Vi)

+ g∗K,C
Ci

1 + Ci
(VK − Vi) + g∗L(VL − Vi)

+D1(Vi+1 + Vi−1 − 2Vi) (16)

Ċi = ρ[g∗Im
3
∞h∞(VC − Vi)−KCCi]

+D2(Ci+1 + Ci−1 − 2Ci) (17)

ṅi =
n∞ − ni

τn
(18)

i = 1, 2, . . . , N

where Vi, Ci and ni are the membrane potential,
the intracellular concentration of Ca2+ ions, and
the probability of opening the voltage-sensitive K+

channel of the ith cell, respectively; N = 30; VI ,
Vk and VL are the reversal potentials for “mixed”
Na+–Ca2+, K+ and leakage ions, respectively; C
is the concentration of intracellular Ca2+ ions di-
vided by its dissociation constant from the recep-
tor; g∗I , g

∗
K,V , g∗K,C and g∗L are the maximal conduc-

tances divided by the membrane capacitance, where
the subscripts I, (K, V ), (K, C) and (L) refer to
the voltage-sensitive mixed ion channel, voltage-
sensitive K+ channel, Ca+ – sensitive K+ channel,
and the leakage channels, respectively; m∞ and h∞
are the probabilities of activation and inactivation
of the mixed channel; n∞ is the steady state value
of ni; KC is the rate constant for the efflux of intra-
cellular Ca2+ ions, ρ is a proportionality constant,
and VC the reversal potential for Ca2+ ions; τ is the
relaxation time (in s).

The expressions for m∞, h∞, n∞ and τn
(similar to the original Hodgkin–Huxley equations

[Hodgkin & Huxley, 1952]) are given as follows
[Chay, 1985]:

y =
αy

αy + βy
, (19)

where y stands for m∞, h∞, n∞ and

αm =
0.1(25 + Vi)

1− exp(−0.1Vi − 2.5)
(20)

βm = 4exp

[−Vi − 50

18

]
(21)

αh = 0.07 exp(−0.05Vi − 2.5) (22)

βh =
1

1 + exp(−0.1Vi − 2)
(23)

αn =
0.01(20 + Vi)

1− exp(−0.1Vi − 2)
(24)

βn = 0.125 exp

[−Vi − 30

80

]
(25)

τn =
1

230(αn + βn)
. (26)

Furthermore, let the system have periodic con-
ditions: V0 = VN , C0 = CN , n0 = nN , VN+1 = V1,
CN+1 = C1, nN+1 = n1, and let D1 = D2 = 0.001,
N = 30 in the numerical simulations.

In a component form, Eqs. (16)–(18) become

V̇ = f1(V, C, n) + D1 52 V (27)

Ċ = f2(V, C, n) + D1 52 C (28)

ṅ = f3(V, C, n) , (29)

where 52 corresponds to an N ×N matrix.
The “cell equilibrium points” Qi’s of Eqs.

(27)–(29) for the restricted local activity domain
[Dogaru, 1998] can be determined via

f1(V, C, n) = 0 (30)

f2(V, C, n) = 0 (31)

f3(V, C, n) = 0 . (32)

Numerical calculation shows that Eqs. (30)–(32)
have a cell equilibrium point Q.
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The cell coefficients am,n(Q)′s are defined via
the corresponding Jacobian

A
∆
=

a11(Q) a12(Q) a13(Q)

a21(Q) a22(Q) a23(Q)

a31(Q) a32(Q) a33(Q)



∆
=



∂f1(U)

∂V

∂f1(U)

∂C

∂f1(U)

∂n

∂f2(U)

∂V

∂f2(U)

∂C

∂f2(U)

∂n

∂f3(U)

∂V

∂f3(U)

∂C

∂f3(U)

∂n


∆
=

[
Aaa Aab

Aba Abb

]
, (33)

where U = (V(Q), C(Q), n(Q)). Consequently,
the corresponding CNN cell admittance YQ(s) can
be calculated via (33) and (15).

Using the Main Theorem and Theorems 3.1–
3.4, the locally active and unstable domain, locally
passive domain, and edge of chaos with respect to
the equilibrium points Q′s (i.e. the bifurcation dia-
grams of the ECM CNNs) can be numerically cal-
culated via computer programs.

Now, let the parameters g∗K,C and g∗K,V vary
in the intervals [5, 15] and [200, 2200], respectively,
and the other parameters are fixed. Then, the cal-
culation results are shown in Fig. 1. It follows that

5 10 15
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

  g*
K,C

  g
* K

,V

Fig. 1. Bifurcation diagram of the coupled excitable cell
model CNN at cross-section g∗K,C ∈ [5, 15] and g∗K, V ∈ [200,
2200]. The domains are coded as follows: edge of chaos
(locally active and stable) domain (red), locally active and
unstable domain (green).

for the parameter groups:

• The bifurcation diagram with respect to the equi-
librium point Q′s has two locally active and un-
stable domains separated by an edge of chaos.
The numerical simulations will show that nearby
the edge of chaos, chaotic trajectories and/or
complex periodic trajectories may emerge.

3.3. Simulations of the ECM CNN
Dynamics

Now, we simulate numerically the three-dimen-
sional (3D) ECM equations and the ECM CNNs
with different cell parameters based on the bifurca-
tion graph shown in Fig. 1. The calculated results
are shown in Table 1 and some of the simulation
graphs are shown in Figs. 2–11, respectively. Our
numerical simulations demonstrate that

• The qualitative behaviors of the 3D ECM equa-
tions and the corresponding ECM CNNs may be
similar (see Figs. 2, 6 and 9) or different (see
Figs. 3–5, 7, 8, 10 and 11), depending on the loca-
tions of selected cell parameters and the coupling
parameters. This may imply that 3D ECMs can-
not always describe correctly the dynamics of the
practical ECM CNNs.
• In fact, the oscillation of the “normal heartbeat”

is robust (see Fig. 2 and parameter group No. 1
listed in Table 1). However, the frequencies of
the “heartbeats” of the 3D ECM and the corre-
sponding ECM CNN are about 70 beats/min and
60 beats/min, respectively.
• The dynamic pattern of the 3D ECM with pa-

rameter group No. 3 listed in Table 1 shows
chaotic characteristics [Fig. 4(a)]. However, the
corresponding behaviors of the ECM CNN con-
verges to a 10-periodic limit cycle [Figs. 4(b)–
4(e)]. It is observed that if the coupling param-
eters D1 = D2 = 0.0001, the graphs of the time
evolution of the corresponding ECM CNN will
also display chaotic patterns.
• The dynamic patterns of ECM CNNs with the

parameter groups Nos. 1–12 seem to exhibit
the processes of the heartbeat changes of the
patients:

Normal heart rate → Multi-period heart rate

→ Chaotic heart rate → Multi-period heart rate

→ Stop beating.

This fact implies that controlling parame-
ters g∗K,V and g∗K,C might make a heart with
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Table 1. Cell parameters and corresponding dynamic properties of the 3D ECMs and the ECM CNNs, where the
parameter group {Vk, VI , VL, VC , Vn, Vm, g∗I , g

∗
L, KC , ρ} = {−75 mV, 100 mV, −40 mV, 100 mV, −30 mV, −50 mV,

1800 s−1, 7 s−1, 3.3/18 mV, 0.27 mV−1s−1}. For items 1–5 and 11, take parameters D1 = D2 = 0.001; for items
6–10 and 12, take parameters D1 = D2 = 0.0001. The symbols ⇓, jp,

⊕
, FS indicate that convergent patterns,

j-period patterns, chaotic patterns and complex period patterns are observed near to or far from the corresponding
equilibrium points, respectively. The numbers marked by a ∗ indicate that the corresponding cell parameters lie on
the edge of the chaos domain.

No. g∗K,C/s−1 g∗K,V /s−1 Cell Equilibrium Point Eigenvalue Pattern (3D&HD)

1 10 1700 −32.4050, 2.4575, 0.2816 −0.0152, 11.9125 ± 33.0239i 1p 1p

2 10 1600 −31.7282, 2.6428, 0.2916 −0.0113, 11.7799 ± 37.4446i 2p 9p

3 10 1570 −31.5245, 2.6989, 0.2946 −0.0104, 11.6724 ± 38.7552i
⊕

10p

4 10 1400 −30.3556, 3.0213, 0.3122 −0.0067, 10.4284 ± 46.0900i 18p 17p

5 10 1000 −27.3547, 3.8065, 0.3589 −0.0025, 2.3721 ± 62.7407i FS FS

6 11 1000 −27.7697, 3.7049, 0.3523 −0.0034, 3.8788 ± 58.2799i FS FS

7 11 1400 −30.9635, 2.8538, 0.3030 −0.0107, 11.2109 ±−38.9826i FS 14p

8 11 1700 −33.3057, 2.2152, 0.2685 −0.0370, 11.5858 ±−21.8000i
⊕ ⊕

9 11 1735 −33.5929, 2.1394, 0.2643 −0.0460, 11.3675 ± 19.3632i 3p 3p

10 11 2200 −38.1796, 1.0962, 0.2029 23.5628, −18.8322, 0.0711 1p 2p

11∗ 10 920 −26.6775, 3.9656, 0.3696 −0.0021, −0.3222 ± 65.8716i ⇓ ⇓
12∗ 11 880 −26.7034, 3.9596, 0.3692 −0.0025, −0.2139 ± 63.5175i ⇓ ⇓
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Fig. 2. Graphs generated by the parameter group No. 1 listed in Table 1. (a) The one-period trajectory of the state variables
V , C and n of the ECM equations initial conditions: (V (0), C(0), n(0)) = (−45.4357, 0.5412, 0.1247). (b) The trajectory of
the state variables V1, C1 and n1 of the ECM CNN converges to a period-1 limit cycle. (c) The time evolution of the state
variables V1 of the ECM CNN. (d) and (e) The graphs of the time evolution of the state variables V ′i s and n′is of the ECM
CNN; initial conditions: (V1(0), C1(0), n1(0)) = (V (0), C(0), n(0)) and (Vi(0), Ci(0), ni(0)) = (0, 0, 0), i = 2, 3, . . . , 30.
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disordered heartbeat to recover the normal fre-
quency of heartbeat.
• The dynamics of the first cell (pacemaker cell) of

an ECM CNN may be quite different from other
ones. In fact, Figs. 10 and 11 demonstrate that
the first cell shows period-3 and period-2 trajec-
tories but the other 29 cells display period-21 and
period-18 trajectories, respectively.

3.4. Concluding remarks

Coupled nonlinear dynamical systems (CNDS) have
been widely studied in the recent years. However,
the dynamical properties of the CNNs are difficult
to study, particularly for ECMs. The local activity
theory of CNNs provides a new tool for the study
of the ECMs.

Our numerical simulations imply that:

(a) Regulating parameters g∗K,V and g∗K,C might
make a disordered heart to recover the normal
frequency of heartbeat.

(b) 3D ECMs may not always describe correctly the
dynamics of the corresponding HD ECM CNNs.

(c) The dynamics of the pacemaker cell of an ECM
CNN may be quite different from the others.

(d) The values of the diffusion coefficients D1, D2

may make the dynamic behaviors of ECMs con-
siderably different. Experimental data on the
diffusion coefficients are expected for computer
modeling.

(e) No sudden death phenomena are simulated,
which are quite different from the simulation re-
sults on the Hodgkin–Huxley CNN [Min et al.,
2000b].

Our research shows the effectiveness of the lo-
cal activity theory in the study of coupled excitable
cell models.

4. Analytical Criteria for Local
Activity of CNN with Four
State Variables and Two Ports

In the following subsections, first, we will set up
some analytical criteria for the Main Theorem for a
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Fig. 3. Graphs generated by the parameter group No. 2 listed in Table 1. (a) The period-2 trajectory of the state variables
V , C and n of the ECM equations; initial conditions: (V (0), C(0), n(0)) = (−44.5339, 0.5640, 0.1321). (b) The trajectory of
the state variables V1, C1 and n1 of the ECM CNN converges to a period-9 limit cycle. (c) The time evolution of the state
variables V1 of the ECM CNN. (d) and (e) The graphs of the time evolution of the state variables V ′i s and n′is of the ECM
CNN; initial conditions: (V1(0), C1(0), n1(0)) = (V (0), C(0), n(0)) and (Vi(0), Ci(0), ni(0)) = (0, 0, 0), i = 2, 3, . . . , 30.



Analytical Criteria for Local Activity of Two-Port CNN 939

� � �
� � � � �

� � �
� � �

� � � �

� � � �

� � � �

	
 � � 


�

� � � � � � � �
� � �

� � �� � �

� � �

� � �

� �� � � � �

 !

" # " $ " % "& ' (

) * +

, - .

/ 0 1

2 3 4

5 6
7

89

(a) (b) (c)

0 10 20 30 40 50 60
  t / s 

 V
i

1

30

 

0 10 20 30 40 50 60
  t / s 

  n
i

1

30

 

(d) (e)

Fig. 4. Graphs generated by the parameter group No. 3 listed in Table 1. (a) The chaotic trajectory of the state variables
V , C and n of the ECM equations; initial conditions: (V (0), C(0), n(0)) = (−45.2256, 0.5785, 0.1271). (b) The trajectory of
the state variables V1, C1 and n1 of the ECM CNN converges to a ten-period limit cycle. (c) The time evolution of the state
variables V1 of the ECM CNN. (d) and (e) The graphs of the time evolution of the state variables V ′i s and n′is of the ECM
CNN; initial conditions: (V1(0), C1(0), n1(0)) = (V (0), C(0), n(0)), and (Vi(0), Ci(0), ni(0)) = (0, 0, 0), i = 2, 3, . . . , 30.

general two-port CNN cell with four state variables.
Second, we will calculate the bifurcation diagram
of the SCC CNN with two reaction–diffusion coef-
ficients and then simulate numerically the dynamic
behaviors of the 4D SCCs and the SCC CNNs.

4.1. Theorems

For a two-port CNN cell with four state variables,
the corresponding local state equations assume the
following form:

V̇a = AaaVa + AabVb + Ia

V̇b = AbaVa + AbbVb ,

where

Va = [V1, V2]
T , Vb = [V3, V4]

T , Ia = [I1, I2]
T ,

Aaa =

[
a11 a12

a21 a22

]
, Aab =

[
a13 a14

a23 a24

]
,

Aba =

[
a31 a32

a41 a42

]
, Abb =

[
a33 a34

a43 a44

]
.

(34)

The corresponding CNN cell admittance YQ(s) is
given by

YQ(s) = (sI−Aaa)−Aab(sI−Abb)−1Aba

=

[
s− a11 −a12

−a21 s− a22

]
− 1

s2 + a00s+ b00

×
[
q11s+ q110 q12s+ q120

q13s+ q130 q14s+ q140

]
(35)

where

q11 = a13a31 + a14a41 (36)

q110 = a13a34a41 + a14a43a31

− a13a31a44 − a41a14a33 (37)

q12 = a13a32 + a14a42 (38)

q120 = a13a34a42 + a14a32a43

− a13a32a44 − a14a33a42 (39)

q13 = a23a31 + a24a41 (40)
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Fig. 5. Graphs generated by the parameter group No. 4 listed in Table 1. (a) The period-18 trajectory of the state variables
V , C and n of the ECM equations; initial conditions: (V (0), C(0), n(0)) = (−50.6499, 0.6083, 0.0848). (b) The trajectory of
the state variables V1, C1 and n1 of the ECM CNN converges to a period-17 limit cycle. (c) The time evolution of the state
variables V1 of the ECM CNN. (d) and (e) The graphs of the time evolution of the state variables V ′i s and n′is of the ECM
CNN; initial conditions: (V1(0), C1(0), n1(0)) = (V (0), C(0), n(0)), and (Vi(0), Ci(0), ni(0)) = (0, 0, 0), i = 2, 3, . . . , 30.

q130 = a24a31a43 + a23a34a41

− a23a31a44 − a24a33a41 (41)

q14 = a23a32 + a24a42 , (42)

q140 = a23a34a42 + a24a32a43

− a23a32a44 − a24a33a42 (43)

a00 = −a33 − a44 (44)

b00 = a33a44 − a34a43 . (45)

Lemma 4.1. Let p(s) = s2 + as+ b. Then ∃s ∈ C,
and Re(s) > 0, s.t. p(s) = 0 ⇔ (a, b) ∈ A =
{(x, y)|x < 0, or y < 0}.

Proof. Since p(s) = 0⇒ s = (−a±
√
a2 − 4b)/2, it

implies that

(a) If a ≥ 0 and b ≥ 0, then Re(s) ≤ 0.
(b) If a < 0 or b < 0, then there exists at least a

root s of p(s) = 0 s.t. Re(s) > 0.

This completes the proof. �

Lemma 4.1 gives the following result.

Theorem 4.1. For i = 1, 2, 3, 4, let q1i, q1i0, a00

and b00 be defined by formulas (36)–(45). Then,
YQ(s) satisfies Condition 1 in the Main Theorem
if, and only if, at least one of the following condi-
tions holds: there exists an i ∈ {1, 2, 3, 4} s.t.

1. If two roots of s2 + a00s + b00 = 0 do not equal
−q1i0/q1i, and

(a00, b00) ∈ A = {(x, y)|x < 0 or y < 0} .

2. If a root s1 of s2+a00s+b00 = 0 equals −q1i0/q1i,
but another root s2 must satisfy Re(s2) > 0.

Proof. By Lemma 4.1, Condition 1 or Condition 2
guarantees that YQ(s) has a pole in Re(s) > 0. �

Theorem 4.2. For i = 1, 2, 3, 4, let q1i, q1i0, a00

and b00 be defined by formulas (36)–(45). Then,
YQ(s) satisfies Condition 3 in the Main Theo-
rem if, and only if, at least one of the following
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Fig. 6. Graphs generated by the parameter group No. 5 listed in Table 1. (a) The FS period trajectory of the state variables
V , C and n of the ECM equations; initial conditions: (V (0), C(0), n(0)) = (−54.1528, 1.0179, 0.0642). (b) The trajectory of
the state variables V1, C1 and n1 of the ECM CNN converges to a FS period trajectory. (c) The time evolution of the state
variables V1 of the ECM CNN. (d) and (e) The graphs of the time evolution of the state variables V ′i s and n′is of the ECM
CNN; initial conditions: (V1(0), C1(0), n1(0)) = (V (0), C(0), n(0)) and (Vi(0), Ci(0), ni(0)) = (0, 0, 0), i = 2, 3, . . . , 30.

conditions holds:

1. If a00 6= 0, b00 = 0, max{|q110|, |q120|, |q130|,
|q140|} 6= 0, and

(a) q120 6= q130, or
(b) q120 = q130 but (q110q140 − q120q130)/a00 > 0,

or q1i0/a00 > 0, i = 1, or, 2 or, 4.

2. If a00 = 0, b00 > 0, max{|q11| + |q110|, |q12| +
|q120|, |q13|+ |q130|, |q14|+ |q140|} 6= 0, and

(a) YQ(s) does not satisfy the following
condition

(∗) q110 = q140 = 0, q12 = q13, q120 = q130, or

(b) YQ(s) satisfies the condition (∗) and

q11 + q14 > 0 or q11q14 − q2
12 − q2

120/b00 < 0.

Proof. The expression of YQ(s) has the form

YQ(s) =

[
s− a11 −a12

−a21 s− a22

]
− 1

s2 − a00s+ b00

×
[
q11s+ q110 q12s+ q120

q13s+ q130 q14s+ q140

]
. (46)

1. From Eq. (46), if YQ(s) has a simple pole s = 0
on the imaginary axis, then a00 6= 0, b00 = 0 and

max{|q110|, |q120|, |q130|, |q140|} 6= 0 .

In this case,

k1 = lim
s→0

sYQ(s) = − 1

a00

[
q110 q120

q130 q140

]
.

Therefore,

(a) If q130 6= q120, then k1 is not a Hermitian.
(b) If q130 = q120, and (q110q140− q120q130)/a00 > 0,

or q1i0/a00 > 0, i = 1, or, 2 or, 4. Then k1 is
not a positive semi-definite Hermitian matrix.
This shows that Condition 1 in the Theorem is
satisfied.

2. Equation (46) implies that if YQ(s) has a simple
pole s = iω on the imaginary axis, then

a00 = 0, b00 > 0 and

max{|q11|+ |q110|, |q12|+ |q120|, |q13|
+ |q130|, |q14|+ |q140|} 6= 0 .

(47)
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Fig. 7. Graphs generated by the parameter group No. 6 listed in Table 1. (a) The FS period trajectory of the state variables
V , C and n of the ECM equations; initial conditions: (V (0), C(0), n(0)) = (−53.5931, 0.7699, 0.0672). (b) The trajectory
of the state variables V1, C1 and n1 of the ECM CNN converges to a FS period trajectory. (c) The time evolution of the
state variables V1 of the ECM CNN. (d) and (e) The graphs of the time evolution of the state variables V ′i s and n′is of
the ECM CNN; initial conditions: (V1(0), C1(0), n1(0)) = (−53.0990, 0.0699, 0.7125), and (Vi(0), Ci(0), ni(0)) = (0, 0, 0),
i = 2, 3, . . . , 30.

In this case,

k1 = lim
s→i
√
b00

(s− i
√
b00)YQ(s)

=
−1

2i
√
b00

[
q11i
√
b00 + q110 q12i

√
b00 + q120

q13i
√
b00 + q130 q14i

√
b00 + q140

]

=
−1

2

[
q11 − iq110/

√
b00 q12 − iq120/

√
b00

q13 − iq130/
√
b00 q14 − iq140/

√
b00

]
.

Therefore,

(a) If Condition (∗) does not hold, then k1 is not a
Hermitian matrix.

(b) If Condition (∗) holds, then

det|λI − k1| = λ2 + λ(q11 + q14)/2 + q11a14/4

− (q12/2)
2 − q2

120/(4b00) .

Hence, if (q11 + q14) > 0 or q11q14/4 − (q12/2)
2 −

q2
120/(4b00) < 0, then k1 is not a positive semi-

definite Hermitian matrix. In the case that the pole

s = −i
√
b00, the same conclusion can also be ob-

tained. Finally,

k1 = lim
ωρ→∞

YQ(iωρ)/iωρ = I

is a positive definite matrix.
Thus, we have completed the proof. �

In order to set up the analytic criteria for Con-
dition 2 in the Main Theorem, the following equal-
ities are stated in advance:

A11 = 2(a00q11 − q110); B11 = 2b00q110 (48)

A12 = a00(q13 + q12)− q130 − q120 (49)

B12 = b00(q120 + q130) (50)

B120 = b00(q12 − q13) + a00(q130 − q120) (51)

A14 = 2(a00q14 − q140) (52)

B14 = 2b00q140 (53)
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Fig. 8. Graphs generated by the parameter group No. 7 listed in Table 1. (a) The FS period trajectory of the state variables
V , C and n of the ECM equations; initial conditions: (V (0), C(0), n(0)) = (−44.7464, 0.1300, 0.4661). (b) The trajectory of
the state variables V1, C1 and n1 of the ECM CNN converges to a 16-period limit cycle. (c) The time evolution of the state
variables V1 of the ECM CNN. (d) and (e) The graphs of the time evolution of the state variables V ′i s and n′is of the ECM
CNN; initial conditions: (V1(0), C1(0), n1(0)) = (V (0), C(0), n(0)), and (Vi(0), Ci(0), ni(0)) = (0, 0, 0), i = 2, 3, . . . , 30.

Ω1 = −2a2
00(a11 + a22) +A11A14

4(a11 + a22)
(54)

g1(Ω1) = 2(a11 + a22)Ω
2
1 + [2a2

00(a11 + a22)

+A11A14]Ω1 +B11B14 (55)

Ω2 = − A11 +A14

4(a11 + a22)
(56)

g2(Ω2) = 2(a11 + a22)Ω
2
2

+(A11 +A14)Ω2 +B11 +B14 (57)

a∗1 =
2(B11 +B14)

A11 +A14
(58)

a∗0 = −b200 +
(a2

00 − 2b00)(B11 +B14)

A11 +A14
(59)

Ω3 =
−a∗1 +

√
a∗1

2 − 4a∗0
2

(60)

Ω4 =
−a∗1 −

√
a∗1

2 − 4a∗0
2

(61)

g3(Ωi) = 2(a11 + a22)

+
Ωi(A11 +A14) +B11 +B14

(b00 − Ωi)2 + a2
00Ωi

,

i = 3, 4 (62)

Ω5 =
2b00 − a00

2
(63)

g4(Ω5) = 2(a11 + a22)[(b00 − Ω5)
2 + a2

00Ω5]

+B11 +B14 (64)

MM = 2b200[a22B11 + a11B14 − (a12 + a21)B12]

+B11B14 −B2
12 (65)

J = 2a22A11 + 2a11A14 − 2(a12 + a21)A12

− (q12 − q13)
2 (66)

K = 2a22B11 + 2a22(a
2
00 − 2b00)A11 + 2a11B14

+2a11(a
2
00 − 2b00)A14 +A11A14 − 2(a12

+ a21)B12 − 2(a12 + a21)A12(a
2
00 − 2b00)

−A2
12 − 2(q12 − q13)B120 (67)
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Fig. 9. Graphs generated by the parameter group No. 8 listed in Table 1. (a) The chaotic trajectory of the state variables V ,
C and n of the ECM equations; initial conditions: (V (0), C(0), n(0)) = (−44.7464, 0.1300, 0.4660). (b) The trajectory of the
state variables V1, C1 and n1 of the ECM CNN exhibit chaos. (c) The time evolution of the state variables V1 of the ECM
CNN. (d) and (e) The graphs of the time evolution of the state variables V ′i s and n′is of the ECM CNN; initial conditions:
(V1(0), C1(0), n1(0)) = (V (0), C(0), n(0)) and (Vi(0), Ci(0), ni(0)) = (0, 0, 0), i = 2, 3, . . . , 30.

L = 2a22B11(a
2
00 − 2b00) + 2a22A11b

2
00

+2a11B14(a
2
00 − 2b00) + 2a11A14b

2
00

− 2(a12 + a21)B12(a
2
00 − 2b00)− 2(a12

+ a21)A12b
2
00 − 2A12B12 −B2

120

+B11A14 +A11B14 (68)

M = 2a22B11b
2
00 + 2a11B14b

2
00 − 2(a12

+ a21)B12b
2
00 +B11B14 −B2

12 (69)

Ω6 =
−K +

√
K2 − 3JL

3J
(70)

Ω7 =
−K −

√
K2 − 3JL

3J
(71)

g5(Ωi) = JΩ3
i +KΩ2

i + LΩi +M ,

i = 6, 7 (72)

Ω8 = − L

2K
(73)

g6(Ω8) = KΩ2
8 + LΩ8 +M (74)

E = 4a11a22 − (a12 + a21)
2 (75)

F = 2(a2
00 − 2b00)E + J (76)

G = (a4
00 − 4a2

00b00 + 6b200)E +K (77)

H = 2b200(a
2
00 − 2b00)E + L (78)

I = b400E +M (79)

w1 =
−1 + i

√
3

2
; w2 =

−1− i
√

3

2
(80)

α0 =
3F

4E
, β0 =

G

2E
(81)
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3
α2

0 + β0 (82)

q =
2

27
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+
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(83)
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Fig. 10. Graphs generated by the parameter group No. 9 listed in Table 1. (a) The three-period trajectory of the state
variables V , C and n of the ECM equations; initial conditions: (V (0), C(0), n(0)) = (−43.7384, 0.4580, 0.1374). (b) The
trajectory of the state variables V1, C1 and n1 of the ECM CNN converges to a three-period limit cycle. (c) The time
evolution of the state variables V1 of the ECM CNN. (d) and (e) The graphs of the time evolution of the state variables V ′i s
and n′is of the ECM CNN; initial conditions: (V1(0), C1(0), n1(0)) = (V (0), C(0), n(0)) and (Vi(0), Ci(0), ni(0)) = (0, 0, 0),
i = 2, 3, . . . , 30.

∆1 = {−q/2 + [(q/2)2 + p3/27]1/2}1/3

+ {−q/2− [(q/2)2 + p3/27]1/2}1/3 (85)

∆2 = w1{−q/2 + [(q/2)2 + p3/27]1/2}1/3

+w2{−q/2− [(q/2)2 + p3/27]1/2}1/3 (86)

∆3 = w2{−q/2 + [(q/2)2 + p3/27]1/2}1/3

+w1{−q/2− [(q/2)2 + p3/27]1/2}1/3 (87)

Ω9 = ∆1 − α0/3 (88)

Ω10 = ∆2 − α0/3 (89)

Ω11 = ∆3 − α0/3 (90)

Ω12 =
−G+

√
G2 − 3FH

3F
(91)

Ω13 =
−G−

√
G2 − 3FH

3F
(92)

Ω14 = −H
G

(93)

g7(Ωi) = EΩ4
i + FΩ3

i +GΩ2
i +HΩi + I ;

i = 9, 10, . . . , 14 . (94)

Theorem 4.3. Let the following parameters be de-
fined via formulas (36)–(45), and (48)–(94). Then,
YQ(s) satisfies Condition 2 in the Main Theo-
rem if, and only if, one of the following conditions
holds:

(i) a11 + a22 > 0.
(ii) a11 + a22 = 0 and A11 +A14 > 0.
(iii) a11 + a22 = 0, A11 + A14 ≤ 0, and B11 +

B14 > 0.
(iv) a11 + a22 < 0, b00 6= 0, and 2(a11 + a22) +

(B11 +B14)/b
2
00 > 0.

(v) a11 + a22 < 0, b00 = 0, a00 6= 0, and
B11 +B14 > 0.

(vi) a11+a22 < 0, b00 = 0, a00 6= 0, B11+B14 ≤ 0,
and Ω1 ≥ 0, g1(Ω1) > 0.

(vii) a11 + a22 < 0, a00 = 0, b00 = 0, and Ω2 ≥ 0,
g2(Ω2) > 0.
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Fig. 11. Graphs generated by the parameter group No. 10 listed in Table 1. (a) The one-period trajectory of the state
variables V , C and n of the ECM equations; initial conditions: (V (0), C(0), n(0)) = (−46.1873, 0.4321, 0.1816). (b) The
trajectory of the state variables V1, C1 and n1 of the ECM CNN converges to a two-period limit cycle. (c) The time evolution
of the state variables V1 of the ECM CNN. (d) and (e) The graphs of the time evolution of the state variables V ′i s and
n′is of the ECM CNN; initial conditions: (V1(0), C1(0), n1(0)) = (V (0), C(0), n(0)) and (Vi(0), Ci(0), ni(0)) = (0, 0, 0),
i = 2, 3, . . . , 30.

(viii) a11+a22 < 0, a00 6= 0, b00 6= 0, A11+A14 6= 0,
and

(a) Ω3 ≥ 0, g3(Ω3) ≥ 0 or
(b) Ω4 ≥ 0, g3(Ω4) ≥ 0.

(ix) a11+a22 < 0, a00 6= 0, b00 6= 0, A11+A14 = 0,
and Ω5 ≥ 0, g4(Ω5) > 0.

(x) E < 0.
(xi) E = 0 and MM < 0.
(xii) E = 0, MM ≥ 0, J 6= 0, and

(a) Ω6 ≥ 0, g5(Ω6) < 0 or
(b) Ω7 ≥ 0, g5(Ω7) < 0.

(xiii) E = 0, MM ≥ 0, J = 0, K 6= 0, Ω8 ≥ 0, and
g6(Ω8) < 0.

(xiv) E = 0, MM ≥ 0, J = K = 0, and

(a) M < 0 or
(b) L < 0.

(xv) E > 0, and one of the following conditions
holds:

(a) D > 0, Ω9 ≥ 0, g7(Ω9) < 0.
(b) D < 0, and

(1) Ω9 ≥ 0, g7(Ω9) < 0 or
(2) Ω10 ≥ 0, g7(Ω10) < 0 or
(3) Ω11 ≥ 0, g7(Ω11) < 0.

(c) D = 0, p = q = 0, α0 ≤ 0 and
g7(−α0/3) < 0.

(d) D = 0, q2/4 = −p3/27 6= 0, and

(1) Ω9 ≥ 0, g7(Ω9) < 0 or
(2) Ω10 ≥ 0, g7(Ω10) < 0.

Proof. Let

δ11 = ω2A11 +B11 ;

δ12 = A12ω
2 + iω[(q13 − q12)ω

2 +B120] +B12 ;

δ14 = ω2A14 +B14 ; δ13 = δ12 .

Then,
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|λI− Y H
Q (iω)| =


λ+ 2a11 +

δ11

(b00 − ω2)2 + (a00ω)2
(a12 + a21) +

δ12

(b00 − ω2)2 + (a00ω)2

(a12 + a21) +
δ13

(b00 − ω2)2 + (a00ω)2
λ+ 2a22 +

δ14

(b00 − ω2)2 + (a00ω)2



=

(
λ+ 2a11 +

ω2A11 +B11

(b00 − ω2)2 + (a00ω)2

)(
λ+ 2a22 +

ω2A14 +B14

(b00 − ω2)2 + (a00ω)2

)

−
[
a12 + a21 +

A12ω
2 +B12

(b00 − ω2)2 + (a00ω)2

]2

− ω2[(q13 − q12)ω
2 +B120]

2

[(b00 − ω2)2 + (a00ω)2]2

∆
= λ2 + a1λ+ a0 .

Consequently, if a1 > 0 or a0 < 0, then YQ(s) sat-
isfies Condition 2 in Main Theorem.

Case 1. Conditions for a1 > 0.

a1 = 2(a11 + a22) +
(A11 +A14)ω

2 +B11 +B14

(b00 − ω2)2 + a2
00ω

2
.

(I) If a11 + a22 > 0, then a1 > 0, when ω is large
enough [Theorem 4.3(i)].

(II) If a11+a22 = 0, then a1 > 0⇔ (A11+A14)Ω+
B11 +B14 > 0. Therefore if

(A) A11 +A14 > 0, a11 +a22 = 0, then a1 > 0
as ω is large enough [Theorem 4.3(ii)];

(B) A11 + A14 ≤ 0, a11 + a22 = 0 and
B11 + B14 > 0, then a1 > 0 as ω = 0
[Theorem 4.3(iii)].

(III) If a11 + a22 < 0,

(A) a11 + a22 < 0, b00 6= 0 and 2(a11 + a22) +
[(B11 + B14)/b

2
00] > 0 then a1 > 0, for

ω = 0 [Theorem 4.3(iv)].
(B) If a11 + a22 < 0, b00 = 0, a00 6= 0, solve

a1(Ω)=g1(Ω)=2(a11+a22)

+
(A11+A14)Ω+B11+B14

(b00−Ω)2+a2
00Ω

>0 .

We can first solve

[2(a11 + a22)(Ω
2 + a2

00Ω)

+ (A11 +A14)Ω +B11 +B14]
′ = 0 ,

4Ω(a11 + a22) + [2a2
00(a11 + a22) +A11 +A14] = 0 .

We obtain

Ω1 =
−[2a2

00(a11 + a22) +A11 +A14]

4(a11 + a22)
.

Therefore if Ω1 ≥ 0 and g1(Ω1) > 0, then a1 > 0.
It follows that

(B1) a11 + a22 < 0, b00 = 0, a00 6= 0,
B11 + B14 > 0, then a1 > 0 [Theo-
rem 4.3(v)].

(B2) a11 + a22 < 0, b00 = 0, a00 6= 0,
B11 +B14 ≤ 0, Ω1 ≥ 0 and g1(Ω1) > 0,
then a1 > 0 [Theorem 4.3(vi)].

(C) a11+a22 < 0, b00 = a00 = 0, then a1 > 0
becomes

a1(Ω) = 2(a11 + a22)

+
(A11 +A14)Ω +B11 +B14

Ω2

> 0 .

Let

g2(Ω) = 2Ω2(a11 + a22) + (A11 +A14)Ω

+B11 +B14 .

Solving

g′2(Ω) = 0⇒ 4Ω(a11 + a22) +A11 +A14

= 0 ,

we obtain

Ω2 =
−A11 −A14

4(a11 + a22)
≥ 0 .

It follows that if a11 + a22 < 0, a00 =
b00 = 0, Ω2 ≥ 0 and g2(Ω2) > 0, then
a1 > 0 [Theorem 4.3(vii)].

(D) a11 + a22 < 0, a00 6= 0, b00 6= 0. Let

a1 = g3(Ω) = g3(ω
2)

= 2(a11 + a22)

+
(A11 +A14)Ω +B11 +B14

(b00 − Ω)2 + a2
00Ω

.
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Solving g′3(Ω) = 0, we obtain

(A11 +A14)[(b00 − Ω)2 + a2Ω]

− [(A11 +A14)Ω +B11

+B14][−2(b00 − Ω) + a2] = 0 .

(D1) If A11 +A14 6= 0, then

Ω2 +
2(B11 +B14)

A11 +A14
Ω− b200

+
(a2

00 − 2b00)(B11 +B14)

A11 +A14
= 0 .

From the above equation, we get

Ω3,4 =
−a∗1 ±

√
a∗21 − 4a∗0
2

.

We conclude that if a11 + a22 < 0,
a00 6= 0, b00 6= 0, A11 +A14 6= 0, and

(a) Ω3 ≥ 0 and g3(Ω3) > 0, or
(b) Ω4 ≥ 0 and g4(Ω4) > 0,

then a1 > 0 [Theorem 4.3(viii)].
(D2) If A11 + A14 = 0, then a1 = 2(a11 +

a22) + (B11 +B14)/[(b00 − Ω)2 + a2
00Ω].

Let

g4(Ω) = 2(a11 + a22)[(b00 − Ω)2 + a2
00Ω]

+B11 +B14 > 0 .

Solving
g4(Ω) = 0 ,

that is −2(b00 − Ω) + a2
00 = 0, we obtain

Ω5 =
2b00 − a2

00

2
.

Therefore, if a11 + a22 < 0, a00 6= 0, b00 6= 0,
A11 + A14 = 0, Ω5 ≥ 0 and g4(Ω5) > 0, then
a1 > 0 [Theorem 4.3(ix)].

Case 2. Conditions for a0 < 0.

a0 =

[
2a11 +

ω2A11 +B11

(b00 − ω2)2 + a2
00ω

2

]

×
[
2a22 +

ω2A14 +B14

(b00 − ω2)2 + a2
00ω

2

]

−
[
a11 + a22 +

ω2A12 +B12

(b00 − ω2)2 + a2
00ω

2

]2

−
{
ω[(q13 − q12)ω

2 +B120]

(b00 − ω2)2 + a2
00ω

2

}2

.

(I) If 4a11a22 − (a12 + a21)
2 < 0, then a0 < 0 as

ω is large enough [Theorem 4.3(x)].
(II) (A) If E = 0 and b00 6= 0, let g(ω) = a0(ω).

Then

g(ω)

= 4a11a22

+
2a22(ω

2A11+B11)+2a11(ω
2A14+B14)

(b00−ω2)2+(a00ω)2

+
(ω2A11+B11)(ω

2A14+B14)

[(b00−ω2)2+(a00ω)2]2

− 2(a12+a21)(A12ω
2+B12)

(b00−ω2)2+(a00ω)2

− (ω2A12+B12)
2

[(b00−ω2)2+(a00ω)2]2

− ω
2[(q13−q12)ω

2+B120]
2

[(b00−ω2)2+(a00ω)2]2

− (a12+a21)
2 .

Let Ω = ω2. If

MM = 2b200[a22B11 + a11B14 − (a12 + a21)B12]

= b11B14 −B2
12 < 0 ,

then a0 < 0, g(Ω) < 0 as ω = 0 [Theo-
rem 4.3(xi)].

(B) 4a11a22−(a12 +a21)
2 = 0, and MM ≥ 0.

Let

g5(Ω) = JΩ3 +KΩ2 + LΩ +M .

Solving

g′5(Ω) = 0 ,

we obtain

3JΩ2 + 2KΩ + L = 0 .

(B1) J 6= 0, solving the above equation, we
obtain

Ω6,7 =
−K ±

√
K2 − 3JL

3J
.

It follows that if 4a11a22−(a12+a21)
2 =

0, MM ≥ 0, J 6= 0, and



Analytical Criteria for Local Activity of Two-Port CNN 949

(a) Ω6 ≥ 0 and g5(Ω6) < 0, or
(b) Ω7 ≥ 0 and g5(Ω7) < 0,

then a0 < 0 [Theorem 4.3(xii)].
(B2) J 6= 0 and K 6= 0. Let

g6(Ω) = KΩ2 + LΩ +M .

Solving

g′6(Ω) = 2KΩ + L = 0 ,

we obtain

Ω8 = − L

2K
.

It follows that if 4a11a22−(a12+a21)
2 =

0, and MM ≥ 0, J = 0, k 6= 0, Ω8 ≥ 0
and g6(Ω8) < 0, then a0 < 0 [Theo-
rem 4.3(xiii)].

(C) If J = K = 0, then g6(Ω) = LΩ + M .
Therefore, if 4a11a22− (a12 + a21)

2 = 0,
and MM ≥ 0, J = 0, K = 0 and

(a) M < 0 or
(b) L < 0,

then a0 < 0 [Theorem 4.3(xiv)].
(III) 4a11a22 − (a12 + a21)

2 > 0,

a0 = g7(Ω)

= EΩ4 + FΩ3 +GΩ2 +HΩ + I . (95)

If E 6= 0, denote

p = −3F 2/16E2 +G/2E

q = F 3/32E3 − FG/8E2 +H/4E

D = q2/4 + p3/27 .

Then, from the formulas for the roots of a
cub polynomial, we can conclude that a0 < 0
[Theorem 4.3(xv)] if, and only if, one of the
following conditions holds:

(a) D > 0, Ω9 > 0, g7(Ω9) < 0,
(b) D < 0 and

(1) Ω9 ≥ 0 and g7(Ω9) < 0 or
(2) Ω10 ≥ 0 and g7(Ω10) < 0 or
(3) Ω11 ≥ 0 and g7(Ω11) < 0.

(c) D = 0, p = 0, q = 0, α0 ≤ 0 and

g7(Ω) = g7(−α0/3)

= E(α0/3)
4 − F (α0/3)

3 +G(α0/3)
2

−H(α0/3) + I < 0

(d) D = 0, q2/4 = −p3/27 6= 0

(1) Ω9 ≥ 0 and g7(Ω9) < 0 or
(2) Ω10 ≥ 0 and g7(Ω10) < 0.

In summary, we have completed the proof. �

Theorem 4.4. For i = 1, 2, 3, 4, let q1i, q1i0, a00

and b00 be defined by formulas (36)–(45). Then,
YQ(s) has a multiple pole on the imaginary axis if,
and only if, a00 = b00 = 0, and

max{|q11|+ |q110|, |q12|+ |q120|, |q13|+ |q130|,
|q14|+ |q140|} 6= 0 .

Proof. YQ(s) can only have a double pole 0 on the
imaginary axis. It is true if, and only if, the above
equation holds. �

In summary, Theorems 4.1–4.4 provide the an-
alytic criteria for two-port CNN with four state
variables.

4.2. SCC CNN and bifurcation
diagrams

The two-port SCC with four state variables and
15×15 arrays is similar to the one-port SCC given in
[Min et al., 2000], which might be the most friendly
model that either has very complex dynamical be-
haviors or can be studied easily via the local activity
theory. The 4D SCC equations are represented as
follows.

dx1

dt
= α

[
x2 − x1 − bx1

− (a− b)
π

arctan(5x1)

]
(96)

dx2

dt
= x1 − x2 + x3 (97)

dx3

dt
= −βx2 (98)

dx4

dt
= α

[
x1 − x4 − 2bx1

− 2(a− b)
π

arctan(5x1)

]
, (99)

where α, β, a and b are parameters.



950 L. Min & N. Yu

The corresponding two-port SCC CNN is given
by

ẋ1i,j = α

[
x2i,j − x1i,j − bx1i,j −

(a− b)
π

× arctan(5x1i,j)] +D1[x1i+1,j + x1i−1,j

+x1i,j+1 + x1i,j−1 − 4x1i,j] (100)

ẋ2i,j = x1i,j − x2i,j + x3i,j +D2[x2i+1,j + x2i−1,j

+x2i,j+1 + x2i,j−1 − 4x2i,j] (101)

ẋ3i,j = −βx2i,j (102)

ẋ4i,j = α [x1i,j − x4i,j − 2bx1i,j

− 2(a− b)
π

arctan(5x1i,j)

]
i, j = 1, 2, . . . , 15 . (103)

Now, let us revise Eqs. (100)–(103) into four equa-
tions of 225 × 1 vector differential equations, via
choosing a row-wise order scheme:

x1i,j| −→ x
(i−1)N+j
1

x2i,j| −→ x
(i−1)N+j
2

x3i,j| −→ x
(i−1)N+j
3

x4i,j| −→ x
(i−1)N+j
4

i, j = 1, 2, . . . , 15 .

X1 = [x1
1, x

2
1, . . . , x

225
1 ]

X2 = [x1
2, x

2
2, . . . , x

225
2 ]

X3 = [x1
3, x

2
3, . . . , x

225
3 ]

X4 = [x1
4, x

2
4, . . . , x

225
4 ] .

Consequently, in a component form,
Eqs. (100)–(103) become

Ẋ1 = f1(X1, X2, X3, X4) +D1 52 X1 (104)

Ẋ2 = f2(X1, X2, X3, X4) +D2 52 X2 (105)

Ẋ3 = f3(X1, X2, X3, X4) (106)

Ẋ4 = f4(X1, X2, X3, X4) (107)

where

f1(X1, X2, X3, X4)

= α

[
X2 −X1 − bX1 −

(a− b)
π

arctan(5X1)

]
(108)

f2(X1, X2, X3, X4) = X1 −X2 + X3 (109)

f3(X1, X2, X3, X4) = −βX2 (110)

f4(X1, X2, X3, X4)

= α

[
X1 −X4 − 2bX1 − 2

(a− b)
π

arctan(5X1)

]
(111)

and 52 corresponds to a 225 × 225 matrix.
The cell equilibrium points Q′is of Eqs. (104)–

(107) for the restricted local activity domain
[Dogaru & Chua, 1998a] can be determined numer-
ically via

f1(X1, X2, X3, X4) = 0 (112)

f2(X1, X2, X3, X4) = 0 (113)

f3(X1, X2, X3, X4) = 0 (114)

f4(X1, X2, X3, X4) = 0 . (115)

From Eqs. (108)–(115), it follows that for any pa-
rameter group {α, β, a, b}, there exists at least one
cell equilibrium point:

Q1 = (0, 0, 0, 0) .

On the other hand, the other cell equilibrium point
Qi = (x1, x2, x3, x4) must satisfy the following
equations:

X2 = 0 (116)

X3 = −X1 (117)

0 = (1 + b)X1 +
(a− b)
π

arctan(5X1) (118)

0 = X1 −X4 − 2bX1 − 2
(a− b)
π

arctan(5X1) .

(119)

Mathematical analysis shows that Eqs. (116)–(119)
have just two nonzero equilibrium points and are
determined by the following:

Constraint condition [Min et al., 2000b]. If Q2 is
a nonzero equilibrium point, then Q3 = −Q2 is also
an equilibrium point, and the parameters a and b
have to satisfy the following inequality:

(b+ 1) < 5(b − a)/π . (120)
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Using the constraint condition (120), the
admissible parameter domain for the nonzero
equilibrium points Q2 and Q3 can be calculated
via computer programming. Consequently, the
cell coefficients am,n(Qi)

′s are well defined via the
corresponding Jacobian matrix:

Ai
∆
=


a11(Qi) a12(Qi) a13(Qi) a14(Qi)

a21(Qi) a22(Qi) a23(Qi) a24(Qi)

a31(Qi) a32(Qi) a33(Qi) a34(Qi)

a41(Qi) a42(Qi) a43(Qi) a44(Qi)



=


a11(Qi) a12(Qi) 0 0

a21(Qi) a22(Qi) a23(Qi) 0

0 a32(Qi) 0 0

a41(Qi) 0 0 a44(Qi)


(121)

where



a11 = α

{
−1−

[
b+

5(a− b)
π(1 + (5x1)2)

]}
,

a12 = α, a21 = 1, a22 = −1 ,

a23 = 1, a32 = −β, a44 = −α ,

a41 = α

{
−1− 2

[
b+

5(a− b)
π(1 + (5x1)2)

]}
.

(122)

Using Theorems 4.1–4.4, constrain condition
(120) and formulas (35)–(45), (121) and (122), the
locally active domains, locally passive domains and
edges of chaos with respect to the equilibrium points
Q1 and Q2 (resp. Q3) with different cell parame-
ters, are shown in Figs. 12(a) and 12(b), respec-
tively. From these graphs, it can be concluded
that:

• For all the selected parameter groups, the corre-
sponding bifurcation diagrams do not have locally
passive domains.
• Although the analytical criteria for the four vari-

able CNNs with one port (see Theorems 2.1–2.4,
and Figs. 5(a) and 5(b) in [Min et al., 2000b]) and
two ports (see Theorems 4.1–4.4) are formally dif-
ferent, the two bifurcation graphs, Figs. 12(a) and
12(b), are the same as those shown in Figs. 5(a)
and 5(b), respectively.

−2 −1 0 1 2
−2
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1

2

 b

 a

 

(a)

−2 −1 0 1 2
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1

2

 b

 a

 

(b)

Fig. 12. Bifurcation diagrams of the SCC two-diffusion
CNNs with parameters α = 10 and β = 15. The domains
are coded as follows: edge of chaos (locally active and stable)
domain (red), locally active and unstable domain (green).
In the domain coded with yellow, no nonzero equilibrium
point exists. The edge of chaos with respect to the equilib-
rium point: (a) Q1 (= 0) at cross-section a ∈ [−2, 2] and
b ∈ [−2, 2] and (b) Q2 (resp. Q3) at cross-section a ∈ [−2, 2]
and b ∈ [−2, 2].

• The edges of chaos with respect to equilibrium
points Q1 and Q2 (resp. Q3) are quite different.
Therefore, the proposed Definition 2.1 is useful.

4.3. Simulations of the SCC CNN
dynamics

Now, let us simulate the dynamic behaviors of the
4D SCC equations and the SCC CNNs (96)–(103)
with the periodic boundary condition. The param-
eter groups chosen in the equations and the corre-
sponding simulation results are listed in Table 2.
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Table 2. Cell parameters and corresponding dynamic properties of the SCC CNNs, where {α, β, D1, D2} =
{10, 15, 0.01, 0.01}. The symbols ⇓, ⇑, © and

⊕
indicate that convergent patterns, divergent patterns,

periodic patterns and chaotic patterns are observed near to or far from the corresponding equilibrium points,
respectively. The numbers, which are marked by ∗, indicate that the corresponding cell parameters lie on the
edge of chaos domain with respect to Q1 or Q2 (resp. Q3).

No. a b Equilibrium Point Eigenvalue Pattern

1∗ −1 0.6 0.3239, 0, −0.3239, 0.9718 −10.0000, −0.0211 ± 3.6814i, −9.9299 ©
2 −1 0.48 0.3239, 0, −0.3239, 0.9718 −10.0000, 0.0041 ± 3.6572i, −9.3073

⊕
©

3 −1 0 0.3239, 0, −0.3239, 0.9718 −10.0000, 0.1218 ±−3.5017i, −6.8512
⊕
©

4 −1 −0.5 0.3239, 0, −0.3239, 0.9718 −10.0000, −0.0002 ± 3.6615i, −9.4109
⊕
⇑

5 −1 −0.85 0.3239, 0, −0.3239, 0.9718 −10.0000, 0.0936 ± 2.4924i, −2.0282 © ⇑
6∗ −1 −0.9 0.3239, 0, −0.3239, 0.9718 −10.0000, −0.0170 ± 2.3471i, −1.5268 ⇓ ⇑
7∗ −1.3 0.3 0.4523, 0, −0.4523, 1.3568 −10.0000, −0.0161 ± 3.6768i, −9.8026 © ⇑
8 −1.3 −0.1 0.5073, 0, −0.5073, 1.5218 −10.0000, 0.0833 ± 3.5623i, −7.5973 ©
9 −1.3 −0.85 0.1924, 0, −1.3606, 4.0819 −10.0000, 0.1924 ± 2.7136i, −2.7334 ⇑

10 −1.3 −0.90 1.8639, 0, −1.8639, 5.5917 −10.0000, 0.1173 ± 2.5340i, −2.1622
⊕
⇑

11 −1.3 −0.93 2.5090, 0, −2.5090, 7.5271 −10.0000, 0.0305 ± 2.4014i, -1.7237 © ⇑
12∗ −1.3 −0.94 2.8670, 0, −2.8670, 8.6010 −10.0000, −0.0111 ± 2.3532i, −1.5500 ⇓
13∗ −2 −0.94 8.7041, 0, −8.7041, 26.1124 −10.0000, −0.0018 ± 2.3633i, −1.5875 ⇓
14 −2 −0.935 8.0630, 0, −8.0630, 24.1889 −10.0000, 0.0205 ± 2.3892i, −1.6806 ©
15 −2 −0.8 2.8670, 0, −2.8670, 8.6010 −10.0000, 0.2332 ± 2.9028i, −3.3738

⊕
⇑

16 −2 −0.7 2.0313, 0, −2.0313, 6.0939 −10.0000, 0.2370 ± 3.1260i, −4.2754 ⇑
17 −2 0 0.8535, 0, −0.8535, 2.5604 −10.0000, 0.0024 ± 3.6589i, −9.3478 ©
18∗ −2 0.1 0.8069, 0, −0.8069, 2.4207 −10.0000, −0.0244 ± 3.6844i, −10.0166 ©
19∗ 1 1.5 0, 0, 0, 0 −10.0000, −0.2136 ± 3.7869i ⇓
20∗ 1 1 0, 0, 0, 0 −10.0000, −0.2527 ± 3.8010i ⇓
21∗ 1 0.5 0, 0, 0, 0 −10.0000, −0.2829 ± 3.8097i ⇓
22∗ 1 0 0, 0, 0, 0 −10.0000, −0.3067 ± 3.8154i ⇓
23∗ 1 −0.5 0, 0, 0, 0 −10.0000, −0.3260 ± 3.8192i ⇓ ⇑
24∗ 1 −1 0, 0, 0, 0 −10.0000, −0.3418 ± 3.8219i © ⇓
25∗ 1 1.25 0, 0, 0, 0 −10.0000, −0.3551 ± 3.8237i ⇓ ⇑

The numerical simulations show that the qualita-
tive behaviors of the SCC equations and the SCC
CNNs are similar if the diffusion parameters D1 and
D2 are small enough (e.g. ≤ 0.01).

Roughly speaking, if the parameters a and b
are selected in the edge of chaos (red) of the equi-
librium Q2 shown at the top in Fig. 12(b) [resp. the
locally active and unstable domain (green) of Q1

given in Fig. 12(a)], the dynamic behaviors of the
corresponding SCC CNNs can exhibit oscillation
(see Table 2).

If the parameters a and b are chosen in the
intersection of the locally active and unstable do-
mains of Q1 and Q2 shown in Figs. 12(a) and 12(b),
the corresponding SCC CNNs may display succes-
sively oscillatory, divergent, chaotic and oscillatory

patterns. In most cases, if the parameters a and
b are located in the locally active domain (green),
which are near the bottom edge of chaos shown in
Fig. 12(b), chaotic patterns can be generated.

On the other hand, if the parameters a and b are
selected in the edge of chaos (red) of the equilibrium
Q1 in the left area in Fig. 12(a), in which no nonzero
equilibrium Q2, Q3 exist, then for most cases,
divergent patterns are observed via simulations.
Oscillatory patterns or divergent patterns may also
coexist with divergent patterns by choosing dif-
ferent initial conditions (see items 19–25 listed in
Table 2).

Figures 13(a)–13(c) exhibit, respectively, the
chaotic trajectories and periodic trajectories, which
are generated via the SCC equations and numbered
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Fig. 13. Trajectories of the state variables x1, x2 and x3

of the SCC equations. The chaotic trajectory and the peri-
odic trajectory generated by the parameter set No. 3 listed
in Table 2, with the initial condition (x1(0), x2(0), x3(0)):
(a) (−0.1630, −0.0265, 0.0602, −0.4275), and (b) (−0.3342,
1.2220, 12.5481, −2.2370). (c) The chaotic trajectory gener-
ated by the parameter set No. 10 listed in Table 2 with the
initial condition (1, 1, 1, 1).
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Fig. 14. Trajectories of the components of the states X1, X2

and X3 of the SCC CNNs. The trajectories of the SCC CNNS
generated by the parameter set No. 3 listed in Table 2, with
different initial conditions: (a) The chaotic trajectory, and
(b) The trajectory converges to a limit cycle. (c) The chaotic
trajectories generated by the parameter set No. 10 listed in
Table 2.
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by 3 and 10 listed in Table 2 with different initial
conditions.

Now, let us simulate their corresponding 15×15
SCC CNNs with periodic boundary conditions.

• The patterns generated by the parameter group
No. 3. The parameter group is located in the lo-
cally active domain and nearby the oblique edge
of chaos with respect to the equilibrium point Q2

[see Fig. 12(b)]. Figures 14(a) and 14(b) show
the trajectories of the components of the states
X1, X2 and X3 of the SCC CNNs are very sim-
ilar to those of the original SCC equations [see
Figs. 13(a) and 13(b)]. The graphs of the time
evolution of the patterns of the local state vari-
ables of the SCC CNN over the time interval
[0, 40] are shown in Figs. 15 and 16, respectively.
The diffusion parameters D1, D2 are selected as
0.01. The initial condition is chosen as follows.

For Figs. 14(a) and 15:

x1i,j(0) =


−0.1630, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

0.1630, otherwise .

x2i,j(0) =


−0.0265, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

0.0265, otherwise .

x3i,j(0) =


0.0602, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

−0.0602, otherwise .

x4i,j(0) =


−0.4275, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

0.4275, otherwise .
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Fig. 15. Graphs of the time evolution of the state variables xk1
′
s, xk2

′
s, xk3

′
s and xk4

′
s of SCC CNNs generated by the parameter

set No. 3 listed in Table 2.
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Fig. 16. Graphs of the time evolution of the state variables xk1
′
s, xk2

′
s, xk3

′
s and xk4

′
s of SCC CNNs generated by the parameter

set No. 3 listed in Table 2, with different initial conditions.

For Fig. 14(b) and Fig. 16:

x1i,j(0) =


−0.3342, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

0.3342, otherwise .

x2i,j(0) =


1.2220, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

−1.2220, otherwise .

x3i,j(0) =


12.5481, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;
−12.5481, otherwise .

x4i,j(0) =


−2.2370, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

2.2370, otherwise .

• The patterns generated by the parameter group
No. 10. The parameter group is located in the

locally active domain and nearby the horizon-
tal edge of chaos with respect to the equilibrium
point Q2 [see Fig. 12(b)]. Figure 14(c) shows
the trajectories of the components of the states
X1, X2 and X3 of the SCC CNNs are very sim-
ilar to those of the original SCC equations [see
Fig. 13(c)]. The graphs of the time evolution of
the chaotic patterns of the local state variables of
the SCC CNN over the time interval [0, 40] are
shown in Fig. 17. The diffusion parameters D1,
D2 are selected as 0.01. The initial condition is
chosen as follows.

x1i,j(0) =


1, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

−1, otherwise .

x2i,j(0) =


1, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

−1, otherwise .
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Fig. 17. Graphs of the time evolution of the state variables xk1
′
s, xk2

′
s, xk3

′
s and xk4

′
s of SCC CNNs generated by the parameter

set No. 10 listed in Table 2.

x3i,j(0) =


1, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

−1 otherwise .

x4i,j(0) =


1, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

−1, otherwise .

• Now let us continue with the state variables of
the above SCC CNN with the chessboard-shaped
initial conditions given by

xki,j(0) =

{
1, if i+ j is an even number;
−1, otherwise

where k = 1, 2, 3, 4. The evolution of chaotic
patterns of the state variable x1i,j over the time

interval [0, 120] are shown in Fig. 19; the evo-
lution of chaotic patterns of the state variables
x1i,j, x2i,j , x3i,j and x4i,j at the time 30, 52.9,
72.5, 89.7 and 105 are shown in Fig. 20, in which
the pseudo-color code for the components x′ki,js of
the solution of the CNN state equation are cho-
sen as similar to that shown in Fig. 7 in [Min
et al., 2000b]. These figures exhibit once again
that smoothed Chua’s circuit CNNs are the ma-
chines generating complex patterns.
• The patterns generated by the parameter group

No. 24. The parameter group is located in the
the edge of chaos with respect to the equilib-
rium point Q1 = (0, 0, 0, 0) [see Fig. 12(a)]. The
graphs of the time evolution of the limit cycle pat-
terns of the local state variables of the SCC CNN
over the time interval [0, 40] are shown in Fig. 18.



Analytical Criteria for Local Activity of Two-Port CNN 957

0 10 20 30 40
  t / s 

 x
1
k

 1

 225

 

0 10 20 30 40
  t / s 

 x
2
k

 1

 225

(a) (b)

0 10 20 30 40
  t / s 

 x
3
k

 1

 225

0 10 20 30 40
  t / s 

 x
4
k

 1

 225

(c) (d)

Fig. 18. Graphs of the time evolution of the state variables xk1
′
s, xk2

′
s, xk3

′
s and xk4

′
s of SCC CNN’s generated by the

parameter set No. 24 listed in Table 2.

The diffusion parameters D1, D2 are selected as
0.01. The initial condition is chosen as follows.

x1i,j(0) =


−14.3159, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

14.3159, otherwise .

x2i,j(0) =


2.5546, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

−2.5546, otherwise .

x3i,j(0) =


26.7470, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

−26.7470, otherwise .

x4i,j(0) =


−48.3950, if 7 ≤ i ≤ 9, j = 8

or 7 ≤ j ≤ 9, i = 8;

48.3950, otherwise .

4.4. Concluding remarks

Based on the local activity principle of CNN cells
presented by [Chua, 1977, 1999], analytical criteria
of the local activity for two-port CNNs with four
state variables are set up. The analytical criteria
consist of Theorems 4.1–4.4, which can be imple-
mented by a computer program to produce bifurca-
tion diagrams for general corresponding CNNs.

A two-port SCC CNN is introduced and the
bifurcation diagrams of the SCC CNN are calcu-
lated. Although the analytical criteria are much
more complex than those of the one-port CNN [Min
et al., 2000b], the bifurcation diagrams of the two-
port SCC CNN and the one-port SCC CNN calcu-
lated via our criteria are the same (see Figs. 12(a),
12(b) and Figs. 5(a) and 5(c) in [Min et al., 2000b]).

The numerical simulations exhibit the ex-
tremely complex behaviors possible in the SCC
CNN, which are similar to the SCC Eqs. (96)–(99),
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t = 0 t = 1.54 t = 3.1 t = 4.89 t = 6.71

t = 8.39 t = 10.1 t = 13.5 t = 16.9 t = 19.9

t = 22.4 t = 24.4 t = 27.8 t = 30.5 t = 31.8

t = 33.5 t = 35.7 t = 37.3 t = 39.4 t = 41.7

t = 44 t = 45.6 t = 47 t = 49.2 t = 50.7

Fig. 19. Evolution of chaotic patterns of the state variable x1i,j of the 15 × 15 SCC CNN generated by the parameter set
No. 10 listed in Table 2 over the time interval [0, 120].
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t = 52.3 t = 53.3 t = 55.1 t = 56.8 t = 58.5

t = 60.2 t = 61.4 t = 63.2 t = 64.9 t = 65.9

t = 67.4 t = 68.6 t = 70.2 t = 71.8 t = 73.3

t = 74.8 t = 76.6 t = 77.7 t = 79 t = 79.9

t = 81.2 t = 82.3 t = 83.7 t = 84.9 t = 86.2

Fig. 19. (Continued )
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t = 87.7 t = 89.2 t = 90.2 t = 91.5 t = 92.7

t = 93.7 t = 94.9 t = 95.9 t = 97.4 t = 98.7

t = 99.6 t = 101 t = 102.2 t = 103.4 t = 104.4

t = 105.5 t = 106.8 t = 108.5 t = 109.6 t = 110.9

t = 112.2 t = 113.5 t = 114.4 t = 115.1 t = 120

Fig. 19. (Continued )
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Fig. 20. Evolution of chaotic patterns of the state variables x1i,j , x2i,j , x3i,j and x4i,j of the 15× 15 SCC CNN generated by
the parameter set No. 10 listed in Table 2, over the time interval [0, 120].
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if the diffusion coefficients of the SCC CNN are
small enough. Chaotic patterns, oscillatory pat-
terns, and divergent patterns can be obtained, if the
corresponding cell parameters of the SCC CNNs are
selected in the locally active and unstable domain
or in the edge of chaos domains.

In summary, this paper has demonstrated once
again that the local activity theory provides a prac-
tical tool for the study of the complex dynamics of
some nonlinear systems.
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